Jäger C, Gregori BJ, Aho JAS, Hallamaa M, Deska J. Peroxidase-induced C-N bond formation
via nitroso ene and Diels-Alder reactions.
GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023;
25:3166-3174. [PMID:
37113763 PMCID:
PMC10124104 DOI:
10.1039/d2gc04827b]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The formation of new carbon-nitrogen bonds is indisputably one of the most important tasks in synthetic organic chemistry. Here, nitroso compounds offer a highly interesting reactivity that complements traditional amination strategies, allowing for the introduction of nitrogen functionalities via ene-type reactions or Diels-Alder cycloadditions. In this study, we highlight the potential of horseradish peroxidase as biological mediator for the generation of reactive nitroso species under environmentally benign conditions. Exploiting a non-natural peroxidase reactivity, in combination with glucose oxidase as oxygen-activating biocatalyst, aerobic activation of a broad range of N-hydroxycarbamates and hydroxamic acids is achieved. Thus both intra- and intermolecular nitroso-ene as well as nitroso-Diels-Alder reactions are performed with high efficiency. Relying on a commercial and robust enzyme system, the aqueous catalyst solution can be recycled over numerous reaction cycles without significant loss of activity. Overall, this green and scalable C-N bond-forming strategy enables the production of allylic amides and various N-heterocyclic building blocks utilizing only air and glucose as sacrificial reagents.
Collapse