1
|
Wu K, Che CM. Iron-catalysed intramolecular C(sp 3)-H amination of alkyl azides. Chem Commun (Camb) 2024; 60:13998-14011. [PMID: 39531011 DOI: 10.1039/d4cc04169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Iron-catalysed intramolecular C(sp3)-H amination of alkyl azides (N3R, R = alkyl) via the iron-alkylnitrene/alkylimido (Fe(NR)) intermediate, is an appealing synthetic approach for the synthesis of various N-heterocycles. This approach provides a direct atom-economy strategy for constructing C(sp3)-N bonds, with nitrogen gas as the only by-product and iron is a biocompatible, cheap, and earth-abundant metal. However, C(sp3)-H amination with alkyl azides is challenging because alkyl nitrenes readily undergo 1,2-hydride migration to imines. This article summarizes recent major advances in this field in terms of catalyst design, substrate scope expansion, stereoselectivity control, understanding of key reaction intermediates, and applications in the synthesis of complex natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| |
Collapse
|
2
|
Zhou B, Ih MI, Yao S, Hemming M, Ivlev SI, Chen S, Meggers E. β 3-Tryptophans by Iron-Catalyzed Enantioselective Amination of 3-Indolepropionic Acids. Org Lett 2024; 26:8361-8365. [PMID: 39311759 PMCID: PMC11459507 DOI: 10.1021/acs.orglett.4c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
A straightforward and general strategy for the catalytic asymmetric synthesis of β3-tryptophans by carboxylic-acid-directed intermolecular C-H amination has been developed. The iron-catalyzed C-H amination of 3-indolepropionic acids with BocNHOMs (Boc, tert-butyloxycarbonyl; OMs, methylsulfonate) in the presence of the base piperidine provides N-Boc-protected β3-tryptophans in a single step with high enantiomeric excess (ee) of up to >99%. Mechanistic experiments and density functional theory calculations support a mechanism through carboxylate-directed iron-mediated C(sp3)-H nitrene insertion. The method incorporates two key sustainability criteria: the use of iron as an abundant, non-toxic, and environmentally benign metal, along with the achievement of streamlined enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Bing Zhou
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Marisa I. Ih
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United
States
| | - Suyang Yao
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Marcel Hemming
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Sergei I. Ivlev
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Shuming Chen
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United
States
| | - Eric Meggers
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
3
|
Wu WQ, Xie PP, Wang LY, Gou BB, Lin Y, Hu LW, Zheng C, You SL, Shi H. Chiral Bis(binaphthyl) Cyclopentadienyl Ligands for Rhodium-Catalyzed Desymmetrization of Diarylmethanes via Selective Arene Coordination. J Am Chem Soc 2024; 146:26630-26638. [PMID: 39293091 DOI: 10.1021/jacs.4c10876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Owing to substantial advances in the past several decades, transition-metal-catalyzed asymmetric reactions have garnered considerable attention as pivotal methods for constructing chiral molecules from abundant, readily available achiral counterparts. These advances are largely attributed to the development of chiral ligands that control stereochemistry through steric repulsion and other noncovalent interactions between the ligands and functional groups or prochiral centers on the substrates. However, stereocontrol weakens dramatically with increasing distance between the reaction site and the functional group or prochiral center. Herein, we report a symphonic strategy for remote stereocontrol of Rh(III)-catalyzed asymmetric benzylic C-H bond addition reactions of diarylmethanes in which the two aryl motifs differ at the meta and/or para position. Specifically, catalysts bearing a new type of chiral cyclopentadienyl (Cp) ligand differentiate between the two aromatic rings of the diarylmethane by arene-selective η6 coordination, setting up an opportunity for ligand-controlled stereoselective benzylic deprotonation and subsequent stereoselective addition to the 1,1-bis(arylsulfonyl)ethylene.
Collapse
Affiliation(s)
- Wen-Qiang Wu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Pei-Pei Xie
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Le-Yao Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Bo-Bo Gou
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Li-Wei Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
4
|
You T, Shing K, Wu L, Wu K, Wang H, Liu Y, Du L, Liang R, Phillips DL, Chang X, Huang J, Che C. Iron Corrole-Catalyzed Intramolecular Amination Reactions of Alkyl Azides. Spectroscopic Characterization and Reactivity of [Fe V(Cor)(NAd)]. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401420. [PMID: 39162002 PMCID: PMC11497103 DOI: 10.1002/advs.202401420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/18/2024] [Indexed: 08/21/2024]
Abstract
As nitrogen analogues of iron-oxo species, high-valent iron-imido species have attracted great interest in the past decades. FeV-alkylimido species are generally considered to be key reaction intermediates in Fe(III)-catalyzed C(sp3)─H bond aminations of alkyl azides but remain underexplored. Here, it is reported that iron-corrole (Cor) complexes can catalyze a wide range of intramolecular C─H amination reactions of alkyl azides to afford a variety of 5-, 6- and 7-membered N-heterocycles, including alkaloids and natural product derivatives, with up to 3880 turnover numbers (TONs) and excellent diastereoselectivity (>99:1 d.r.). Mechanistic studies including density functional theory (DFT) calculations and intermolecular hydrogen atom abstraction (HAA) reactions reveal key reactive FeV-alkylimido intermediates. The [FeV(Cor)(NAd)] (Ad = adamantyl) complex is independently prepared and characterized through electron paramagnetic resonance (EPR), resonance Raman (rR) measurement, and X-ray photoelectron spectroscopy (XPS). This complex is reactive toward HAA reactions with kinetic isotope effects (KIEs) similar to [Fe(Cor)]-catalyzed intramolecular C─H amination of alkyl azides.
Collapse
Affiliation(s)
- Tingjie You
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Ka‐Pan Shing
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Liangliang Wu
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Kai Wu
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Hua‐Hua Wang
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Yungen Liu
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Lili Du
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Runhui Liang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - David Lee Phillips
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Xiao‐Yong Chang
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- HKU Shenzhen Institute of Research and InnovationShenzhenGuangdong518057P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedUnits 1503–1511, 15/F., Building 17 W, Hong Kong Science Park, New TerritoriesHong Kong000000P. R. China
| |
Collapse
|
5
|
He S, Feng B, Tang Y, Chen R, Guo Y, Koenigs RM. Photochemical α-amination of carbonyl groups with iodinanes. Chem Commun (Camb) 2024; 60:10128-10131. [PMID: 39189815 DOI: 10.1039/d4cc03564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report on a photochemical reaction of silyl enol ethers with iminoiodinanes. This aza Rubottom reaction provides a direct access towards α-amino carbonyl compounds under catalyst free reaction conditions with light as the sole source of energy. Control experiments suggest the participation of triplet nitrene intermediates.
Collapse
Affiliation(s)
- Suyuan He
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Boya Feng
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Yiben Tang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Ruiping Chen
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Yujing Guo
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
6
|
Ahmed H, Ghosh B, Breitenlechner S, Feßner M, Merten C, Bach T. Intermolecular Enantioselective Amination Reactions Mediated by Visible Light and a Chiral Iron Porphyrin Complex. Angew Chem Int Ed Engl 2024; 63:e202407003. [PMID: 38695376 DOI: 10.1002/anie.202407003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/15/2024]
Abstract
In the presence of 1 mol % of a chiral iron porphyrin catalyst, various 3-arylmethyl-substituted 2-quinolones and 2-pyridones underwent an enantioselective amination reaction (20 examples; 93-99 % ee). The substrates were used as the limiting reagents, and fluorinated aryl azides (1.5 equivalents) served as nitrene precursors. The reaction is triggered by visible light which allows a facile dediazotation at ambient temperature. The selectivity of the reaction is governed by a two-point hydrogen bond interaction between the ligand of the iron catalyst and the substrate. Hydrogen bonding directs the amination to a specific hydrogen atom within the substrate that is displaced by the nitrogen substituent either in a concerted fashion or by a rebound mechanism.
Collapse
Affiliation(s)
- Hussayn Ahmed
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Biki Ghosh
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Stefan Breitenlechner
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Malte Feßner
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Christian Merten
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
7
|
Hodson NJ, Takano S, Fanourakis A, Phipps RJ. Enantioselective Nitrene Transfer to Hydrocinnamyl Alcohols and Allylic Alcohols Enabled by Systematic Exploration of the Structure of Ion-Paired Rhodium Catalysts. J Am Chem Soc 2024; 146:22629-22641. [PMID: 39083568 PMCID: PMC11328136 DOI: 10.1021/jacs.4c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This work describes highly enantioselective nitrene transfer to hydrocinnamyl alcohols (benzylic C-H amination) and allylic alcohols (aziridination) using ion-paired Rh (II,II) complexes based on anionic variants of Du Bois' esp ligand that are associated with cinchona alkaloid-derived chiral cations. Directed by a substrate hydroxyl group, our previous work with these complexes had not been able to achieve high enantioselectivity on these most useful short-chain compounds, and we overcame this challenge through a combination of catalyst design and modified conditions. A hypothesis that modulation of the linker between the anionic sulfonate group and the central arene spacer might provide a better fit for shorter chain length substrates led to the development of a new biaryl-containing scaffold, which has allowed a broad scope for both substrate classes to be realized for the first time. Furthermore, we describe a systematic structural "knockout" study on the cinchona alkaloid-derived chiral cation to elucidate which features are crucial for high enantioinduction. De novo synthesis of modified scaffolds led to the surprising finding that for high ee the quinoline nitrogen of the alkaloid is crucial, although its location within the heterocycle could be varied, even leading to a superior catalyst. The free hydroxyl is also crucial and should possess the naturally occurring diastereomeric configuration of the alkaloid. These findings underline the privileged nature of the cinchona alkaloid scaffold and provide insight into how these cations might be used in other catalysis contexts.
Collapse
Affiliation(s)
- Nicholas J Hodson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Shotaro Takano
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Wei SQ, Li ZH, Wang SH, Chen H, Wang XY, Gu YZ, Zhang Y, Wang H, Ding TM, Zhang SY, Tu YQ. Asymmetric Intramolecular Amination Catalyzed with Cp*Ir-SPDO via Nitrene Transfer for Synthesis of Spiro-Quaternary Indolinone. J Am Chem Soc 2024; 146:18841-18847. [PMID: 38975938 DOI: 10.1021/jacs.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.
Collapse
Affiliation(s)
- Shi-Qiang Wei
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Shuang-Hu Wang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Hua Chen
- College of Pharmaceutical Science and Collaborative Innovation Cent of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Yu Wang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Yun-Zhou Gu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Cent of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai, Minhang 200240, China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Lin A, Ghosh A, Yellen S, Ball ZT, Kürti L. Oxidative Nitrogen Insertion into Silyl Enol Ether C═C Bonds. J Am Chem Soc 2024. [PMID: 39013155 DOI: 10.1021/jacs.4c07111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Here, we demonstrate a fundamentally new reactivity of the silyl enol ether functionality utilizing an in situ-generated iodonitrene-like species. The present transformation inserts a nitrogen atom between the silyl enol ether olefinic carbons with the concomitant cleavage of the C═C bond. Overall, this facile transformation converts a C-nucleophilic silyl enol ether to the corresponding C-electrophilic N-acyl-N,O-acetal. This unprecedented access to α-amido alkylating agents enables modular derivatization with carbon and heteroatom nucleophiles and the unique late-stage editing of carbon frameworks. The reaction efficiency of this transformation is well correlated with enol ether nucleophilicity as described by the Mayr N scale. Applications presented herein include late-stage nitrogen insertion into carbon skeletons of natural products with previously unattainable regioselectivity as well as modified conditions for 15N labeling of amides and lactams.
Collapse
Affiliation(s)
- Alex Lin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Arghya Ghosh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Simon Yellen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - László Kürti
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
11
|
Sawant DM, Joshi G, Ansari AJ. Nitrene-transfer from azides to isocyanides: Unveiling its versatility as a promising building block for the synthesis of bioactive heterocycles. iScience 2024; 27:109311. [PMID: 38510111 PMCID: PMC10951658 DOI: 10.1016/j.isci.2024.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Cross-coupling azide and isocyanide have recently gained recognition as ideal methods for efficiently synthesizing asymmetric carbodiimides. This reaction exhibits high reaction rates, efficiency, and favorable atom/step/redox economy. It enables the nitrene-transfer process, facilitating the formation of C-N bonds and providing a direct and cost-effective synthetic strategy for generating diverse carbodiimides. These carbodiimides are highly reactive compounds that can undergo in-situ transformations into various functional groups and organic compounds, including heterocycles. Developing one-pot and tandem processes in this field has significantly contributed to advancements in organic chemistry. Moreover, the demonstrated utility of these architectural motifs extends to areas such as chemical biology and medicinal chemistry, further highlighting their potential in various scientific applications.
Collapse
Affiliation(s)
- Devesh M. Sawant
- Department of Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Arshad J. Ansari
- Department of Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| |
Collapse
|
12
|
Paterson KJ, Dahiya A, Williams BD, Phipps RJ. Tertiary Amides as Directing Groups for Enantioselective C-H Amination using Ion-Paired Rhodium Complexes. Angew Chem Int Ed Engl 2024; 63:e202317489. [PMID: 38348742 DOI: 10.1002/anie.202317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 03/01/2024]
Abstract
Enantioselective C-H amination at a benzylic methylene is a vital disconnection towards chiral benzylamines. Here we disclose that butyric and valeric acid-derived tertiary amides can undergo highly enantioselective benzylic amination using an achiral anionic Rh complex that is ion-paired with a Cinchona alkaloid-derived chiral cation. A broad scope of compounds can be aminated encompassing numerous arene substitutions, amides, and two different chain lengths. Excellent tolerance of ortho substituents was observed, which has not been achieved before in asymmetric intermolecular C-H amination with Rh. We speculate that the tertiary amide group of the substrate engages in hydrogen bonding interactions directly with the chiral cation, enabling a high level of organisation at the transition state for C-H amination. This is in contrast with our previous work where a substrate bearing a hydrogen bond donor was required. Control experiments led to the discovery that methyl ethers also function as proficient directing groups under the optimised conditions, potentially also acting as hydrogen bond acceptors. This finding has the promise to dramatically expand the applicability of our ion-paired chiral catalysts.
Collapse
Affiliation(s)
- Kieran J Paterson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Amit Dahiya
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Benjamin D Williams
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
13
|
Kagawa Y, Oohora K, Hayashi T. Intramolecular C-H bond amination catalyzed by myoglobin reconstituted with iron porphycene. J Inorg Biochem 2024; 252:112459. [PMID: 38181613 DOI: 10.1016/j.jinorgbio.2023.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024]
Abstract
C-H bond amination is an effective way to obtain nitrogen-containing products. In this work, we demonstrate that myoglobin reconstituted with iron porphycene (rMb(FePc)) catalyzes intramolecular C(sp3)-H bond amination of arylsulfonyl azides to yield corresponding sultam analogs. The total turnover number of rMb(FePc) is up to 5.7 × 104 for the C-H bond amination of 2,4,6-triisopropylbenzenesulfonyl azide. Moreover, rMb(FePc) exhibits higher selectivity for the desired C-H bond amination than the competing azide reduction compared to native myoglobin. Kinetic studies reveal that the kcat value of rMb(FePc) is 4-fold higher than that of native myoglobin. Furthermore, H64A, H64V and H64I mutants of rMb(FePc) enhance the turnover number (TON) and enantioselectivity for the C-H bond amination of 2,4,6-triethylbenzenesulfonyl azide. The present findings indicate that iron porphycene is an attractive artificial cofactor for myoglobin toward the C-H bond amination reaction.
Collapse
Affiliation(s)
- Yoshiyuki Kagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Su S, Zhang Y, Liu P, Wink DJ, Lee D. Intramolecular Carboxyamidation of Alkyne-Tethered O-Acylhydroxamates through Formation of Fe(III)-Nitrenoids. Chemistry 2024; 30:e202303428. [PMID: 38050744 DOI: 10.1002/chem.202303428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
We developed intramolecular carboxyamidations of alkyne-tethered O-acylhydroxamates followed by either thermally induced spontaneous or 4-(dimethylamino)pyridine-catalyzed O→O or O→N acyl group migration. Under iron-catalyzed conditions, the carboxyamidation products were generated in high yield from both Z-alkene and arene-tethered substrates. DFT calculations indicate that the iron-catalyzed carboxyamidation proceeds via a stepwise mechanism involving iron-imidyl radical cyclization followed by intramolecular acyloxy transfer from the iron center to the alkenyl radical center to furnish the cis-carboxyamidation product. Upon treatment with 4-(dimethylamino)pyridine, the Z-alkene-tethered carboxyamidation products underwent selective O→O acyl migration to generate 2-acyloxy-5-acyl pyrroles. Thermal O→N acyl migration occurs during carboxyamidation if the Z-alkene linker contains an alkyl or an aryl substituent at the β-position of the carbonyl group. On the other hand, the arene linker-containing compounds selectively undergo O→N acyl migration to generate N-acyl-3-acylisoindolinones, and the corresponding O→O acyl migration forming isoindole derivatives was not observed.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
15
|
Baris N, Dračínský M, Tarábek J, Filgas J, Slavíček P, Ludvíková L, Boháčová S, Slanina T, Klepetářová B, Beier P. Photocatalytic Generation of Trifluoromethyl Nitrene for Alkene Aziridination. Angew Chem Int Ed Engl 2024; 63:e202315162. [PMID: 38081132 DOI: 10.1002/anie.202315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 01/06/2024]
Abstract
N-Trifluoromethylated organics may be applied in drug design, agrochemical synthesis, and materials science, among other areas. Yet, despite recent advances in the synthesis of aliphatic, cyclic and heterocyclic N-trifluoromethyl compounds, no strategy based on trifluoromethyl nitrene has hitherto been explored. Here we describe the formation of triplet trifluoromethyl nitrene from azidotrifluoromethane, a stable and safe-to-use precursor, by visible light photocatalysis. The addition of CF3 N to alkenes via biradical intermediates afforded previously unknown aziridines substituted with trifluoromethyl group on the nitrogen atom. The obtained aziridines were converted into either N-trifluoromethylimidazolines, via formal [3+2] cycloaddition with nitriles, mediated by a Lewis acid, or into N-trifluoromethylaldimines, via ring opening and aryl group migration mediated by a strong Brønsted acid. Our findings open new opportunities for the development of novel classes of N-CF3 compounds with possible applications in the life sciences.
Collapse
Affiliation(s)
- Norbert Baris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Josef Filgas
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Lucie Ludvíková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| |
Collapse
|
16
|
Li HH, Chen X, Kramer S. Recent developments for intermolecular enantioselective amination of non-acidic C(sp 3)-H bonds. Chem Sci 2023; 14:13278-13289. [PMID: 38033905 PMCID: PMC10686044 DOI: 10.1039/d3sc04643e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Enantioenriched chiral amines are of exceptional importance in the pharmaceutical industry. Recently, several new methods for the installation of these functional groups directly from non-acidic C(sp3)-H bonds by catalytic intermolecular enantioselective amination have been reported. These methods represent significant advances of the field and most of them display high levels of enantioselectivity, utilize the C(sp3)-H substrate as the limiting reagent, feature good functional group tolerance, and show compatibility with late-stage C(sp3)-H amination of advanced substrates. This perspective provides an overview of the recent developments in this rapidly advancing field and outlines possibilities and limitations, which will help identify unsolved challenges and guide future research efforts.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Chemistry, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Xuemeng Chen
- Department of Chemistry, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
17
|
Fanourakis A, Phipps RJ. Catalytic, asymmetric carbon-nitrogen bond formation using metal nitrenoids: from metal-ligand complexes via metalloporphyrins to enzymes. Chem Sci 2023; 14:12447-12476. [PMID: 38020383 PMCID: PMC10646976 DOI: 10.1039/d3sc04661c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
The introduction of nitrogen atoms into small molecules is of fundamental importance and it is vital that ever more efficient and selective methods for achieving this are developed. With this aim, the potential of nitrene chemistry has long been appreciated but its application has been constrained by the extreme reactivity of these labile species. This liability however can be attenuated by complexation with a transition metal and the resulting metal nitrenoids have unique and highly versatile reactivity which includes the amination of certain types of aliphatic C-H bonds as well as reactions with alkenes to afford aziridines. At least one new chiral centre is typically formed in these processes and the development of catalysts to exert control over enantioselectivity in nitrenoid-mediated amination has become a growing area of research, particularly over the past two decades. Compared with some synthetic methods, metal nitrenoid chemistry is notable in that chemists can draw from a diverse array of metals and catalysts , ranging from metal-ligand complexes, bearing a variety of ligand types, via bio-inspired metalloporphyrins, all the way through to, very recently, engineered enzymes themselves. In the latter category in particular, rapid progress is being made, the rate of which suggests that this approach may be instrumental in addressing some of the outstanding challenges in the field. This review covers key developments and strategies that have shaped the field, in addition to the latest advances, up until September 2023.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
18
|
Shi T, Zhang T, Yang J, Li Y, Shu J, Zhao J, Zhang M, Zhang D, Hu W. Bifunctionality of dirhodium tetracarboxylates in metallaphotocatalysis. Nat Commun 2023; 14:7269. [PMID: 37949850 PMCID: PMC10638314 DOI: 10.1038/s41467-023-43050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Metallaphotocatalysis has been recognized as a pivotal catalysis enabling new reactivities. Traditional metallaphotocatalysis often requires two or more separate catalysts and exhibits flaw in cost and substrate-tolerance, thus representing an await-to-solve issue in catalysis. We herein realize metallaphotocatalysis with a bifunctional dirhodium tetracarboxylate ([Rh2]) alone. The [Rh2] shows an photocatalytic activity of promoting singlet oxygen (1O2) oxidation. By harnessing its photocatalytic activity, the [Rh2] catalyzes a photochemical cascade reaction (PCR) via combination of carbenoid chemistry and 1O2 chemistry. The PCR is characterized by high atom-efficiency, excellent stereoselectivities, mild conditions, scalable synthesis, and pharmaceutically interesting products. DFT calculations-aided mechanistic study rationalizes the reaction pathway and interprets the origin of stereoselectivities of the PCR. The products show inhibitory activity against PTP1B, being promising in the treatment of type II diabetes and cancers. Overall, here we show the bifunctional [Rh2] merges Rh-carbenoid chemistry and 1O2 chemistry.
Collapse
Affiliation(s)
- Taoda Shi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Tianyuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiying Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yukai Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jirong Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mengchu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Nie X, Ritter CW, Hemming M, Ivlev SI, Xie X, Chen S, Meggers E. Nitrene-Mediated Enantioselective Intramolecular Olefin Oxyamination to Access Chiral γ-Aminomethyl-γ-Lactones. Angew Chem Int Ed Engl 2023:e202314398. [PMID: 37920926 DOI: 10.1002/anie.202314398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Attaching a nitrene precursor to an intramolecular nucleophile allows for a catalytic asymmetric intramolecular oxyamination of alkenes in which the nucleophile adds in an endocyclic position and the amine in an exocyclic fashion. Using chiral-at-ruthenium catalysts, chiral γ-aminomethyl-γ-lactones containing a quaternary carbon in γ-position are provided in high yields (up to 99 %) and with excellent enantioselectivities (up to 99 % ee). DFT calculations support the possibility of both a singlet (concerted oxyamination of the alkene) and triplet pathway (stepwise oxyamination) for the formation of the predominant stereoisomer. γ-Aminomethyl-γ-lactones are versatile chiral building blocks and can be converted to other heterocycles such as δ-lactams, 2-oxazolidinones, and tetrahydrofurans.
Collapse
Affiliation(s)
- Xin Nie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Clayton W Ritter
- College of Arts & Sciences, Oberlin College Science Center N381, 119 Woodland St., Oberlin, OH-44074, USA
| | - Marcel Hemming
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Shuming Chen
- College of Arts & Sciences, Oberlin College Science Center N381, 119 Woodland St., Oberlin, OH-44074, USA
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| |
Collapse
|
20
|
Yu K, Zou Z, Igareta NV, Tachibana R, Bechter J, Köhler V, Chen D, Ward TR. Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C( sp3)-H Bonds. J Am Chem Soc 2023; 145:16621-16629. [PMID: 37471698 PMCID: PMC10401721 DOI: 10.1021/jacs.3c03969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 07/22/2023]
Abstract
Enantioselective C-H amidation offers attractive means to assemble C-N bonds to synthesize high-added value, nitrogen-containing molecules. In recent decades, complementary enzymatic and homogeneous-catalytic strategies for C-H amidation have been reported. Herein, we report on an artificial metalloenzyme (ArM) resulting from anchoring a biotinylated Ir-complex within streptavidin (Sav). The resulting ArM catalyzes the enantioselective amidation of unactivated C(sp3)-H bonds. Chemogenetic optimization of the Ir cofactor and Sav led to significant improvement in both the activity and enantioselectivity. Up to >700 TON and 92% ee for the amidation of unactivated C(sp3)-H bonds was achieved. The single crystal X-ray analysis of the artificial nitrene insertase (ANIase) combined with quantum mechanics-molecular mechanics (QM-MM) calculations sheds light on critical second coordination sphere contacts leading to improved catalytic performance.
Collapse
Affiliation(s)
- Kun Yu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Zhi Zou
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Ryo Tachibana
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Julia Bechter
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| |
Collapse
|
21
|
van den Heuvel N, Mason SM, Mercado BQ, Miller SJ. Aspartyl β-Turn-Based Dirhodium(II) Metallopeptides for Benzylic C(sp 3)-H Amination: Enantioselectivity and X-ray Structural Analysis. J Am Chem Soc 2023; 145:12377-12385. [PMID: 37216431 PMCID: PMC10330621 DOI: 10.1021/jacs.3c03587] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Amination of C(sp3)-H bonds is a powerful tool to introduce nitrogen into complex organic frameworks in a direct manner. Despite significant advances in catalyst design, full site- and enantiocontrol in complex molecular regimes remain elusive using established catalyst systems. To address these challenges, we herein describe a new class of peptide-based dirhodium(II) complexes derived from aspartic acid-containing β-turn-forming tetramers. This highly modular system can serve as a platform for the rapid generation of new chiral dirhodium(II) catalyst libraries, as illustrated by the facile synthesis of a series of 38 catalysts. Critically, we present the first crystal structure of a dirhodium(II) tetra-aspartate complex, which unveils retention of the β-turn conformation of the peptidyl ligand; a well-defined hydrogen-bonding network is evident, along with a near-C4 symmetry that renders the rhodium centers inequivalent. The utility of this catalyst platform is illustrated by the enantioselective amination of benzylic C(sp3)-H bonds, in which state-of-the-art levels of enantioselectivity up to 95.5:4.5 er are obtained, even for substrates that present challenges with previously reported catalyst systems. Additionally, we found these complexes to be competent catalysts for the intermolecular amination of N-alkylamides via insertion into the C(sp3)-H bond α to the amide nitrogen, yielding differentially protected 1,1-diamines. Of note, this type of insertion was also observed to occur on the amide functionalities of the catalyst itself in the absence of the substrate but did not appear to be detrimental to reaction outcomes when the substrate was present.
Collapse
Affiliation(s)
- Naudin van den Heuvel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Savannah M. Mason
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Ye CX, Meggers E. Chiral-at-Ruthenium Catalysts for Nitrene-Mediated Asymmetric C-H Functionalizations. Acc Chem Res 2023; 56:1128-1141. [PMID: 37071874 DOI: 10.1021/acs.accounts.3c00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
ConspectusAsymmetric transition metal catalysis is an indispensable tool used both in academia and industry for forging chiral molecules in an enantioselective fashion. Its advancement relies in large part on the design and discovery of new chiral catalysts. In contrast to conventional endeavors of generating chiral transition metal catalysts from carefully tailored chiral ligands, the development of chiral transition metal catalysts containing solely achiral ligands (chiral-at-metal catalysts) has been neglected. This Account presents our recent work on the synthesis and catalytic applications of a new class of C2-symmetric chiral-at-ruthenium catalysts. These octahedral ruthenium(II) complexes are constructed from two achiral bidentate N-(2-pyridyl)-substituted N-heterocyclic carbene (PyNHC) ligands and two monodentate acetonitriles, and the dicationic complexes are typically complemented with two hexafluorophosphate anions. The chirality of these complexes originates from the helical cis-arrangement of the bidentate ligands, thereby generating a stereogenic metal center as the exclusive stereocenter in these complexes. The strong σ donor and π acceptor properties of the PyNHC ligands provide a strong ligand field that ensures a high constitutional and configurational inertness of the helical Ru(PyNHC)2 core, while at the same time, the trans-effect exerted by the σ-donating NHC ligands results in high lability of the MeCN ligands and, therefore, provides high catalytic activity. As a result, this chiral-at-ruthenium catalyst scaffold combines formidable structural robustness with high catalytic activity in a unique fashion. Asymmetric nitrene C-H insertion constitutes an efficient strategy for accessing chiral amines. The direct conversion of C(sp3)-H bonds into amine functionality circumvents the need for using functionalized starting materials. Our C2-symmetric chiral-at-ruthenium complexes display exceptionally high catalytic activity and excellent stereocontrol for various asymmetric nitrene C(sp3)-H insertion reactions. The ruthenium nitrene species can be generated from nitrene precursors, such as organic azides and hydroxylamine derivatives, which undergo ring-closing C-H aminations to afford chiral cyclic pyrrolidines, ureas, and carbamates in high yields and with excellent enantioselectivities at low catalyst loadings. Mechanistically, the turnover-determining C-H insertion is proposed to proceed in a concerted or stepwise fashion, depending on the nature of intermediate ruthenium nitrenes (singlet or triplet). Computational studies revealed that the stereocontrol originates from a better steric fit in combination with favorable catalyst/substrate π-π stacking effects for aminations at benzylic C-H bonds. In addition, we also present our research for exploring novel reaction patterns and reactivities of intermediate transition metal nitrenes. First, we discovered a novel chiral-at-ruthenium-catalyzed 1,3-migratory nitrene C(sp3)-H insertion to convert azanyl esters into nonracemic α-amino acids. Second, we found a chiral-at-ruthenium-catalyzed intramolecular C(sp3)-H oxygenation, thereby allowing for the construction of chiral cyclic carbonates and lactones via nitrene chemistry. We expect that our research program on catalyst development and reaction discovery will inspire the creation of novel types of chiral-at-metal catalysts and drive the development of new applications for nitrene-mediated asymmetric C-H functionalization reactions.
Collapse
Affiliation(s)
- Chen-Xi Ye
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany
| |
Collapse
|
23
|
Fanourakis A, Hodson NJ, Lit AR, Phipps RJ. Substrate-Directed Enantioselective Aziridination of Alkenyl Alcohols Controlled by a Chiral Cation. J Am Chem Soc 2023; 145:7516-7527. [PMID: 36961353 PMCID: PMC10080694 DOI: 10.1021/jacs.3c00693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 03/25/2023]
Abstract
Alkene aziridination is a highly versatile transformation for the construction of chiral nitrogen-containing compounds. Inspired by the success of analogous substrate-directed epoxidations, we report an enantioselective aziridination of alkenyl alcohols, which enables asymmetric nitrene transfer to alkenes with varied substitution patterns, including those not covered by the current protocols. We believe that our method is effective because it is substrate-directed, exploiting a network of attractive non-covalent interactions between the substrate, an achiral dianionic rhodium(II,II) tetracarboxylate dimer, and its two associated cinchona alkaloid-derived cations. It is these cations that provide a defined chiral pocket in which the aziridination can occur. In addition to a thorough evaluation of compatible alkene classes, we advance a practical mnemonic to predict reaction outcome and disclose a range of post-functionalization protocols that highlight the unique synthetic potential of the enantioenriched aziridine-alcohol products.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nicholas J. Hodson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arthur R. Lit
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Robert J. Phipps
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
24
|
Xu S, Ping Y, Li W, Guo H, Su Y, Li Z, Wang M, Kong W. Enantioselective C(sp 3)-H Functionalization of Oxacycles via Photo-HAT/Nickel Dual Catalysis. J Am Chem Soc 2023; 145:5231-5241. [PMID: 36812098 DOI: 10.1021/jacs.2c12481] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The selective functionalization of ubiquitous but inert C-H bonds is highly appealing in synthetic chemistry, but the direct transformation of hydrocarbons lacking directing groups into high-value chiral molecules remains a formidable challenge. Herein, we develop an enantioselective C(sp3)-H functionalization of undirected oxacycles via photo-HAT/nickel dual catalysis. This protocol provides a practical platform for the rapid construction of high-value and enantiomerically enriched oxacycles directly from simple and abundant hydrocarbon feedstocks. The synthetic utility of this strategy is further demonstrated in the late-stage functionalization of natural products and the synthesis of many pharmaceutically relevant molecules. Experimental and density functional theory calculation studies provide detailed insights into the mechanism and the origin of enantioselectivity for the asymmetric C(sp3)-H functionalization.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Wei Li
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Haoyun Guo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Yinyan Su
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Ziyang Li
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wangqing Kong
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| |
Collapse
|
25
|
Computational Exploration of Dirhodium Complex-Catalyzed Selective Intermolecular Amination of Tertiary vs. Benzylic C-H Bonds. Molecules 2023; 28:molecules28041928. [PMID: 36838915 PMCID: PMC9959850 DOI: 10.3390/molecules28041928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The mechanism and origins of site-selectivity of Rh2(S-tfpttl)4-catalyzed C(sp3)-H bond aminations were studied using density functional theory (DFT) calculations. The synergistic combination of the dirhodium complex Rh2(S-tfpttl)4 with tert-butylphenol sulfamate TBPhsNH2 composes a pocket that can access both tertiary and benzylic C-H bonds. The nonactivated tertiary C-H bond was selectively aminated in the presence of an electronically activated benzylic C-H bond. Both singlet and triplet energy surfaces were investigated in this study. The computational results suggest that the triplet stepwise pathway is more favorable than the singlet concerted pathway. In the hydrogen atom abstraction by Rh-nitrene species, which is the rate- and site-selectivity-determining step, there is an attractive π-π stacking interaction between the phenyl group of the substrate and the phthalimido group of the ligand in the tertiary C-H activation transition structure. By contrast, such attractive interaction is absent in the benzylic C-H amination transition structure. Therefore, the DFT computational results clearly demonstrate how the synergistic combination of the dirhodium complex with sulfamate overrides the intrinsic preference for benzylic C-H amination to achieve the amination of the nonactivated tertiary C-H bond.
Collapse
|
26
|
Gao Y, Li H, Zhao Y, Hu XQ. Nitrene transfer reaction with hydroxylamine derivatives. Chem Commun (Camb) 2023; 59:1889-1906. [PMID: 36661267 DOI: 10.1039/d2cc06318b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent progress on catalytic nitrene transfer reactions with hydroxylamine derivatives as prevalent precursors is summarized in this highlight. The salient features of these N-O derived nitrene transfer reagents are that they are readily available, bench-stable, and can be facilely activated by a range of transition metal-catalysts under mild conditions. The application of these reagents in transition metal-catalysis has led to many new amidation or amination reactions, such as C-H insertions and aziridination of olefins. These reagents have also been applied in difunctionalisation of unsaturated bonds, dearomative amination of indoles, and formation of N-X bonds. Moreover, the recent achievements in photocatalysis and enzyme catalysis further emphasize the importance of these appealing reagents. This highlight provides an overview of these reactions reported in recent years. Challenges and potential opportunities for future developments are also discussed.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.,Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Haixia Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yupeng Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
27
|
Wang HH, Shao H, Huang G, Fan J, To WP, Dang L, Liu Y, Che CM. Chiral Iron Porphyrins Catalyze Enantioselective Intramolecular C(sp 3 )-H Bond Amination Upon Visible-Light Irradiation. Angew Chem Int Ed Engl 2023; 62:e202218577. [PMID: 36716145 DOI: 10.1002/anie.202218577] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Iron-catalyzed asymmetric amination of C(sp3 )-H bonds is appealing for synthetic applications due to the biocompatibility and high earth abundance of iron, but examples of such reactions are sparse. Herein we describe chiral iron complexes of meso- and β-substituted-porphyrins that can catalyze asymmetric intramolecular C(sp3 )-H amination of aryl and arylsulfonyl azides to afford chiral indolines (29 examples) and benzofused cyclic sulfonamides (17 examples), respectively, with up to 93 % ee (yield: up to 99 %) using 410 nm light under mild conditions. Mechanistic studies, including DFT calculations, for the reactions of arylsulfonyl azides reveal that the Fe(NSO2 Ar) intermediate generated in situ under photochemical conditions reacts with the C(sp3 )-H bond through a stepwise hydrogen atom transfer/radical rebound mechanism, with enantioselectivity arising from cooperative noncovalent interactions between the Fe(NSO2 Ar) unit and the peripheral substituents of the chiral porphyrin scaffold.
Collapse
Affiliation(s)
- Hua-Hua Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hui Shao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Jianqiang Fan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science and Technology Parks New Territories, Hong Kong, China
| |
Collapse
|
28
|
Suzuki M, Terada M, Nakamura I. Copper-catalyzed [1,3]-nitrogen rearrangement of O-aryl ketoximes via oxidative addition of N–O bond in inverse electron flow †. Chem Sci 2023; 14:5705-5711. [PMCID: PMC10231427 DOI: 10.1039/d3sc00874f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
The [1,3]-nitrogen rearrangement reactions of O-aryl ketoximes were promoted by N-heterocyclic carbene (NHC)-copper catalysts and BF3·OEt2 as an additive, affording ortho-aminophenol derivatives in good yields. The reaction of substrates with electron-withdrawing substituents on the phenol moiety are accelerated by adding silver salt and modifying the substituent at the nitrogen atom. Density functional theory calculations suggest that the rate-determining step of this reaction is the oxidative addition of the N–O bond of the substrate to the copper catalyst. The negative ρ values of the substituent at both the oxime carbon and phenoxy group indicate that the donation of electrons by the oxygen and nitrogen atoms accelerates the oxidative addition. [1,3]-Nitrogen rearrangement reactions of O-aryl ketoximes was catalytically promoted by IPrCuBr and BF3·OEt2. The oxidative addition of the N–O bond to the Cu catalyst is accelerated by donation of electrons from both nitrogen and oxygen atoms.![]()
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
- Department of Chemistry, Graduate School of Science, Tohoku UniversitySendai980-8578Japan
| |
Collapse
|
29
|
Wu Z, He H, Chen M, Zhu L, Zheng W, Cao Y, Antilla JC. Asymmetric Reductive Amination with Pinacolborane Catalyzed by Chiral SPINOL Borophosphates. Org Lett 2022; 24:9436-9441. [PMID: 36519791 DOI: 10.1021/acs.orglett.2c03866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The catalytic asymmetric reductive amination of ketones with pinacolborane employing chiral SPINOL-derived borophosphates as catalysts has been realized. A series of chiral amine derivatives bearing multiple functional groups were obtained in good to excellent yields and enantioselectivities (up to 97% yield, 98% ee) under mild reaction conditions. Moreover, the synthetic applicability of the established method has been demonstrated by the asymmetric synthesis of (R)-Fendiline.
Collapse
Affiliation(s)
- Zhenwei Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hualing He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Minglei Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Linfei Zhu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Weitao Zheng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yang Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, Jiangsu222005, P. R. China
| | - Jon C Antilla
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
30
|
Khatua H, Das S, Patra S, Das SK, Roy S, Chattopadhyay B. Iron-Catalyzed Intermolecular Amination of Benzylic C(sp 3)-H Bonds. J Am Chem Soc 2022; 144:21858-21866. [PMID: 36416746 DOI: 10.1021/jacs.2c10719] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A catalytic system for intermolecular benzylic C(sp3)-H amination is developed utilizing 1,2,3,4-tetrazole as a nitrene precursor via iron catalysis. This method enables direct installation of 2-aminopyridine into the benzylic and heterobenzylic position. The method selectively aminates 2° benzylic C(sp3)-H bond over the 3° and 1° benzylic C(sp3)-H bonds. Experimental studies reveal that the C(sp3)-H amination undergoes via the formation of a benzylic radical intermediate. This study reports the discovery of new method for 2-pyridine substituted benzylamine synthesis using inexpensive, biocompatible base metal catalysis that should have wide application in the context of medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Hillol Khatua
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Subrata Das
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sima Patra
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sandip Kumar Das
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Satyajit Roy
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
31
|
Empel C, Jana S, Koodan A, Koenigs RM. Unlocking C–H Functionalization at Room Temperature via a Light-Mediated Protodemetalation Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Sripati Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Adithyaraj Koodan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M. Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
32
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
33
|
Mahato SK, Chatani N. Carboxylate-Assisted Iridium (III)-Catalyzed C(sp 2)-H Amidation of 2-Aroylimidazoles With Dioxazolones. J Org Chem 2022; 87:8183-8193. [PMID: 35666267 DOI: 10.1021/acs.joc.2c00949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Ir(III)-catalyzed ortho C-H amidation of 2-aroylimidazoles with 3-aryldioxazolones as an amidating reagent is reported. The method provides a broad substrate scope with wide functional group compatibility. Mechanistic studies indicate that C-H bond cleavage is reversible and appears not to be the rate-determining step. The presence of an electron-donating group in the 2-aroylimidazoles and an electron-withdrawing group in the 3-aryldioxazoles significantly accelerates the reaction, suggesting that nitrene insertion is the rate-determining step.
Collapse
Affiliation(s)
- Sanjit K Mahato
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Wang Z, Cheng J, Ding W, Wang D. C(sp3)–H Amination Catalyzed by Ir(Me)-Porphyrin: A Computational Study. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zihao Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junhui Cheng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Multidisciplinary Initiative Center, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Cammarota RC, Liu W, Bacsa J, Davies HML, Sigman MS. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. J Am Chem Soc 2022; 144:1881-1898. [DOI: 10.1021/jacs.1c12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ryan C. Cammarota
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Wenbin Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
36
|
Kweon J, Kim D, Kang S, Chang S. Access to β-Lactams via Iron-Catalyzed Olefin Oxyamidation Enabled by the π-Accepting Phthalocyanine Ligand. J Am Chem Soc 2022; 144:1872-1880. [PMID: 35041409 DOI: 10.1021/jacs.1c12125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the development of an iron-catalyzed olefin oxyamidation by utilizing tethered dioxazolones as the nitrenoid precursor to produce valuable β-lactam scaffolds. Mechanistic studies revealed that a relatively strong π-accepting ability of the phthalocyanine ligand is critical in generating the key triplet iron-imidyl radical intermediate to enable the 4-exo-trig-lactamization with the incorporation of oxygen nucleophiles in high diastereoselectivity. This cyclization approach was readily extended to the highly efficient γ-lactam synthesis (TON > 300).
Collapse
Affiliation(s)
- Jeonguk Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Seungju Kang
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
37
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
38
|
Hong K, Huang J, Yao M, Xu X. Recent Advances in Nitrene/Alkyne Metathesis Cascade Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Wang Z, Yang B, Yang Q, Wang Y. C(sp 3)–H 1,3-diamination of cumene derivatives catalyzed by a dirhodium( ii) catalyst. Org Chem Front 2022. [DOI: 10.1039/d2qo00461e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Using the single-electron oxidation cycle of a dirhodium catalyst, amination can form two primary C–N bonds in a one-step process.
Collapse
Affiliation(s)
- Zhifan Wang
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Beiqi Yang
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Qi Yang
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Yuanhua Wang
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
40
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
41
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
42
|
Tak RK, Noda H, Shibasaki M. Ligand-Enabled, Copper-Catalyzed Electrophilic Amination for the Asymmetric Synthesis of β-Amino Acids. Org Lett 2021; 23:8617-8621. [PMID: 34689558 DOI: 10.1021/acs.orglett.1c03328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic asymmetric nitrene transfer has emerged as a reliable method for the synthesis of nitrogen-containing chiral compounds. Herein, we report the copper-catalyzed intramolecular asymmetric electrophilic amination of aromatic rings. The reactive intermediate is a copper-alkyl nitrene generated from isoxazolidin-5-ones. Copper catalysis promotes three classes of asymmetric transformations, namely, asymmetric desymmetrization, parallel kinetic resolution, and kinetic resolution, expanding the repertoire of alkyl nitrene transfer and providing various cyclic and linear β-amino acids in their enantioenriched forms.
Collapse
Affiliation(s)
- Raj K Tak
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
43
|
Nagao K, Ohmiya H. Carbocation Generation by Organophotoredox Catalysis. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | | |
Collapse
|
44
|
Chiral bis(pyrazolyl)methane copper(I) complexes and their application in nitrene transfer reactions. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, chiral bis(pyrazolyl)methane copper(I) acetonitrile complexes were applied to generate two novel terminal copper tosyl nitrene complexes with the nitrene generating agent SPhINTs in dichloromethane at low temperatures. The syntheses of the chiral bis(pyrazolyl)methane ligands are based on pulegone and camphor, members of the natural chiral pool. The chiral copper(I) acetonitrile complexes were applied as catalysts in the copper nitrene mediated aziridination reaction of different styrene derivatives and the C–H amination of various substrates. The reactions afforded good yields, but low enantiomeric excess under mild conditions. The nitrene species have been characterized with UV/Vis and EPR spectroscopy and the products of the decay by ESI mass spectrometry.
Collapse
|
45
|
Coin G, Latour JM. Nitrene transfers mediated by natural and artificial iron enzymes. J Inorg Biochem 2021; 225:111613. [PMID: 34634542 DOI: 10.1016/j.jinorgbio.2021.111613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
Amines are ubiquitous in biology and pharmacy. As a consequence, introducing N functionalities in organic molecules is attracting strong continuous interest. The past decade has witnessed the emergence of very efficient and selective catalytic systems achieving this goal thanks to engineered hemoproteins. In this review, we examine how these enzymes have been engineered focusing rather on the rationale behind it than the methodology employed. These studies are put in perspective with respect to in vitro and in vivo nitrene transfer processes performed by cytochromes P450. An emphasis is put on mechanistic aspects which are confronted to current molecular knowledge of these reactions. Forthcoming developments are delineated.
Collapse
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France; Univ. Grenoble Alpes, CNRS UMR 5250, DCM, CIRE, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France.
| |
Collapse
|
46
|
Han X, Shan LX, Zhu JX, Zhang CS, Zhang XM, Zhang FM, Wang H, Tu YQ, Yang M, Zhang WS. Copper-Nitrene-Catalyzed Desymmetric Oxaziridination/1,2-Alkyl Rearrangement of 1,3-Diketones toward Bicyclic Lactams. Angew Chem Int Ed Engl 2021; 60:22688-22692. [PMID: 34414645 DOI: 10.1002/anie.202107909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Although copper-nitrene has been extensively studied as a versatile active species in various transformations, asymmetric reactions involving copper-nitrene have been limited to the aziridination of olefins. Herein, we report the novel copper-nitrene-catalyzed desymmetric oxaziridination reaction of cyclic diketones with alkyl azides and the subsequent rearrangement of the resulting highly active intermediate, which produces a synthetically challenging chiral bicyclic lactam containing a quaternary carbon center. This procedure not only enriches the copper-nitrene-catalyzed asymmetric reactions, but also provides an alternative strategy to address the inherent challenges of catalytic asymmetric Schmidt reactions. This unique reaction could inspire the investigation of novel copper-nitrene-catalyzed asymmetric transformations and their reaction mechanisms.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li-Xin Shan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xin Zhu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chang-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.,School of Chemistry and Chemical Engineering and Shanghai Key Laboratory of Chiral Medicine Chemistry, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Shuo Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
47
|
Han X, Shan L, Zhu J, Zhang C, Zhang X, Zhang F, Wang H, Tu Y, Yang M, Zhang W. Copper‐Nitrene‐Catalyzed Desymmetric Oxaziridination/1,2‐Alkyl Rearrangement of 1,3‐Diketones toward Bicyclic Lactams. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Li‐Xin Shan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jin‐Xin Zhu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Chang‐Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Xiao‐Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Fu‐Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Yong‐Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory of Chiral Medicine Chemistry Shanghai Jiao Tong University Shanghai 200240 China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Wen‐Shuo Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| |
Collapse
|
48
|
Singh H, MacKay A, Sheibany N, Chen F, Mosser M, Rouet PÉ, Rousseau F, Askari MS, Ottenwaelder X. Intramolecular H-bond stabilization of a primary hydroxylamine in salen-type metal complexes. Chem Commun (Camb) 2021; 57:10403-10406. [PMID: 34545379 DOI: 10.1039/d1cc03077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primary hydroxylamines, RNHOH, decompose readily in the presence of transition metal ions. We show that this reactivity can be arrested by ligand design via an intramolecular hydrogen bond. Six metal complexes with an intact NHOH group were synthesized and crystallographically characterized. The Cu-hydroxylamine complexes can catalyze the aerobic oxidation of benzylic alcohols.
Collapse
Affiliation(s)
- Hardeep Singh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Alyson MacKay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Nooshin Sheibany
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Fei Chen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Maëlle Mosser
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Pierre-Étienne Rouet
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Frédéric Rousseau
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Mohammad S Askari
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Affiliation(s)
- Hidetoshi Noda
- Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagaku-ku Tokyo 141-0021 Japan
| | - Xinxin Tang
- Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagaku-ku Tokyo 141-0021 Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagaku-ku Tokyo 141-0021 Japan
| |
Collapse
|
50
|
Du B, Ouyang Y, Chen Q, Yu WY. Thioether-Directed NiH-Catalyzed Remote γ-C(sp 3)-H Hydroamidation of Alkenes by 1,4,2-Dioxazol-5-ones. J Am Chem Soc 2021; 143:14962-14968. [PMID: 34496211 DOI: 10.1021/jacs.1c05834] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A NiH-catalyzed thioether-directed cyclometalation strategy is developed to enable remote methylene C-H bond amidation of unactivated alkenes. Due to the preference for five-membered nickelacycle formation, the chain-walking isomerization initiated by the NiH insertion to an alkene can be terminated at the γ-methylene site remote from the alkene moiety. By employing 2,9-dibutyl-1,10-phenanthroline (L4) as the ligand and dioxazolones as the reagent, the amidation occurs at the γ-C(sp3)-H bonds to afford the amide products in up to 90% yield (>40 examples) with remarkable regioselectivity (up to 24:1 rr).
Collapse
Affiliation(s)
- Bingnan Du
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yuxin Ouyang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qishu Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|