1
|
Li S, Chen X, Tian Q, Liu J, Tang Z, Niu X. Kinetics Difference-driven Organophosphorus Hydrolase-like Nanozyme-Coded Pattern for Identifying p-Nitrophenyl Pesticides. Anal Chem 2025; 97:2537-2545. [PMID: 39835973 DOI: 10.1021/acs.analchem.4c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Organophosphorus pesticides (OPs) are widely used in agricultural production, posing a great threat to human health and the environment. Given that different OPs present different toxicology and toxicities, identifying individual pesticide residues becomes important for assessing food safety and environmental implications. In this work, a kinetics difference-driven analyte hydrolysis strategy is proposed for the first time and validated to identify p-nitrophenyl pesticides by developing an organophosphorus hydrolase-like nanozyme-coded sensor array. Ultrasmall bare CeO2 nanoparticles were synthesized and employed as the only sensing unit to catalyze the hydrolysis of multiple analytes. With catalytic preferences and kinetics differences under identical reaction conditions, five common OPs analogues (methyl-paraoxon, paraoxon, methyl-parathion, parathion, and fenitrothion) offered discriminable colors. By coupling the color fingerprints with pattern recognition, the accurate identification of individual p-nitrophenyl pesticides and their mixtures at a variety of concentrations and ratios was verified in laboratory and practical scenarios. Attractively, apart from excellent performance and convenient operation, the proposed hydrolytic nanozyme-coded pattern presents strong resistance against redox substances that often cause interference in previous oxidoreductase-based sensor arrays. Our study provides a new paradigm of discriminating specific OPs precisely, showing promising applications in multitarget analysis in complex matrices.
Collapse
Affiliation(s)
- Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Xinyu Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| |
Collapse
|
2
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2024:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
3
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Nolte RJM, Elemans JAAW. Artificial Processive Catalytic Systems. Chemistry 2024; 30:e202304230. [PMID: 38314967 DOI: 10.1002/chem.202304230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Processive catalysts remain attached to a substrate and perform multiple rounds of catalysis. They are abundant in nature. This review highlights artificial processive catalytic systems, which can be divided into (A) catalytic rings that move along a polymer chain, (B) catalytic pores that hold polymer chains and decompose them, (C) catalysts that remain attached to and move around a cyclic substrate via supramolecular interactions, and (D) anchored catalysts that remain in contact with a substrate via multiple catalytic interactions (see frontispiece).
Collapse
Affiliation(s)
- Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 125, 6525AJ, Nijmegen, The, Netherlands
| | - Johannes A A W Elemans
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 125, 6525AJ, Nijmegen, The, Netherlands
| |
Collapse
|
5
|
Lyu Y, Becerril LM, Vanzan M, Corni S, Cattelan M, Granozzi G, Frasconi M, Rajak P, Banerjee P, Ciancio R, Mancin F, Scrimin P. The Interaction of Amines with Gold Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211624. [PMID: 36952309 DOI: 10.1002/adma.202211624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between amines and the surface of gold nanoparticles is important because of their role in the stabilization of the nanosystems, in the formation of the protein corona, and in the preparation of semisynthetic nanozymes. By using fluorescence spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and molecular simulation, a detailed picture of these interactions is obtained. Herein, it is shown that amines interact with surface Au(0) atoms of the nanoparticles with their lone electron pair with a strength linearly correlating with their basicity corrected for steric hindrance. The kinetics of binding depends on the position of the gold atoms (flat surfaces or edges) while the mode of binding involves a single Au(0) with nitrogen sitting on top of it. A small fraction of surface Au(I) atoms, still present, is reduced by the amines yielding a much stronger Au(0)-RN.+ (RN. , after the loss of a proton) interaction. In this case, the mode of binding involves two Au(0) atoms with a bridging nitrogen placed between them. Stable Au nanoparticles, as those required for robust semisynthetic nanozymes preparation, are better obtained when the protein is involved (at least in part) in the reduction of the gold ions.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | | | - Mirko Vanzan
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Mattia Cattelan
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Gaetano Granozzi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Piu Rajak
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Abdus Salam International Centre for Theoretical Physics, Via Beirut, 6, Trieste, 34151, Italy
| | - Pritam Banerjee
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Abdus Salam International Centre for Theoretical Physics, Via Beirut, 6, Trieste, 34151, Italy
| | - Regina Ciancio
- CNR-IOM TASC Laboratory, Area Science Park, Basovizza S.S. 14, km 163.5, Trieste, 34149, Italy
- Area Science Park, Padriciano 99, Trieste, 34149, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova, 35131, Italy
| |
Collapse
|
6
|
Chen T, Lu Y, Xiong X, Qiu M, Peng Y, Xu Z. Hydrolytic nanozymes: Preparation, properties, and applications. Adv Colloid Interface Sci 2024; 323:103072. [PMID: 38159448 DOI: 10.1016/j.cis.2023.103072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Hydrolytic nanozymes, as promising alternatives to hydrolytic enzymes, can efficiently catalyze the hydrolysis reactions and overcome the operating window limitations of natural enzymes. Moreover, they exhibit several merits such as relatively low cost, easier recovery and reuse, improved operating stability, and adjustable catalytic properties. Consequently, they have found relevance in practical applications such as organic synthesis, chemical weapon degradation, and biosensing. In this review, we highlight recent works addressing the broad topic of the development of hydrolytic nanozymes. We review the preparation, properties, and applications of six types of hydrolytic nanozymes, including AuNP-based nanozymes, polymeric nanozymes, surfactant assemblies, peptide assemblies, metal and metal oxide nanoparticles, and MOFs. Last, we discuss the remaining challenges and future directions. This review will stimulate the development and application of hydrolytic nanozymes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yizhuo Lu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaorong Xiong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
8
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Lorenzetto T, Fabris F, Scarso A. Recent metallosurfactants for sustainable catalysis in water. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Della Sala F, Ceresara E, Micheli F, Fontana S, Prins LJ, Scrimin P. Exploiting multivalency and cooperativity of gold nanoparticles for binding phosphatidylinositol (3,4,5)-trisphosphate at sub-nanomolar concentrations. Org Biomol Chem 2023; 21:743-747. [PMID: 36601663 DOI: 10.1039/d2ob02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cationic, monolayer-protected gold nanoparticles provide a multivalent charged surface and a hydrophobic monolayer that synergistically contribute to the binding of phosphatidylinositol (3,4,5)-trisphosphate, a relevant biomarker. The observed dissociation constant is in the picomolar region, providing the possibility of using these gold nanoparticles for the selective extraction of this molecule from biological fluids.
Collapse
Affiliation(s)
- Flavio Della Sala
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy. .,Department of Chemistry, University of Manchester, M13 9LP, UK
| | - Elisa Ceresara
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| | - Fabrizio Micheli
- Aptuit (Verona) Srl, an Evotec company, Campus Levi-Montalcini, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Stefano Fontana
- Aptuit (Verona) Srl, an Evotec company, Campus Levi-Montalcini, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Leonard J Prins
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| |
Collapse
|
11
|
Liu N, Li SB, Zheng YZ, Xu SY, Shen JS. Minimalistic Artificial Catalysts with Esterase-Like Activity from Multivalent Nanofibers Formed by the Self-Assembly of Dipeptides. ACS OMEGA 2023; 8:2491-2500. [PMID: 36687071 PMCID: PMC9851029 DOI: 10.1021/acsomega.2c06972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Imitating and incorporating the multiple key structural features observed in natural enzymes into a minimalistic molecule to develop an artificial catalyst with outstanding catalytic efficiency is an attractive topic for chemists. Herein, we designed and synthesized one class of minimalistic dipeptide molecules containing a terminal -SH group and a terminal His-Phe dipeptide head linked by a hydrophobic alkyl chain with different lengths, marked as HS-C n+1-His-Phe (n = 4, 7, 11, 15, and 17; n + 1 represents the carbon atom number of the alkyl chain). The His (-imidazole), Phe (-CO2 -) moieties, the terminal -SH group, and a long hydrophobic alkyl chain were found to have important contributions to achieve high binding ability leading to outstanding absolute catalytic efficiency (k cat/K M) toward the hydrolysis reactions of carboxylic ester substrates.
Collapse
Affiliation(s)
- Ning Liu
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuai-Bing Li
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yan-Zhen Zheng
- College
of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Su-Ying Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiang-Shan Shen
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
12
|
Liu Y, Yan X, Wei H. Medical Nanozymes for Therapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Engineering synergistic effects of immobilized cooperative catalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Li QZ, Fan H, Wang Z, Zheng JJ, Fan K, Yan X, Gao X. Mechanism and Kinetics-Guided Discovery of Nanometal Scissors to Cut Phosphoester Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| |
Collapse
|
15
|
Dong K, Xu C, Ren J, Qu. X. Chiral Nanozymes for Enantioselective Biological Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208757. [DOI: 10.1002/anie.202208757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun Jilin 130118 China
| | - Chen Xu
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun Jilin 130118 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiaogang Qu.
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
16
|
Dong K, Xu C, Ren J, Qu X. Chiral Nanozymes for Enantioselective Biological Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Dong
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Chen Xu
- Jilin Agricultural University College of Chinese Medicinal Materials, CHINA
| | - Jinsong Ren
- Changchun Institute of Applied Chemistry Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization renmin street, #5625 130022 Changchun CHINA
| | - Xiaogang Qu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| |
Collapse
|
17
|
Pachón Gómez EM, Fernando Silva O, Der Ohannesian M, Núñez Fernández M, Oliveira RG, Fernández MA. Micelle‐to‐vesicle transition of lipoamino Gemini surfactant induced by metallic salts and its effects on antibacterial activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Huang XL. What are the inorganic nanozymes? Artificial or inorganic enzymes! NEW J CHEM 2022. [DOI: 10.1039/d2nj02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research on inorganic nanozymes remains very active since the first paper on the “intrinsic peroxidase-like properties of ferromagnetic nanoparticles” was published in Nature Nanotechnology in 2007. However, there is...
Collapse
|
19
|
Medical Nanozymes for Therapeutics. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_26-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Affiliation(s)
- Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Anqi Lin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
21
|
Lv W, Yuan X, Yan C, Ma Q, Wang B, Du J, Zheng B, Xiao D. Dual-readout performance of Eu 3+-doped nanoceria as a phosphatase mimic for degradation and detection of organophosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4747-4755. [PMID: 34559169 DOI: 10.1039/d1ay01080h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eu3+-Doped nanoceria (Eu:CeO2) with self-integrated catalytic and luminescence sensing functions was synthesized by a simple and gentle one-pot method to build a dual-readout nanozyme platform for organophosphate compound (OPC) sensing in this work. The catalytic degradation of the model substrate of OPC, p-nitrophenyl phosphate (p-NPP), by as-prepared Eu:CeO2 can be completed in 2 min with little influence of temperature and pH values, highlighting the advantages of Eu:CeO2 as an artificial enzyme for dephosphorylation. Most importantly, the characteristic red emission of Eu3+ (592 nm) from Eu:CeO2 can be quenched by p-NPP, accompanied by a color change from colorless to yellow. Based on this, linear ranges of 4-50 μM with a detection limit of 3.3 μM and 1-20 μM with a detection limit of 0.6 μM for p-NPP were obtained by colorimetric and fluorescence methods, respectively. Furthermore, the fluorescence strategy was effectively applied to the determination of ethyl para-nitrophenyl (EPN), one of the most commonly used pesticides, with a detection limit of 5.86 μM. The proposed strategy was also successfully applied to the assay of p-NPP and EPN in real water samples, showing great application prospects in detecting OPC in the environment.
Collapse
Affiliation(s)
- Wendi Lv
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoying Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chenglu Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qiuting Ma
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Bing Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Juan Du
- College of Chemistry, Sichuan University, Chengdu 610064, China.
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
Tan X, Xu Y, Lin S, Dai G, Zhang X, Xia F, Dai Y. Peptide-anchored gold nanoparticles with bicatalytic sites for photo-switchable cascade catalysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Lyu Y, Scrimin P. Mimicking Enzymes: The Quest for Powerful Catalysts from Simple Molecules to Nanozymes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanchao Lyu
- University of Padova, Department of Chemical Sciences, via Marzolo, 1, 35131 Padova, Italy
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
24
|
Lyu Y, Morillas-Becerril L, Mancin F, Scrimin P. Hydrolytic cleavage of nerve agent simulants by gold nanozymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125644. [PMID: 33773245 DOI: 10.1016/j.jhazmat.2021.125644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although banned by the Chemical Weapons Convention, organophosphorus nerve agents are still available and have been used in regional wars, terroristic attacks or for other crtaiminal purposes. Their degradation is of primary importance for the severe toxicity of these compounds. Here we report that gold nanoparticles passivated with thiolated molecules bearing 1,3,7-triazacyclononane and 1,3,7,10-tetraazacyclododecane ligands efficiently hydrolyze nerve agents simulants p-nitrophenyl diphenyl phosphate and methylparaoxon as transition metal complexes at 25 °C and pH 8 with half-lives of the order of a few minutes. Mechanistically, these catalysts show an enzyme-like behavior, hence they constitute an example of nanozymes. The catalytic site appears to involve a single metal ion and its recognition of the substrates is driven mostly by hydrophobic interactions. The ease of preparation and the mild conditions at which they operate, make these nanozymes appealing catalysts for the detoxification after contamination with organophosphorus nerve agents, particularly those poorly soluble in water.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
25
|
Pecina A, Rosa-Gastaldo D, Riccardi L, Franco-Ulloa S, Milan E, Scrimin P, Mancin F, De Vivo M. On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes. ACS Catal 2021; 11:8736-8748. [PMID: 34476110 PMCID: PMC8397296 DOI: 10.1021/acscatal.1c01215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/03/2021] [Indexed: 12/20/2022]
Abstract
![]()
Recent studies have
shown that gold nanoparticles (AuNPs) functionalized
with Zn(II) complexes can cleave phosphate esters and nucleic acids.
Remarkably, such synthetic nanonucleases appear to catalyze metal
(Zn)-aided hydrolytic reactions of nucleic acids similar to metallonuclease
enzymes. To clarify the reaction mechanism of these nanocatalysts,
here we have comparatively analyzed two nanonucleases with a >10-fold
difference in the catalytic efficiency for the hydrolysis of the 2-hydroxypropyl-4-nitrophenylphosphate
(HPNP, a typical RNA model substrate). We have used microsecond-long
atomistic simulations, integrated with NMR experiments, to investigate
the structure and dynamics of the outer coating monolayer of these
nanoparticles, either alone or in complex with HPNP, in solution.
We show that the most efficient one is characterized by coating ligands
that promote a well-organized monolayer structure, with the formation
of solvated bimetallic catalytic sites. Importantly, we have found
that these nanoparticles can mimic two-metal-ion enzymes for nucleic
acid processing, with Zn ions that promote HPNP binding at the reaction
center. Thus, the two-metal-ion-aided hydrolytic strategy of such
nanonucleases helps in explaining their catalytic efficiency for substrate
hydrolysis, in accordance with the experimental evidence. These mechanistic
insights reinforce the parallelism between such functionalized AuNPs
and proteins toward the rational design of more efficient catalysts.
Collapse
Affiliation(s)
- Adam Pecina
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Daniele Rosa-Gastaldo
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sebastian Franco-Ulloa
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Emil Milan
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Paolo Scrimin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
26
|
Czescik J, Mancin F, Strömberg R, Scrimin P. The Mechanism of Cleavage of RNA Phosphodiesters by a Gold Nanoparticle Nanozyme. Chemistry 2021; 27:8143-8148. [PMID: 33780067 PMCID: PMC8251847 DOI: 10.1002/chem.202100299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 01/08/2023]
Abstract
The cleavage of uridine 3'-phosphodiesters bearing alcohols with pKa ranging from 7.14 to 14.5 catalyzed by AuNPs functionalized with 1,4,7-triazacyclononane-Zn(II) complexes has been studied to unravel the source of catalysis by these nanosystems (nanozymes). The results have been compared with those obtained with two Zn(II) dinuclear catalysts for which the mechanism is fairly understood. Binding to the Zn(II) ions by the substrate and the uracil of uridine was observed. The latter leads to inhibition of the process and formation of less productive binding complexes than in the absence of the nucleobase. The nanozyme operates with these substrates mostly via a nucleophilic mechanism with little stabilization of the pentacoordinated phosphorane and moderate assistance in leaving group departure. This is attributed to a decrease of binding strength of the substrate to the catalytic site in reaching the transition state due to an unfavorable binding mode with the uracil. The nanozyme favors substrates with better leaving groups than the less acidic ones.
Collapse
Affiliation(s)
- Joanna Czescik
- Department of Chemical SciencesUniversity of PadovaVia Marzolo, 135131PadovaItaly
- Current address: School of Life and Health SciencesAston UniversityB4 7ETBirminghamUK
| | - Fabrizio Mancin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo, 135131PadovaItaly
| | | | - Paolo Scrimin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo, 135131PadovaItaly
| |
Collapse
|
27
|
Cao YJ, Yao MX, Prins LJ, Ji RX, Liu N, Sun XY, Jiang YB, Shen JS. Self-Assembled Multivalent Ag-SR Coordination Polymers with Phosphatase-Like Activity. Chemistry 2021; 27:7646-7650. [PMID: 33871127 DOI: 10.1002/chem.202100368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 01/17/2023]
Abstract
We show herein the phosphatase-like catalytic activity of coordination polymers obtained after adding Ag+ -ions to thiols bearing hydrophobic alkyl chains terminated with a 1,4,7-triazacyclononane (TACN) group. The subsequent addition of Zn2+ -ions to the self-assembled polymers resulted in the formation of multivalent metal coordination polymers capable of catalysing the transphosphorylation of an RNA-model compound (2-hydroxypropyl-4-nitrophenyl phosphate, HPNPP) with high reactivity. Analysis of a series of metal ions showed that the highest catalytic activity was obtained when Ag+ -ions were used as the first metal ions to construct the backbone of the coordination polymer through interaction with the -SH group followed by Zn2+ -ions as the second metal ions complexed by the TACN-macrocycle. Furthermore, it was demonstrated that the catalytic activity could be modulated by changing the length of the hydrophobic alkyl chain.
Collapse
Affiliation(s)
- Ying-Juan Cao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Mei-Xia Yao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Rui-Xue Ji
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ning Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiang-Ying Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis, Xiamen University, Xiamen, 361005, China
| | - Jiang-Shan Shen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
28
|
Torres Castillo NE, Melchor-Martínez EM, Ochoa Sierra JS, Ramírez-Torres NM, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R. Enzyme mimics in-focus: Redefining the catalytic attributes of artificial enzymes for renewable energy production. Int J Biol Macromol 2021; 179:80-89. [PMID: 33667559 DOI: 10.1016/j.ijbiomac.2021.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
Herein, the advantages of enzyme mimetics by redefining the catalytic attributes and implementing artificial enzymes (AEs) for energy-related applications have presented. The intrinsic enzyme-like catalytic characteristics of nanozymes have become a growing area of prime interest in bio-catalysis. The development of AEs has redefined the concept of catalytic activity, opening a wide range of possibilities in biotechnological and energy sectors. Nowadays, power-energy is one of the most valuable resources that enable the development and progress of humanity. Over the last 50 years, fossil fuels' burning has released greenhouse gases and negatively impacted the environment and health. In 2019, around 84% of global primary energy came from coal, oil, and gas. Therefore, a global energy transition to renewable and sustainable energy is urgently needed to generate clean energy as biofuels and biohydrogen. However, to achieve this, the implementation of natural enzymes brings more significant challenges because their practical application is limited by the low operational stability, harsh environmental conditions, and expensive preparation processes. Hence, to accelerate the transition, promising substitutes are AEs, well-defined structures made of organic or inorganic materials that can mimic the catalytic power of natural enzymes. Despite being still in the midst, enzyme mimics overcome the main obstacles for a conventional enzyme. It opens future opportunities to optimize the production of renewable energies with excellent performance, high efficiency, and increasingly competitive prices. Thus, this work is a comprehensive study covering the promising potential of AEs, as biocatalysts, specifically for renewable energy production.
Collapse
Affiliation(s)
| | | | | | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
29
|
Dutta S, Corni S, Brancolini G. Molecular Dynamics Simulations of a Catalytic Multivalent Peptide-Nanoparticle Complex. Int J Mol Sci 2021; 22:3624. [PMID: 33807225 PMCID: PMC8037132 DOI: 10.3390/ijms22073624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular modeling of a supramolecular catalytic system is conducted resulting from the assembling between a small peptide and the surface of cationic self-assembled monolayers on gold nanoparticles, through a multiscale iterative approach including atomistic force field development, flexible docking with Brownian Dynamics and µs-long Molecular Dynamics simulations. Self-assembly is a prerequisite for the catalysis, since the catalytic peptides do not display any activity in the absence of the gold nanocluster. Atomistic simulations reveal details of the association dynamics as regulated by defined conformational changes of the peptide due to peptide length and sequence. Our results show the importance of a rational design of the peptide to enhance the catalytic activity of peptide-nanoparticle conjugates and present a viable computational approach toward the design of enzyme mimics having a complex structure-function relationship, for technological and nanomedical applications.
Collapse
Affiliation(s)
- Sutapa Dutta
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy;
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy;
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Giorgia Brancolini
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
30
|
Czescik J, Zamolo S, Darbre T, Rigo. R, Sissi C, Pecina A, Riccardi L, De Vivo M, Mancin F, Scrimin P. A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angew Chem Int Ed Engl 2021; 60:1423-1432. [PMID: 32985766 PMCID: PMC7839518 DOI: 10.1002/anie.202012513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/18/2022]
Abstract
Similarly to enzymes, functionalized gold nanoparticles efficiently catalyze chemical reactions, hence the term nanozymes. Herein, we present our results showing how surface-passivated gold nanoparticles behave as synthetic nanonucleases, able to cleave pBR322 plasmid DNA with the highest efficiency reported so far for catalysts based on a single metal ion mechanism. Experimental and computational data indicate that we have been successful in creating a catalytic site precisely mimicking that suggested for natural metallonucleases relying on a single metal ion for their activity. It comprises one Zn(II) ion to which a phosphate diester of DNA is coordinated. Importantly, as in nucleic acids-processing enzymes, a positively charged arginine plays a key role by assisting with transition state stabilization and by reducing the pKa of the nucleophilic alcohol of a serine. Our results also show how designing a catalyst for a model substrate (bis-p-nitrophenylphosphate) may provide wrong indications as for its efficiency when it is tested against the real target (plasmid DNA).
Collapse
Affiliation(s)
- Joanna Czescik
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
- Current address: School of Life and Health SciencesAston UniversityB4 7ETBirminghamUK
| | - Susanna Zamolo
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 3CH-3012BernSwitzerland
| | - Tamis Darbre
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 3CH-3012BernSwitzerland
| | - Riccardo Rigo.
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padovavia Marzolo 535131PadovaItaly
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padovavia Marzolo 535131PadovaItaly
| | - Adam Pecina
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Laura Riccardi
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Fabrizio Mancin
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
| | - Paolo Scrimin
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
| |
Collapse
|
31
|
Czescik J, Zamolo S, Darbre T, Rigo. R, Sissi C, Pecina A, Riccardi L, De Vivo M, Mancin F, Scrimin P. A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joanna Czescik
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
- Current address: School of Life and Health Sciences Aston University B4 7ET Birmingham UK
| | - Susanna Zamolo
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Riccardo Rigo.
- Department of Pharmaceutical and Pharmacological Sciences University of Padova via Marzolo 5 35131 Padova Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences University of Padova via Marzolo 5 35131 Padova Italy
| | - Adam Pecina
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Laura Riccardi
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
| | - Paolo Scrimin
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
| |
Collapse
|
32
|
Chirality at the Nanoparticle Surface: Functionalization and Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chiral molecules, such as amino acids and carbohydrates, are the building blocks of nature. As a consequence, most natural supramolecular structures, such as enzymes and receptors, are able to distinguish among different orientations in space of functional groups, and enantiomers of chiral drugs usually have different pharmacokinetic properties and physiological effects. In this regard, the ability to recognize a single enantiomer from a racemic mixture is of paramount importance. Alternatively, the capacity to synthetize preferentially one enantiomer over another through a catalytic process can eliminate (or at least simplify) the subsequent isolation of only one enantiomer. The advent of nanotechnology has led to noteworthy improvements in many fields, from material science to nanomedicine. Similarly, nanoparticles functionalized with chiral molecules have been exploited in several fields. In this review, we report the recent advances of the use of chiral nanoparticles grouped in four major areas, i.e., enantioselective recognition, asymmetric catalysis, biosensing, and biomedicine.
Collapse
|