1
|
Zhu J, Rahim F, Zhou P, Zhang A, Malcolmson SJ. Copper-Catalyzed Diastereo-, Enantio-, and ( Z)-Selective Aminoallylation of Ketones through Reductive Couplings of Azatrienes for the Synthesis of Allylic 1,2-Amino Tertiary Alcohols. J Am Chem Soc 2024; 146:20270-20278. [PMID: 39011628 PMCID: PMC11325848 DOI: 10.1021/jacs.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We introduce a method for the (Z)-selective aminoallylation of a range of ketones to prepare allylic 1,2-amino tertiary alcohols with excellent diastereo- and enantioselectivity. Copper-catalyzed reductive couplings of 2-azatrienes with aryl/alkyl and dialkyl ketones proceed with Ph-BPE as the supporting ligand, generating anti-amino alcohols with >98% (Z)-selectivity under mild conditions. The utility of the products is highlighted through several transformations, including those that leverage the (Z)-allylic amine moiety for diastereoselective reactions of the alkene. Calculations illustrate Curtin-Hammett control in the product formation over other possible isomers and the origin of (Z)-selectivity.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Faraan Rahim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pengfei Zhou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Annie Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Rose BJ, Brewer M. Lewis acid mediated allylation of vinyl diazonium ions by allylstannanes. Org Biomol Chem 2024; 22:4274-4277. [PMID: 38747167 PMCID: PMC11191702 DOI: 10.1039/d4ob00254g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The Lewis acid mediated reaction of allyltributylstannane compounds with β-hydroxy-α-diazo carbonyls gives β-allyl-α-diazo carbonyl products in good yields. This reaction proceeds via a vinyl diazonium ion intermediate which is intercepted by the allylstannane nucleophile. Importantly, the diazo functional group is retained over the course of the reaction to give diazo-containing scaffolds with increased molecular complexity. Methallyltrimethylsilane also serves as a functional allyl transfer reagent in this reaction.
Collapse
Affiliation(s)
- Benjamin J Rose
- 82 University Place, Department of Chemistry, University of Vermont, Burlington, VT 05401, USA.
| | - Matthias Brewer
- 82 University Place, Department of Chemistry, University of Vermont, Burlington, VT 05401, USA.
| |
Collapse
|
3
|
Ciss I, Seck M, Figadère B, Ferrié L. Advances Toward Amphidinolides C, F and U: Isolations, Synthetic Studies and Total Syntheses. Chemistry 2024; 30:e202400471. [PMID: 38407454 DOI: 10.1002/chem.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Amphidinolides C, F, and U, including C2-C4 analogs, are highly cytotoxic marine macrolides, mainly isolated from dinoflagellates of the genus Amphidinium. All these polyketides share a 75 % or more similar structure, highlighted by a macrolactone ring, at least one trans-2,5-substituted-THF motif and a characteristic polyenic side chain. From their isolation and absolute configurational assignment, the total synthesis of these marine macrolides represented an intense challenge to the organic synthesis community over the last 15 years, with around 14 research groups engaged in this inspiring task. In the first part of this review, we present the different approaches to the isolation and characterization of these natural products, including the most recent analogs, which may cast doubt on the biogenetic origin of these compounds. The various synthetic approaches to the total synthesis of C, F, and U amphidinolides are presented in a second part, focusing on key reactions and/or innovative strategies. The review concludes in a third section summarizing the successful approaches leading to the total synthesis of one of the members of this amphidinolide subfamily.
Collapse
Affiliation(s)
- Ismaila Ciss
- BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, 91400, Orsay, France
- Laboratoire de Chimie Organique et Chimie Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar -, BP 5005, Dakar-Fann, Sénégal
| | - Matar Seck
- Laboratoire de Chimie Organique et Chimie Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar -, BP 5005, Dakar-Fann, Sénégal
| | - Bruno Figadère
- BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Laurent Ferrié
- BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, 91400, Orsay, France
| |
Collapse
|
4
|
Pieper K, Bleith R, Köhler C, Mika R, Gansäuer A. A Flexible Synthesis of Polypropionates via Diastereodivergent Reductive Ring-Opening of Trisubstituted Secondary Glycidols. Angew Chem Int Ed Engl 2024; 63:e202317525. [PMID: 38108105 DOI: 10.1002/anie.202317525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Polypropionates, characterized by their alternating sequence of stereocenters bearing methyl- and hydroxy-groups, are structurally diverse natural products of utmost importance.[1] Herein, we introduce a novel concept approach towards polypropionate synthesis featuring a diastereodivergent reductive epoxide-opening as a key step. Readily available and stereochemically uniform trisubstituted sec-glycidols serve as branching points for the highly selective synthesis of all isomers of polypropionate building blocks with three or more consecutive stereocenters. Stereodiversification is accomplished by an unprecedented mechanism-control over the stereochemically complementary modification of the epoxide's tertiary C-atom with excellent control of regio- and stereoselectivity. Since our method is not only suited for the preparation of specific targets but also for compound libraries, it will have a great impact on polypropionate synthesis.
Collapse
Affiliation(s)
- Katharina Pieper
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Robin Bleith
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Christian Köhler
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
5
|
Guo LD, Wu Y, Xu X, Lin Z, Tong R. Bent π-Conjugation within a Macrocycle: Asymmetric Total Syntheses of Spirohexenolides A and B. Angew Chem Int Ed Engl 2024; 63:e202316259. [PMID: 37988261 DOI: 10.1002/anie.202316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Macrocycles with bent π-conjugation motif are extremely rare in nature and synthetically daunting and anticancer haouamines and spirohexenolides were representative of such rare natural products with synthetically challenging bent π-conjugation within a macrocycle. While the total synthesis of haouamines has been elegantly achieved, spirohexenolides remains an unmet synthetic challenge due to the highly strained bent 1,3,5-triene conjugation within C15 macrocycle. Inspired by the chemical synthesis of cycloparaphenylenes (CPPs) and haouamines, herein we devise a synthetic strategy to overcome the highly strained bent 1,3,5-triene conjugation within the macrocycle and achieve the first, asymmetric total synthesis of spirohexenolides A (>20 mg) and B (>50 mg). Our synthesis features strategic design of ring-closing metathesis (RCM) macrocyclization followed by double dehydration to achieve the C15 macrocycle with the deformed nonplanar 1,3,5-triene conjugation. In addition, we have developed a new enantioselective construction of highly functionalized spirotetronate fragment (northeast moiety) through RCM and Ireland-Claisen rearrangement. Our in vitro bioassay studies reveal that both spirohexenolides are cytotoxic against a panel of human cancer cells with IC50 1.2-13.3 μM and spirohexenolide A is consistently more potent (up to 3 times) than spirohexenolide B, suggesting the importance of alcohol for their bioactivity and for medicinal chemistry development.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yanting Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
6
|
Zhang X, Deng J, Ji Y, Li R, Sivaguru P, Song Q, Karmakar S, Bi X. Defluorinative 1,3-Dienylation of Fluoroalkyl N-Triftosylhydrazones with Homoallenols. Chemistry 2023; 29:e202302562. [PMID: 37695246 DOI: 10.1002/chem.202302562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A silver-catalyzed regioselective defluorinative 1,3-dienylation of trifluoromethyl phenyl N-triftosylhydrazones using homoallenols as 1,3-dienyl sources provides a variety of α-(di)fluoro-β-vinyl allyl ketones with excellent functional group tolerance in moderate to good yields. The reaction proceeds through a silver carbene-initiated sequential etherification and Claisen type [3,3]-sigmatropic rearrangement cascade. The synthetic utility of this protocol was demonstrated through the downstream synthetic elaboration toward diverse synthetically useful building blocks.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiahua Deng
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Ji
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rong Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Swastik Karmakar
- Department of Chemistry, Basirhat College, West Bengal State University, Basirhat, 743412, West Bengal, India
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Parsutkar MM, Bhunia S, Majumder M, Lalisse RF, Hadad CM, RajanBabu TV. Ligand Control in Co-Catalyzed Regio- and Enantioselective Hydroboration: Homoallyl Secondary Boronates via Uncommon 4,3-Hydroboration of 1,3-Dienes. J Am Chem Soc 2023; 145:7462-7481. [PMID: 36972549 PMCID: PMC10563392 DOI: 10.1021/jacs.3c00181] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enantiopure homoallylic boronate esters are versatile intermediates because the C-B bond in these compounds can be stereospecifically transformed into C-C, C-O, and C-N bonds. Regio- and enantioselective synthesis of these precursors from 1,3-dienes has few precedents in the literature. We have identified reaction conditions and ligands for the synthesis of nearly enantiopure (er >97:3 to >99:1) homoallylic boronate esters via a rarely seen cobalt-catalyzed [4,3]-hydroboration of 1,3-dienes. Monosubstituted or 2,4-disubstituted linear dienes undergo highly efficient regio- and enantioselective hydroboration with HBPin catalyzed by [(L*)Co]+[BARF]-, where L* is typically a chiral bis-phosphine ligand with a narrow bite angle. Several such ligands (e.g., i-PrDuPhos, QuinoxP*, Duanphos, and BenzP*) that give high enantioselectivities for the [4,3]-hydroboration product have been identified. In addition, the equally challenging problem of regioselectivity is uniquely solved with a dibenzooxaphosphole ligand, (R,R)-MeO-BIBOP. A cationic cobalt(I) complex of this ligand is a very efficient (TON >960) catalyst while also providing excellent regioselectivities (rr >98:2) and enantioselectivities (er >98:2) for a broad range of substrates. A detailed computational investigation of the reactions using Co complexes from two widely different ligands (BenzP* and MeO-BIBOP) employing the B3LYP-D3 density functional theory provides key insights into the mechanism and the origins of selectivities. The computational results are in full agreement with the experiments. For the complexes we have examined thus far, the relative stabilities of the diastereomeric diene-bound complexes [(L*)Co(η4-diene)]+ lead to the initial diastereofacial selectivity, which in turn is retained in the subsequent steps, providing exceptional enantioselectivity for the reactions.
Collapse
Affiliation(s)
- Mahesh M Parsutkar
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Subhajit Bhunia
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Mayukh Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Wang Q, Eriksson L, Szabó KJ. Catalytic Homologation‐Allylboration Sequence for Diastereo‐ and Enantioselective Synthesis of Densely Functionalized β‐Fluorohydrins with Tertiary Fluoride Stereocenters. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202301481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Bhardwaj S, Gopalakrishnan DK, Garg D, Vaitla J. Bidirectional Iterative Approach to Sequence-Defined Unsaturated Oligoesters. JACS AU 2023; 3:252-260. [PMID: 36711094 PMCID: PMC9875252 DOI: 10.1021/jacsau.2c00641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Herein, we describe the development of a new strategy for the synthesis of unsaturated oligoesters via sequential metal- and reagent-free insertion of vinyl sulfoxonium ylides into the O-H bond of carboxylic acid. Like two directional coupling of amino acids (N- to C-terminal and C- to N-terminal) in peptide synthesis, the present approach offers a strategy in both directions to synthesize oligoesters. The sequential addition of the vinyl sulfoxonium ylide to the carboxylic acids (acid iteration sequence) in one direction and the sequential addition of the carboxylic acids to the vinyl sulfoxonium ylide (ylide iteration sequence) in another direction yield (Z)-configured unsaturated oligoesters. To perform this iteration, we have developed a highly regioselective insertion of vinyl sulfoxonium ylide into the X-H (X = O, N, C, S, halogen) bond of acids, thiols, phenols, amines, indoles, and halogen acids under metal-free reaction conditions. The insertion reaction is applied to a broad range of substrates (>50 examples, up to 99% yield) and eight iterative sequences. Mechanistic studies suggest that the rate-limiting step depends on the type of X-H insertion.
Collapse
|
10
|
Xu S, Del Pozo J, Romiti F, Fu Y, Mai BK, Morrison RJ, Lee K, Hu S, Koh MJ, Lee J, Li X, Liu P, Hoveyda AH. Diastereo- and enantioselective synthesis of compounds with a trifluoromethyl- and fluoro-substituted carbon centre. Nat Chem 2022; 14:1459-1469. [PMID: 36376387 PMCID: PMC9772297 DOI: 10.1038/s41557-022-01054-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Molecules that contain one or more fluorine atoms are crucial to drug discovery. There are protocols available for the selective synthesis of different organofluorine compounds, including those with a fluoro-substituted or a trifluoromethyl-substituted stereogenic carbon centre. However, approaches for synthesizing compounds with a trifluoromethyl- and fluoro-substituent stereogenic carbon centre are far less common. This potentially impactful set of molecules thus remains severely underdeveloped. Here we introduce a catalytic regio-, diastereo- and enantioselective strategy for the preparation of homoallylic alcohols bearing a stereogenic carbon centre bound to a trifluoromethyl group and a fluorine atom. The process, which involves a polyfluoroallyl boronate and is catalysed by an in situ-formed organozinc complex, can be used for diastereodivergent preparation of tetrafluoro-monosaccharides, including ribose core analogues of the antiviral drug sofosbuvir (Sovaldi). Unexpected reactivity/selectivity profiles, probably originating from the trifluoromethyl- and fluoro-substituted carbon site, are discovered, foreshadowing other unique chemistries that remain unknown.
Collapse
Affiliation(s)
- Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - KyungA Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Shaowei Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Ming Joo Koh
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Jaehee Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
11
|
Nicholson K, Peng Y, Llopis N, Willcox DR, Nichol GS, Langer T, Baeza A, Thomas SP. Boron-Catalyzed, Diastereo- and Enantioselective Allylation of Ketones with Allenes. ACS Catal 2022; 12:10887-10893. [PMID: 36082052 PMCID: PMC9442582 DOI: 10.1021/acscatal.2c03158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Kieran Nicholson
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Yuxuan Peng
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Natalia Llopis
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Dominic R. Willcox
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Gary S. Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| | - Thomas Langer
- Pharmaceutical Technology & Development, Chemical Development U.K., AstraZeneca, Silk Road, Macclesfield SK10 2NA, United Kingdom
| | - Alejandro Baeza
- Instituto de Síntesis Orgánica and Dpto. de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Stephen P. Thomas
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
12
|
Fiorito D, Keskin S, Bateman JM, George M, Noble A, Aggarwal VK. Stereocontrolled Total Synthesis of Bastimolide B Using Iterative Homologation of Boronic Esters. J Am Chem Soc 2022; 144:7995-8001. [PMID: 35499478 PMCID: PMC9100475 DOI: 10.1021/jacs.2c03192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/29/2022]
Abstract
Bastimolide B is a polyhydroxy macrolide isolated from marine cyanobacteria displaying antimalarial activity. It features a dense array of hydroxylated stereogenic centers with 1,5-relationships along a hydrocarbon chain. These 1,5-polyols represent a particularly challenging motif for synthesis, as the remote position of the stereocenters hampers stereocontrol. Herein, we present a strategy for 1,5-polyol stereocontrolled synthesis based on iterative boronic ester homologation with enantiopure magnesium carbenoids. By merging boronic ester homologation and transition-metal-catalyzed alkene hydroboration and diboration, the acyclic backbone of bastimolide B was rapidly assembled from readily available building blocks with full control over the remote stereocenters, enabling the total synthesis to be completed in 16 steps (LLS).
Collapse
Affiliation(s)
- Daniele Fiorito
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | | | - Joseph M. Bateman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Malcolm George
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
13
|
Atkin L, Priebbenow DL. Cobalt-catalysed acyl silane directed ortho C–H functionalisation of benzoyl silanes. Chem Commun (Camb) 2022; 58:12604-12607. [DOI: 10.1039/d2cc05350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acyl silanes can be engaged as weakly coordinating directing groups in cobalt catalysed C–H functionalisation reactions to prepare benzoyl silanes that are highly amenable to subsequent synthetic manipulations yet inaccessible via existing methods.
Collapse
Affiliation(s)
- Liselle Atkin
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Daniel L. Priebbenow
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
- School of Chemistry, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
14
|
Long J, Ding C, Yin G. Nickel/Brønsted acid dual-catalyzed regioselective C–H bond allylation of phenols with 1,3-dienes. Org Chem Front 2022. [DOI: 10.1039/d2qo00637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel/Brønsted acid dual-catalyzed C-H bond ortho-allylation of phenols with 1,3-dienes has been developed. This methodology is readily applicable to the modification of complex pharmaceutical molecules.
Collapse
Affiliation(s)
- Jiao Long
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chao Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Affiliation(s)
- Brian P. Jacobs
- Department of Chemistry, University of Tennessee—Knoxville, Knoxville, Tennessee 37996, United States
| | - Johnathan N. Brantley
- Department of Chemistry, University of Tennessee—Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|