1
|
Dos Santos GG, Jiménez-Andrade JM, Muñoz-Islas E, Candanedo-Quiroz ME, Cardenas AG, Drummond B, Pham P, Stilson G, Hsu CC, Delay L, Navia-Pelaez JM, Lemes JP, Miller YI, Yaksh TL, Corr M. Role of TLR4 activation and signaling in bone remodeling, and afferent sprouting in serum transfer arthritis. Arthritis Res Ther 2024; 26:212. [PMID: 39696684 DOI: 10.1186/s13075-024-03424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In the murine K/BxN serum transfer rheumatoid arthritis (RA) model, tactile allodynia persists after resolution of inflammation in male and partially in female wild type (WT) mice, which is absent in Toll-like receptor (TLR)4 deficient animals. We assessed the role of TLR4 on allodynia, bone remodeling and afferent sprouting in this model of arthritis. METHODS K/BxN sera were injected into male and female mice with conditional or stable TLR4 deletion and controls. Paw swelling was scored and allodynia assessed by von Frey filaments. At day 28, synovial neural fibers were visualized with confocal microscopy and bone density assayed with microCT. Microglial activity and TLR4 dimerization in spinal cords were examined by immunofluorescence and flow cytometry. RESULTS In the synovium, K/BxN injected WT male and female mice showed robust increases in calcitonin gene related-peptide (CGRP+), tyrosine hydroxylase (TH)+ and GAP43+ nerve fibers. Trabecular bone density by microCT was significantly decreased in K/BxN WT female but not in WT male mice. The number of osteoclasts increased in both sexes of WT mice, but not in Tlr4-/- K/BxN mice. We used conditional strains with Cre drivers for monocytes/osteoclasts (lysozyme M), microglia (Tmem119 and Cx3CR1), astrocytes (GFAP) and sensory neurons (advillin) for Tlr4f/f disruption. All strains developed similar arthritis scores after K/BxN serum injection with the exception being the Tlr4Tmem119 mice which showed a reduction. Both sexes of Tlr4Lyz2, Tlr4Tmem119 and Tlr4Cx3cr1 mice displayed a partial reversal of the chronic pain phenotype but not in Tlr4Avil, and Tlr4Gfap mice. WT K/BxN male mice showed increases in spinal Iba1, but not GFAP, compared to Tlr4-/- male mice. To determine whether spinal TLR4 was indeed activated in the K/BxN mice, flow cytometry of lumbar spinal cords of WT K/BxN male mice was performed and revealed that TLR4 in microglia cells (CD11b+ /TMEM119+) demonstrated dimerization (e.g. activation) and a characteristic increase in lipid rafts. CONCLUSION These results demonstrated a complex chronic allodynia phenotype associated with TLR4 in microglia and monocytic cell lineages, and a parallel spinal TLR4 activation. However, TLR4 is dispensable for the development of peripheral nerve sprouting in this model.
Collapse
Affiliation(s)
| | | | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, UAT, Reynosa, Tamaulipas, México
| | | | - Andrea Gonzalez Cardenas
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Bronwen Drummond
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Peter Pham
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Gwendalynn Stilson
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Chao-Chin Hsu
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Lauriane Delay
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Julia Paes Lemes
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Maripat Corr
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA.
| |
Collapse
|
2
|
Yun M, Regen ND, Anchondo Y, Eddinger K, Malkmus S, Roberts SW, Donati E, Leonardi A, Yaksh TL. Acetaminophen effects upon formalin-evoked flinching, postformalin, and postincisional allodynia and conditioned place preference. Pain Rep 2024; 9:e1168. [PMID: 39139364 PMCID: PMC11321755 DOI: 10.1097/pr9.0000000000001168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction We explored in mice, the analgesic, tolerance, dependency, and rewarding effects of systemic acetaminophen (APAP). Methods Studies employed adult mice (C57Bl6). (1) Intraplantar formalin flinching + post formalin allodynia. Mice were given intraperitoneal APAP in a DMSO (5%)/Tween 80 (5%) or a water-based formulation before formalin flinching on day 1 and tactile thresholds assessed before and after APAP at day 12. (2) Paw incision. At 24 hours and 8 days after hind paw incision in male mice, effects of intraperitoneal APAP on tactile allodynia were assessed. (3) Repeated delivery. Mice received daily (4 days) analgesic doses of APAP or vehicle and tested upon formalin flinching on day 5. (4) Conditioned place preference. For 3 consecutive days, vehicle was given in the morning in either of 2 chambers and in each afternoon, an analgesic dose of morphine or APAP in the other chamber. On days 5 and 10, animals were allowed to select a "preferred" chamber. Results Formalin in male mice resulted in biphasic flinching and an enduring postformalin tactile allodynia. Acetaminophen dose dependently decreased phase 2 flinching, and reversed allodynia was observed postflinching. At a comparable APAP dose, female mice showed similarly reduced phase 2 flinching. Incision allodynia was transiently reversed by APAP. Repeated APAP delivery showed no loss of effect after sequential injections or signs of withdrawal. Morphine, but not APAP or vehicle, resulted in robust place preference. Conclusions APAP decreased flinching and allodynia observed following formalin and paw incision and an absence of tolerance, dependence, or rewarding properties.
Collapse
Affiliation(s)
- Mijung Yun
- Department of Anesthesiology, University of California, San Diego, CA, USA
- Pain Clinic, Department of Anesthesiology and Pain Medicine, National Medical Center, Jung-gu, Seoul, Korea
| | | | - Yuvicza Anchondo
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Kelly Eddinger
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Shelle Malkmus
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Steven W. Roberts
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Jurczak A, Sandor K, Bersellini Farinotti A, Krock E, Hunt MA, Agalave NM, Barbier J, Simon N, Wang Z, Rudjito R, Vazquez-Mora JA, Martinez-Martinez A, Raoof R, Eijkelkamp N, Grönwall C, Klareskog L, Jimenéz-Andrade JM, Marchand F, Svensson CI. Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody. Brain Behav Immun 2023; 113:212-227. [PMID: 37437817 DOI: 10.1016/j.bbi.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Emerson Krock
- The Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Nilesh M Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Zhenggang Wang
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Juan Antonio Vazquez-Mora
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Juan Miguel Jimenéz-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden.
| |
Collapse
|
4
|
Shin SM, Lauzadis J, Itson-Zoske B, Cai Y, Fan F, Natarajan GK, Kwok WM, Puopolo M, Hogan QH, Yu H. Targeting intrinsically disordered regions facilitates discovery of calcium channels 3.2 inhibitory peptides for adeno-associated virus-mediated peripheral analgesia. Pain 2022; 163:2466-2484. [PMID: 35420557 PMCID: PMC9562599 DOI: 10.1097/j.pain.0000000000002650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Ample data support a prominent role of peripheral T-type calcium channels 3.2 (Ca V 3.2) in generating pain states. Development of primary sensory neuron-specific inhibitors of Ca V 3.2 channels is an opportunity for achieving effective analgesic therapeutics, but success has been elusive. Small peptides, especially those derived from natural proteins as inhibitory peptide aptamers (iPAs), can produce highly effective and selective blockade of specific nociceptive molecular pathways to reduce pain with minimal off-target effects. In this study, we report the engineering of the potent and selective iPAs of Ca V 3.2 from the intrinsically disordered regions (IDRs) of Ca V 3.2 intracellular segments. Using established prediction algorithms, we localized the IDRs in Ca V 3.2 protein and identified several Ca V 3.2iPA candidates that significantly reduced Ca V 3.2 current in HEK293 cells stably expressing human wide-type Ca V 3.2. Two prototype Ca V 3.2iPAs (iPA1 and iPA2) derived from the IDRs of Ca V 3.2 intracellular loops 2 and 3, respectively, were expressed selectively in the primary sensory neurons of dorsal root ganglia in vivo using recombinant adeno-associated virus (AAV), which produced sustained inhibition of calcium current conducted by Ca V 3.2/T-type channels and significantly attenuated both evoked and spontaneous pain behavior in rats with neuropathic pain after tibial nerve injury. Recordings from dissociated sensory neurons showed that AAV-mediated Ca V 3.2iPA expression suppressed neuronal excitability, suggesting that Ca V 3.2iPA treatment attenuated pain by reversal of injury-induced neuronal hypersensitivity. Collectively, our results indicate that Ca V 3.2iPAs are promising analgesic leads that, combined with AAV-mediated delivery in anatomically targeted sensory ganglia, have the potential to be a selective peripheral Ca V 3.2-targeting strategy for clinical treatment of pain.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Fan Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Gayathri K. Natarajan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Itson-Zoske B, Shin SM, Xu H, Qiu C, Fan F, Hogan QH, Yu H. Selective block of sensory neuronal T-type/Cav3.2 activity mitigates neuropathic pain behavior in a rat model of osteoarthritis pain. Arthritis Res Ther 2022; 24:168. [PMID: 35842727 PMCID: PMC9287929 DOI: 10.1186/s13075-022-02856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peripheral and central nociceptive sensitization is a critical pathogenetic component in osteoarthritis (OA) chronic pain. T-type calcium channel 3.2 (CaV3.2) regulates neuronal excitability and plays important roles in pain processing. We previously identified that enhanced T-type/CaV3.2 activity in the primary sensory neurons (PSNs) of dorsal root ganglia (DRG) is associated with neuropathic pain behavior in a rat model of monosodium iodoacetate (MIA)-induced knee OA. PSN-specific T-type/CaV3.2 may therefore represent an important mediator in OA painful neuropathy. Here, we test the hypothesis that the T-type/CaV3.2 channels in PSNs can be rationally targeted for pain relief in MIA-OA. METHODS MIA model of knee OA was induced in male and female rats by a single injection of 2 mg MIA into intra-knee articular cavity. Two weeks after induction of knee MIA-OA pain, recombinant adeno-associated viruses (AAV)-encoding potent CaV3.2 inhibitory peptide aptamer 2 (CaV3.2iPA2) that have been characterized in our previous study were delivered into the ipsilateral lumbar 4/5 DRG. Effectiveness of DRG-CaV3.2iPA2 treatment on evoked (mechanical and thermal) and spontaneous (conditioned place preference) pain behavior, as well as weight-bearing asymmetry measured by Incapacitance tester, in the arthritic limbs of MIA rats were evaluated. AAV-mediated transgene expression in DRG was determined by immunohistochemistry. RESULTS AAV-mediated expression of CaV3.2iPA2 selective in the DRG-PSNs produced significant and comparable mitigations of evoked and spontaneous pain behavior, as well as normalization of weight-bearing asymmetry in both male and female MIA-OA rats. Analgesia of DRG-AAV-CaV3.2iPA1, another potent CaV3.2 inhibitory peptide, was also observed. Whole-cell current-clamp recordings showed that AAV-mediated CaV3.2iPA2 expression normalized hyperexcitability of the PSNs dissociated from the DRG of MIA animals, suggesting that CaV3.2iPA2 attenuated pain behavior by reversing MIA-induced neuronal hyperexcitability. CONCLUSIONS Together, our results add therapeutic support that T-type/CaV3.2 in primary sensory pathways contributes to MIA-OA pain pathogenesis and that CaV3.2iPAs are promising analgesic leads that, combined with AAV-targeted delivery in anatomically segmental sensory ganglia, have the potential for further development as a peripheral selective T-type/CaV3.2-targeting strategy in mitigating chronic MIA-OA pain behavior. Validation of the therapeutic potential of this strategy in other OA models may be valuable in future study.
Collapse
Affiliation(s)
- Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, Mississippi University Medical Center, Jackson, MS, 39216, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
6
|
Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 2021; 110:613-626.e9. [PMID: 34921782 DOI: 10.1016/j.neuron.2021.11.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
The current paradigm is that inflammatory pain passively resolves following the cessation of inflammation. Yet, in a substantial proportion of patients with inflammatory diseases, resolution of inflammation is not sufficient to resolve pain, resulting in chronic pain. Mechanistic insight into how inflammatory pain is resolved is lacking. Here, we show that macrophages actively control resolution of inflammatory pain remotely from the site of inflammation by transferring mitochondria to sensory neurons. During resolution of inflammatory pain in mice, M2-like macrophages infiltrate the dorsal root ganglia that contain the somata of sensory neurons, concurrent with the recovery of oxidative phosphorylation in sensory neurons. The resolution of pain and the transfer of mitochondria requires expression of CD200 receptor (CD200R) on macrophages and the non-canonical CD200R-ligand iSec1 on sensory neurons. Our data reveal a novel mechanism for active resolution of inflammatory pain.
Collapse
|
7
|
Pretreatment with High Mobility Group Box-1 Monoclonal Antibody Prevents the Onset of Trigeminal Neuropathy in Mice with a Distal Infraorbital Nerve Chronic Constriction Injury. Molecules 2021; 26:molecules26072035. [PMID: 33918407 PMCID: PMC8038245 DOI: 10.3390/molecules26072035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Persistent pain following orofacial surgery is not uncommon. High mobility group box 1 (HMGB1), an alarmin, is released by peripheral immune cells following nerve injury and could be related to pain associated with trigeminal nerve injury. Distal infraorbital nerve chronic constriction injury (dIoN-CCI) evokes pain-related behaviors including increased facial grooming and hyper-responsiveness to acetone (cutaneous cooling) after dIoN-CCI surgery in mice. In addition, dIoN-CCI mice developed conditioned place preference to mirogabalin, suggesting increased neuropathic pain-related aversion. Treatment of the infraorbital nerve with neutralizing antibody HMGB1 (anti-HMGB1 nAb) before dIoN-CCI prevented both facial grooming and hyper-responsiveness to cooling. Pretreatment with anti-HMGB1 nAb also blocked immune cell activation associated with trigeminal nerve injury including the accumulation of macrophage around the injured IoN and increased microglia activation in the ipsilateral spinal trigeminal nucleus caudalis. The current findings demonstrated that blocking of HMGB1 prior to nerve injury prevents the onset of pain-related behaviors, possibly through blocking the activation of immune cells associated with the nerve injury, both within the CNS and on peripheral nerves. The current findings further suggest that blocking HMGB1 before tissue injury could be a novel strategy to prevent the induction of chronic pain following orofacial surgeries.
Collapse
|
8
|
The neuropathic phenotype of the K/BxN transgenic mouse with spontaneous arthritis: pain, nerve sprouting and joint remodeling. Sci Rep 2020; 10:15596. [PMID: 32973194 PMCID: PMC7515905 DOI: 10.1038/s41598-020-72441-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023] Open
Abstract
The adult K/BxN transgenic mouse develops spontaneous autoimmune arthritis with joint remodeling and profound bone loss. We report that both males and females display a severe sustained tactile allodynia which is reduced by gabapentin but not the potent cyclooxygenase inhibitor ketorolac. In dorsal horn, males and females show increased GFAP+ astrocytic cells; however, only males demonstrate an increase in Iba1+ microglia. In dorsal root ganglia (DRG), there is an increase in CGRP+, TH+, and Iba1+ (macrophage) labeling, but no increase in ATF3+ cells. At the ankle there is increased CGRP+, TH+, and GAP-43+ fiber synovial innervation. Thus, based on the changes in dorsal horn, DRG and peripheral innervation, we suggest that the adult K/BxN transgenic arthritic mice display a neuropathic phenotype, an assertion consistent with the analgesic pharmacology seen in this animal. These results indicate the relevance of this model to our understanding of the nociceptive processing which underlies the chronic pain state that evolves secondary to persistent joint inflammation.
Collapse
|
9
|
Allen BL, Montague-Cardoso K, Simeoli R, Colas RA, Oggero S, Vilar B, McNaughton PA, Dalli J, Perretti M, Sher E, Malcangio M. Imbalance of proresolving lipid mediators in persistent allodynia dissociated from signs of clinical arthritis. Pain 2020; 161:2155-2166. [PMID: 32379221 PMCID: PMC7431142 DOI: 10.1097/j.pain.0000000000001908] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Rheumatoid arthritis-associated pain is poorly managed, often persisting when joint inflammation is pharmacologically controlled. Comparably, in the mouse K/BxN serum-transfer model of inflammatory arthritis, hind paw nociceptive hypersensitivity occurs with ankle joint swelling (5 days after immunisation) persisting after swelling has resolved (25 days after immunisation). In this study, lipid mediator (LM) profiling of lumbar dorsal root ganglia (DRG), the site of sensory neuron cell bodies innervating the ankle joints, 5 days and 25 days after serum transfer demonstrated a shift in specialised proresolving LM profiles. Persistent nociception without joint swelling was associated with low concentrations of the specialised proresolving LM Maresin 1 (MaR1) and high macrophage numbers in DRG. MaR1 application to cultured DRG neurons inhibited both capsaicin-induced increase of intracellular calcium ions and release of calcitonin gene-related peptide in a dose-dependent manner. Furthermore, in peritoneal macrophages challenged with lipopolysaccharide, MaR1 reduced proinflammatory cytokine expression. Systemic MaR1 administration caused sustained reversal of nociceptive hypersensitivity and reduced inflammatory macrophage numbers in DRG. Unlike gabapentin, which was used as positive control, systemic MaR1 did not display acute antihyperalgesic action. Therefore, these data suggest that MaR1 effects observed after K/BxN serum transfer relate to modulation of macrophage recruitment, more likely than to direct actions on sensory neurons. Our study highlights that, in DRG, aberrant proresolution mechanisms play a key role in arthritis joint pain dissociated from joint swelling, opening novel approaches for rheumatoid arthritis pain treatment.
Collapse
Affiliation(s)
- Benjamin L Allen
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | | | - Raffaele Simeoli
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
- Laboratory of Metabolic Biochemistry Unit, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romain A Colas
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Silvia Oggero
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Bruno Vilar
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Peter A McNaughton
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Jesmond Dalli
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Emanuele Sher
- Neuroscience Discovery, Lilly Research Centre, Eli Lilly and Company Ltd, Surrey, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Females have greater susceptibility to develop ongoing pain and central sensitization in a rat model of temporomandibular joint pain. Pain 2020; 160:2036-2049. [PMID: 31430262 DOI: 10.1097/j.pain.0000000000001598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a prevalent source of temporomandibular joint disorder (TMD). Women are more commonly diagnosed with TMD and are more likely to seek care at tertiary orofacial pain clinics. Limited knowledge regarding mechanisms underlying temporomandibular joint (TMJ) pain impairs development of improved pain management strategies. In a rat model of unilateral TMJOA, monosodium iodoacetate (MIA) produces joint pathology in a concentration-dependent manner. Unilateral MIA produces alterations in meal patterns in males and females without altering overnight time spent eating or weight across 2 weeks. Monosodium iodoacetate (80 mg/mL)-treated males develop ongoing pain within 2 weeks after MIA injection. Females develop ongoing pain at a 5-fold lower MIA concentration (16.6 mg/m). Monosodium iodoacetate (80 mg/mL)-treated males show spread of tactile hypersensitivity across the face during the first week after injection and then to the fore paws and hind paws during the second week after injection, indicating development of central sensitization. At the lower dose, female rats demonstrate a similar spread of tactile hypersensitivity, whereas male rats do not develop ongoing pain or spread of tactile hypersensitivity outside the area of the ipsilateral temporomandibular joint. These observations indicate that females have a higher susceptibility to development of ongoing pain and central sensitization compared with male rats that is not due to differences in MIA-induced joint pathology. This model of TMJOA pain can be used to explore sex differences in pain processes implicated in development of neuropathic pain, ongoing pain, and central sensitization, allowing for development of individualized strategies for prevention and treatment of TMD joint pain.
Collapse
|
11
|
Althobaiti YS, Alghorabi A, Alshehri FS, Baothman B, Almalki AH, Alsaab HO, Alsanie W, Gaber A, Almalki H, Alghamdi AS, Basfer A, Althobaiti S, Hardy AMG, Shah ZA. Gabapentin-induced drug-seeking-like behavior: a potential role for the dopaminergic system. Sci Rep 2020; 10:10445. [PMID: 32591630 PMCID: PMC7320158 DOI: 10.1038/s41598-020-67318-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023] Open
Abstract
Drugs of abuse represent a growing public health crisis. Accumulating evidence indicates that gabapentin (GBP), a prescription drug, is prone to misuse, abuse, withdrawal, and dependence. Commonly, drugs of abuse modulate the dopaminergic system to induce addiction. In this study, we used the conditioned place preference (CPP) model to investigate the involvement of the dopamine 1 (D1) receptor on the reward and reinforcement behavior of GBP. Under a CPP paradigm, male BALB/c mice were intraperitoneally injected either saline or 100, 200, or 300 mg/kg of GBP and confined to the injection-paired chamber for 30 min. In the pre-conditioning phase, mice were conditioned for 3 days, and baseline data were collected. In the conditioning phase, mice were given once-daily alternating injections of either GBP or saline for 8 days and subsequently assessed in a post-conditioning test. Injections of 300 mg/kg of GBP significantly increased the time spent in the drug-paired chamber compared to the saline-paired chamber. However, lower doses of GBP (100 and 200 mg/kg) showed no effect. Pre-treatment with SKF-83566, a D1 receptor antagonist, attenuated GBP-induced CPP. Thus, for the first time, we show that GBP can induce CPP through a dopaminergic-dependent mechanism.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Health Science Campus, Airport Road, Al Haweiah, PO Box 888, Taif, 21974, Saudi Arabia. .,Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia. .,General Administration for Precursors and Laboratories, Ministry of Interior, General Directorate of Narcotics Control, Riyadh, Saudi Arabia.
| | - Amal Alghorabi
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bandar Baothman
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hashem O Alsaab
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Department of Clinical Laboratories Science, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia.,Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Hussam Almalki
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia
| | - Abdulrahman S Alghamdi
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia
| | - Ahmad Basfer
- Addiction and Neuroscience Research Unit, Biomedical Sciences Research Center, Taif University, Taif, Saudi Arabia
| | - Sultan Althobaiti
- Department of Pharmaceutical Care, Directorate of Health Affairs, Ministry of Health, Taif, Saudi Arabia
| | - Ana Maria Gregio Hardy
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
12
|
|
13
|
Tappe-Theodor A, King T, Morgan MM. Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neurosci Biobehav Rev 2019; 100:335-343. [PMID: 30885811 PMCID: PMC6528820 DOI: 10.1016/j.neubiorev.2019.03.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University, Vancouver, WA, USA
| |
Collapse
|
14
|
Abstract
All preclinical procedures for analgesic drug discovery involve two components: 1) a "pain stimulus" (the principal independent variable), which is delivered to an experimental subject with the intention of producing a pain state; and 2) a "pain behavior" (the principal dependent variable), which is measured as evidence of that pain state. Candidate analgesics are then evaluated for their effectiveness to reduce the pain behavior, and results are used to prioritize drugs for advancement to clinical testing. This review describes a taxonomy of preclinical procedures organized into an "antinociception matrix" by reference to their types of pain stimulus (noxious, inflammatory, neuropathic, disease related) and pain behavior (unconditioned, classically conditioned, operant conditioned). Particular emphasis is devoted to pain behaviors and the behavioral principals that govern their expression, pharmacological modulation, and preclinical-to-clinical translation. Strengths and weaknesses are compared and contrasted for procedures using each type of behavioral outcome measure, and the following four recommendations are offered to promote strategic use of these procedures for preclinical-to-clinical analgesic drug testing. First, attend to the degree of homology between preclinical and clinical outcome measures, and use preclinical procedures with behavioral outcome measures homologous to clinically relevant outcomes in humans. Second, use combinations of preclinical procedures with complementary strengths and weaknesses to optimize both sensitivity and selectivity of preclinical testing. Third, take advantage of failed clinical translation to identify drugs that can be back-translated preclinically as active negative controls. Finally, increase precision of procedure labels by indicating both the pain stimulus and the pain behavior in naming preclinical procedures.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
Woller SA, Ocheltree C, Wong SY, Bui A, Fujita Y, Gonçalves Dos Santos G, Yaksh TL, Corr M. Neuraxial TNF and IFN-beta co-modulate persistent allodynia in arthritic mice. Brain Behav Immun 2019; 76:151-158. [PMID: 30465880 PMCID: PMC6396982 DOI: 10.1016/j.bbi.2018.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/03/2018] [Accepted: 11/18/2018] [Indexed: 02/06/2023] Open
Abstract
In rheumatoid arthritis, joint pain can persist despite resolution of swelling. Similarly, in the murine K/BxN serum transfer model, a persistent tactile allodynia is observed after the resolution of joint inflammation (post-inflammatory pain) in male mice. Here, we found female wild type (WT) mice show inflammatory, but reduced post-inflammatory tactile allodynia. The transition to the post-inflammatory phenotype is dependent on TLR4 signaling. At the spinal level, we found differences in TNF and IFNβ mRNA expression in WT and TLR4 deficient males. In wild type male and female mice, there is differential temporal spinal expression of TNF and IFNβ. In WT males, blockade of TNF or administration of IFNβ was insufficient to affect the persistent allodynia. However, co-administration of intrathecal (IT) IFNβ and anti-TNF antibodies in male WT mice permanently reversed tactile allodynia. IT IFNβ treatment induces expression of anti-inflammatory proteins, contributing to the beneficial effect. Together, these experiments illustrated differences in the transition to chronic tactile allodynia in male and female animals and the complexities of effective pharmacologic interventions.
Collapse
Affiliation(s)
- Sarah A Woller
- Departments of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Cody Ocheltree
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Stephanie Y Wong
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Bui
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Yuya Fujita
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | | | - Tony L Yaksh
- Departments of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Maripat Corr
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Park J, Cho MJ, Ha G, Park HJ. Analgesic effects of soluble epoxide hydrolase inhibitor in K/BxN serum transfer arthritis mouse model. Anesth Pain Med (Seoul) 2019. [DOI: 10.17085/apm.2019.14.1.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- JungHyun Park
- Department of Anesthesiology and Pain Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Min-ji Cho
- Department of Anesthesiology and Pain Medicine, Changwon Fatima Hospital, Changwon, Korea
| | - Geol Ha
- Department of Anesthesiology and Pain Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Hue-Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Pain relief by supraspinal gabapentin requires descending noradrenergic inhibitory controls. Pain Rep 2018; 3:e659. [PMID: 30123855 PMCID: PMC6085145 DOI: 10.1097/pr9.0000000000000659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Introduction Gabapentin regulates pain processing by direct action on primary afferent nociceptors and dorsal horn nociresponsive neurons. Through an action at supraspinal levels, gabapentin also engages descending noradrenergic inhibitory controls that indirectly regulate spinal cord pain processing. Although direct injection of gabapentin into the anterior cingulate cortex provides pain relief independent of descending inhibitory controls, it remains unclear whether that effect is representative of what occurs when gabapentin interacts at multiple brain loci, eg, after intracerebroventricular (i.c.v.) injection. Methods We administered gabapentin i.c.v. in a mouse model of chemotherapy (paclitaxel)-induced neuropathic pain. To distinguish spinal from supraspinally processed features of the pain experience, we examined mechanical hypersensitivity and assessed relief of pain aversiveness using an analgesia-induced conditioned place preference paradigm. Results Paclitaxel-treated mice showed a preference for a 100-μg i.c.v. gabapentin-paired chamber that was accompanied by reduced mechanical allodynia, indicative of concurrent engagement of descending controls. As expected, the same dose in uninjured mice did not induce place preference, demonstrating that gabapentin, unlike morphine, is not inherently rewarding. Furthermore, a lower dose of supraspinal gabapentin (30 μg), which did not reverse mechanical allodynia, did not induce conditioned place preference. Finally, concurrent injections of i.c.v. gabapentin (100 μg) and intrathecal yohimbine, an α2-receptor antagonist, blocked preference for the gabapentin-paired chamber. Conclusion We conclude that pain relief, namely a reduction of pain aversiveness, induced by supraspinal gabapentin administered by an i.c.v. route is secondary to its activation of descending noradrenergic inhibitory controls that block transmission of the "pain" message from the spinal cord to the brain.
Collapse
|
18
|
Chincholkar M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review. Br J Anaesth 2018; 120:1315-1334. [DOI: 10.1016/j.bja.2018.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
|
19
|
Patel R, Montagut‐Bordas C, Dickenson AH. Calcium channel modulation as a target in chronic pain control. Br J Pharmacol 2018; 175:2173-2184. [PMID: 28320042 PMCID: PMC5980588 DOI: 10.1111/bph.13789] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 01/13/2023] Open
Abstract
Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first-in-class synthetic version of ω-conotoxin MVIIA, a peptide blocker of Cav 2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use-dependent block of Cav 2.2 channels; activation state-dependent blockers were hypothesized to circumvent the side effects of state-independent blockers by selectively targeting high-frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state-dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans-aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus-evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant-based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench-to-bedside translation of calcium channel modulators. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | | | - Anthony H Dickenson
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
20
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
21
|
Woller SA, Ravula SB, Tucci FC, Beaton G, Corr M, Isseroff RR, Soulika AM, Chigbrow M, Eddinger KA, Yaksh TL. Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: The role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun 2016; 56:271-80. [PMID: 27044335 PMCID: PMC4917460 DOI: 10.1016/j.bbi.2016.03.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Pain resulting from local tissue injury or inflammation typically resolves with time. Frequently, however, this pain may unexpectedly persist, becoming a pathological chronic state. Increasingly, the innate and adaptive immune systems are being implicated in the initiation and maintenance of these persistent conditions. In particular, Toll-like receptor 4 (TLR4) signaling has been shown to mediate the transition to a persistent pain state in a sex-dependent manner. In the present work, we explored this contribution using the TLR4 antagonist, TAK-242. METHODS Male and female C57Bl/6 mice were given intravenous (IV), intrathecal (IT), or intraperitoneal (IP) TAK-242 prior to IT delivery of lipopolysaccharide (LPS), and tactile reactivity was assessed at regular intervals over 72-h. Additional groups of mice were treated with IP TAK-242 prior to intraplantar formalin, and flinching was monitored for 1-h. Tactile reactivity was assessed at 7-days after formalin delivery. RESULTS LPS evoked TNF release from male and female macrophages and RAW267.4 cells, which was blocked in a concentration dependent fashion by TAK-242. In vivo, IT LPS evoked tactile allodynia to a greater degree in male than female mice. TAK-242, given by all routes, prevented development of IT LPS-induced tactile allodynia in male animals, but did not reverse their established allodynia. TLR4 deficiency and TAK-242 treatment attenuated IT LPS-induced allodynia in male, but not female mice. In the formalin model, pre-treatment with TAK-242 did not affect Phase 1 or Phase 2 flinching, but prevented the delayed tactile allodynia in both male and unexpectedly in female mice (Phase 3). CONCLUSIONS Together, these results suggest that TAK-242 is a TLR4 antagonist that has efficacy after systemic and intrathecal delivery and confirms the role of endogenous TLR4 signaling in triggering the development of a delayed allodynia in both male and female mice.
Collapse
Affiliation(s)
- Sarah A Woller
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA; Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of California San Diego, La Jolla, CA, USA.
| | - Satheesh B Ravula
- Epigen Biosciences Inc., 10225 Barnes Canyon Road, Suite A104, San Diego, CA 92121, USA.
| | - Fabio C Tucci
- Epigen Biosciences Inc., 10225 Barnes Canyon Road, Suite A104, San Diego, CA 92121, USA.
| | - Graham Beaton
- Epigen Biosciences Inc., 10225 Barnes Canyon Road, Suite A104, San Diego, CA 92121, USA.
| | - Maripat Corr
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of California San Diego, La Jolla, CA, USA.
| | - R Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA.
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA; Shriners Hospital for Children, Northern California, Sacramento, CA, USA.
| | - Marianne Chigbrow
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA.
| | - Kelly A Eddinger
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.
| | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Alles SRA, Smith PA. The Anti-Allodynic Gabapentinoids: Myths, Paradoxes, and Acute Effects. Neuroscientist 2016; 23:40-55. [PMID: 27118808 DOI: 10.1177/1073858416628793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gabapentinoids (pregabalin and gabapentin) are first line treatments for neuropathic pain. They exert their actions by binding to the α2δ accessory subunits of voltage-gated Ca2+ channels. Because these subunits interact with critical aspects of the neurotransmitter release process, gabapentinoid binding prevents transmission in nociceptive pathways. Gabapentinoids also reduce plasma membrane expression of voltage-gated Ca2+ channels but this may have little direct bearing on their therapeutic actions. In animal models of neuropathic pain, gabapentinoids exert an anti-allodynic action within 30 minutes but most of their in vitro effects are 30-fold slower, taking at least 17 hours to develop. This difference may relate to increased levels of α2δ expression in the injured nervous system. Thus, in situations where α2δ is experimentally upregulated in vitro, gabapentinoids act within minutes to interrupt trafficking of α2δ subunits to the plasma membrane within nerve terminals. When α2δ is not up-regulated, gabapentinoids act slowly to interrupt trafficking of α2δ protein from cell bodies to nerve terminals. This improved understanding of the mechanism of gabapentinoid action is related to their slowly developing actions in neuropathic pain patients, to the concept that different processes underlie the onset and maintenance of neuropathic pain and to the use of gabapentinoids in management of postsurgical pain.
Collapse
Affiliation(s)
- Sascha R A Alles
- 1 Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Smith
- 1 Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|