1
|
Ourabi M, Massey RS, Prakash R, Lessard BH. Adapting single-walled carbon nanotube-based thin-film transistors to flexible substrates with electrolyte-gated configurations using a versatile tri-layer polymer dielectric. NANOSCALE ADVANCES 2024:d4na01007h. [PMID: 39777233 PMCID: PMC11701725 DOI: 10.1039/d4na01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT). Despite the potential for fabrication on flexible substrates, these devices were only characterized on rigid substrates. We present herein the fabrication of these TFTs on Kapton® substrates and a progression of the devices' n- and p-type operation over 7 days, demonstrating continuous loss of the n-type performance and relative stability of the p-type performance after 3 days in ambient air. The tri-layer dielectric is then applied in an electrolyte-gated SWNT field-effect transistor (EG-SWNT-FET) architecture, shielding the SWNTs from the electrolyte and allowing for width-normalised g m values of 0.0563 ± 0.0263 μS μm-1 and I ON/OFF ratios of 103-104 using de-ionized (DI) water as the electrolyte. Finally, as a proof of concept, the device was used to detect α-synuclein, a neuronal protein whose aggregation is associated with Parkinson's disease, in DI water through the immobilization of target specific aptamer molecules on the polymer layer covering the gate electrode.
Collapse
Affiliation(s)
- May Ourabi
- Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada
| | - Roslyn S Massey
- Department of Electronics Engineering, Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| | - Ravi Prakash
- Department of Electronics Engineering, Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada
- School of Electrical Engineering and Computer Science, University of Ottawa 800 King Edward Ave. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
2
|
Meng Q, Li H, Zhao W, Song M, Zhang W, Li X, Chen J, Wang L. Overcoming Debye screening effect in field-effect transistors for enhanced biomarker detection sensitivity. NANOSCALE 2024; 16:20864-20884. [PMID: 39452895 DOI: 10.1039/d4nr03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Field-effect transistor (FET)-based biosensors not only enable label-free detection by measuring the intrinsic charges of biomolecules, but also offer advantages such as high sensitivity, rapid response, and ease of integration. This enables them to play a significant role in disease diagnosis, point-of-care detection, and drug screening, among other applications. However, when FET sensors detect biomolecules in physiological solutions (such as whole blood, serum, etc.), the charged molecules will be surrounded by oppositely charged ions in the solution. This causes the effective charge carried by the biomolecules to be shielded, thereby significantly weakening their ability to induce charge rearrangement at the sensing interface. Such shielding hinders the change of carriers inside the sensing material, reduces the variation of current between the source and drain electrodes of the FET, and seriously limits the sensitivity and reliability of the device. In this article, we summarize the research progress in overcoming the Debye screening effect in FET-based biosensors over the past decade. Here, we first elucidate the working principles of FET sensors for detecting biomarkers and the mechanism of the Debye screening. Subsequently, we emphasize optimization strategies to overcome the Debye screening effect. Finally, we summarize and provide an outlook on the research on FET biosensors in overcoming the Debye screening effect, hoping to help the development of FET electronic devices with high sensitivity, specificity, and stability. This work is expected to provide new ideas for next-generation biosensing technology.
Collapse
Affiliation(s)
- Qi Meng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
3
|
Shkodra B, Petrelli M, Yang KA, Tagliaferri A, Lugli P, Petti L, Nakatsuka N. Polymeric integration of structure-switching aptamers on transistors for histamine sensing. Faraday Discuss 2024; 250:43-59. [PMID: 37970875 DOI: 10.1039/d3fd00123g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Aptamers that undergo large conformational rearrangements at the surface of electrolyte-gated field-effect transistor (EG-FETs)-based biosensors can overcome the Debye length limitation in physiological high ionic strength environments. For the sensitive detection of small molecules, carbon nanotubes (CNTs) that approach the dimensions of analytes of interest are promising channel materials for EG-FETs. However, functionalization of CNTs with bioreceptors using frequently reported surface modification strategies (e.g., π-π stacking), requires highly pristine CNTs deposited through methods that are incompatible with low-cost fabrication methods and flexible substrates. In this work, we explore alternative non-covalent surface chemistry to functionalize CNTs with aptamers. We harnessed the adhesive properties of poly-D-lysine (PDL), to coat the surface of CNTs and then grafted histamine-specific DNA aptamers electrostatically in close proximity to the CNT semiconducting channel. The layer-by-layer assembly was monitored by complementary techniques such as X-ray photoelectron spectroscopy, optical waveguide lightmode spectroscopy, and fluorescence microscopy. Surface characterization confirmed histamine aptamer integration into PDL-coated CNTs and revealed ∼5-fold higher aptamer surface coverage when using CNT networks with high surface areas. Specific aptamers assembled on EG-CNTFETs enabled histamine detection in undiluted high ionic strength solutions in the concentration range of 10 nM to 100 μM. Sequence specificity was demonstrated via parallel measurements with control EG-CNTFETs functionalized with scrambled DNA. Histamine aptamer-modified EG-CNTFETs showed high selectivity vs. histidine, the closest structural analog and precursor to histamine. Taken together, these results implied that target-specific aptamer conformational changes on CNTs facilitate signal transduction, which was corroborated by circular dichroism spectroscopy. Our work suggests that layer-by-layer polymer chemistry enables integration of structure-switching aptamers into flexible EG-CNTFETs for small-molecule biosensing.
Collapse
Affiliation(s)
- Bajramshahe Shkodra
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, CH-8092, Switzerland.
| | - Mattia Petrelli
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Kyung-Ae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University, New York 10032, USA
| | - Anna Tagliaferri
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Paolo Lugli
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Luisa Petti
- Sensing Technologies Laboratory (STL), Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen, Italy
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, CH-8092, Switzerland.
| |
Collapse
|
4
|
Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, Sharshir SW, Pandey AK, Saidur R, Singh P, Sharifian Jazi F, Lynch I. A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications. Crit Rev Anal Chem 2023; 54:2398-2421. [PMID: 36724894 DOI: 10.1080/10408347.2023.2171277] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors. It emphasizes the synthesis and optimization of CNT-based sensors for a range of applications and outlines the benefits of using CNTs for biomolecule immobilization. In addition, the use of molecularly imprinted polymer (MIP)-CNTs in the production of electrochemical sensors is also discussed. The challenges faced by the current CNTs-based sensors, along with some the future perspectives and their future opportunities, are also briefly explained in this paper.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Teqwa Ragdi
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - A K Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Services, Saveetha University, Chennai, India
- CoE for Energy and Eco-sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Chaumuhan, Uttar Pradesh, India
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Eswaran M, Chokkiah B, Pandit S, Rahimi S, Dhanusuraman R, Aleem M, Mijakovic I. A Road Map toward Field-Effect Transistor Biosensor Technology for Early Stage Cancer Detection. SMALL METHODS 2022; 6:e2200809. [PMID: 36068169 DOI: 10.1002/smtd.202200809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Field effect transistor (FET)-based nanoelectronic biosensor devices provide a viable route for specific and sensitive detection of cancer biomarkers, which can be used for early stage cancer detection, monitoring the progress of the disease, and evaluating the effectiveness of therapies. On the road to implementation of FET-based devices in cancer diagnostics, several key issues need to be addressed: sensitivity, selectivity, operational conditions, anti-interference, reusability, reproducibility, disposability, large-scale production, and economic viability. To address these well-known issues, significant research efforts have been made recently. An overview of these efforts is provided here, highlighting the approaches and strategies presently engaged at each developmental stage, from the design and fabrication of devices to performance evaluation and data analysis. Specifically, this review discusses the multistep fabrication of FETs, choice of bioreceptors for relevant biomarkers, operational conditions, measurement configuration, and outlines strategies to improve the sensing performance and reach the level required for clinical applications. Finally, this review outlines the expected progress to the future generation of FET-based diagnostic devices and discusses their potential for detection of cancer biomarkers as well as biomarkers of other noncommunicable and communicable diseases.
Collapse
Affiliation(s)
- Muthusankar Eswaran
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Bavatharani Chokkiah
- Nanoelectrochemistry Lab, Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, India
| | - Santosh Pandit
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Ragupathy Dhanusuraman
- Nanoelectrochemistry Lab, Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, India
| | - Mahaboobbatcha Aleem
- Department of Electrical Engineering, City College of New York, New York, 10031, USA
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
6
|
Salvo P, Vivaldi FM, Bonini A, Biagini D, Bellagambi FG, Miliani FM, Di Francesco F, Lomonaco T. Biosensors for Detecting Lymphocytes and Immunoglobulins. BIOSENSORS 2020; 10:E155. [PMID: 33121071 PMCID: PMC7694141 DOI: 10.3390/bios10110155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Lymphocytes (B, T and natural killer cells) and immunoglobulins are essential for the adaptive immune response against external pathogens. Flow cytometry and enzyme-linked immunosorbent (ELISA) kits are the gold standards to detect immunoglobulins, B cells and T cells, whereas the impedance measurement is the most used technique for natural killer cells. For point-of-care, fast and low-cost devices, biosensors could be suitable for the reliable, stable and reproducible detection of immunoglobulins and lymphocytes. In the literature, such biosensors are commonly fabricated using antibodies, aptamers, proteins and nanomaterials, whereas electrochemical, optical and piezoelectric techniques are used for detection. This review describes how these measurement techniques and transducers can be used to fabricate biosensors for detecting lymphocytes and the total content of immunoglobulins. The various methods and configurations are reported, along with the advantages and current limitations.
Collapse
Affiliation(s)
- Pietro Salvo
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Federico M. Vivaldi
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Francesca G. Bellagambi
- Institut des Sciences Analytiques, UMR 5280, Université Lyon 1, 5, rue de la Doua, 69100 Villeurbanne, France;
| | - Filippo M. Miliani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| |
Collapse
|
7
|
Lin Z, Wu G, Zhao L, Lai KWC. Carbon Nanomaterial-Based Biosensors: A Review of Design and Applications. IEEE NANOTECHNOLOGY MAGAZINE 2019. [DOI: 10.1109/mnano.2019.2927774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Sun Y, Peng Z, Li H, Wang Z, Mu Y, Zhang G, Chen S, Liu S, Wang G, Liu C, Sun L, Man B, Yang C. Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosens Bioelectron 2019; 137:255-262. [DOI: 10.1016/j.bios.2019.04.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
|
9
|
Tung NT, Tue PT, Thi Ngoc Lien T, Ohno Y, Maehashi K, Matsumoto K, Nishigaki K, Biyani M, Takamura Y. Peptide aptamer-modified single-walled carbon nanotube-based transistors for high-performance biosensors. Sci Rep 2017; 7:17881. [PMID: 29263412 PMCID: PMC5738443 DOI: 10.1038/s41598-017-18169-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022] Open
Abstract
Biosensors employing single-walled carbon nanotube field-effect transistors (SWCNT FETs) offer ultimate sensitivity. However, besides the sensitivity, a high selectivity is critically important to distinguish the true signal from interference signals in a non-controlled environment. This work presents the first demonstration of the successful integration of a novel peptide aptamer with a liquid-gated SWCNT FET to achieve highly sensitive and specific detection of Cathepsin E (CatE), a useful prognostic biomarker for cancer diagnosis. Novel peptide aptamers that specifically recognize CatE are engineered by systemic in vitro evolution. The SWCNTs were firstly grown using the thermal chemical vapor deposition (CVD) method and then were employed as a channel to fabricate a SWCNT FET device. Next, the SWCNTs were functionalized by noncovalent immobilization of the peptide aptamer using 1-pyrenebutanoic acid succinimidyl ester (PBASE) linker. The resulting FET sensors exhibited a high selectivity (no response to bovine serum albumin and cathepsin K) and label-free detection of CatE at unprecedentedly low concentrations in both phosphate-buffered saline (2.3 pM) and human serum (0.23 nM). Our results highlight the use of peptide aptamer-modified SWCNT FET sensors as a promising platform for near-patient testing and point-of-care testing applications.
Collapse
Affiliation(s)
- Nguyen Thanh Tung
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan
| | - Phan Trong Tue
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan
| | - Truong Thi Ngoc Lien
- School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Yasuhide Ohno
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-4 Shinkuracho, Tokushima, 770-8501, Japan
| | - Kenzo Maehashi
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Kazuhiko Matsumoto
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Koichi Nishigaki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan.,Department of Functional Materials Science, Saitama University, 255 Shimo-okubo Sakura-ku, Saitama city, Saitama, 338-8570, Japan
| | - Manish Biyani
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan. .,Center for Single Nanoscale Innovative Devices, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| | - Yuzuru Takamura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi city, Ishikawa, 923-1292, Japan. .,Center for Single Nanoscale Innovative Devices, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
10
|
Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 2017; 46:158-196. [DOI: 10.1039/c6cs00517a] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remarkable advances achieved in modern material technology, especially in device fabrication, have facilitated diverse materials to expand the list of their application fields.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Ruma Rani
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - K. Tankeshwar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
- Department of Physics
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| |
Collapse
|
11
|
Development of Nano-Carbon Biosensors Using Glycan for Host Range Detection of Influenza Virus. CONDENSED MATTER 2016. [DOI: 10.3390/condmat1010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
|
13
|
|
14
|
Zheng HY, Alsager OA, Zhu B, Travas-Sejdic J, Hodgkiss JM, Plank NOV. Electrostatic gating in carbon nanotube aptasensors. NANOSCALE 2016; 8:13659-13668. [PMID: 27376166 DOI: 10.1039/c5nr08117c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10 picomolar. The signal was shown to arise from a specific aptamer-target interaction that stabilises a G-quadruplex structure, bringing high negative charge density near the CNT channel. Electrostatic gating is established via the specificity and the sign of the current response, and by observing its suppression when higher ionic strength decreases the Debye length at the CNT-water interface. Sensitivity towards potassium and selectivity against other ions is demonstrated in both resistive mode and real time transistor mode measurements. The effective device architecture presented, along with the identification of clear response signatures, should inform the development of new electronic biosensors using the growing library of aptamer receptors.
Collapse
Affiliation(s)
- Han Yue Zheng
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Omar A Alsager
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Bicheng Zhu
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Jadranka Travas-Sejdic
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Justin M Hodgkiss
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Natalie O V Plank
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
15
|
Hianik T. Affinity Biosensors for Detection Immunoglobulin E and Cellular Prions. Antibodies vs. DNA Aptamers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics; Comenius University; Mlynska dolina F1 842 48 Bratislava Slovakia
- OpenLab “DNA-Sensors” of Kazan Federal University; 18 Kremlevskaya Street Kazan 420008 Russian Federation
| |
Collapse
|
16
|
A novel glutathione-S transferase immunosensor based on horseradish peroxidase and double-layer gold nanoparticles. Biomed Microdevices 2016; 18:50. [DOI: 10.1007/s10544-016-0075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
|
18
|
Li BR, Chen CC, Kumar UR, Chen YT. Advances in nanowire transistors for biological analysis and cellular investigation. Analyst 2014; 139:1589-608. [PMID: 24505596 DOI: 10.1039/c3an01861j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrical biosensors based on silicon nanowire field-effect transistors (SiNW-FETs) have attracted enormous interest in the biosensing field. SiNW-FETs have proven to be significant and efficient in detecting diverse biomolecular species with the advantages of high probing sensitivity, target selectivity, real-time recording and label-free detection. In recent years, significant advances in biosensors have been achieved, particularly for cellular investigation and biomedical diagnosis. In this critical review, we will report on the latest developments in biosensing with SiNW-FETs and discuss recent advancements in the innovative designs of SiNW-FET devices. This critical review introduces the basic instrumental setup and working principle of SiNW-FETs. Technical approaches that attempted to enhance the detection sensitivity and target selectivity of SiNW-FET sensors are discussed. In terms of applications, we review the recent achievements with SiNW-FET biosensors for the investigations of protein-protein interaction, DNA/RNA/PNA hybridization, virus detection, cellular recording, biological kinetics, and clinical diagnosis. In addition, the novel architecture designs of the SiNW-FET devices are highlighted in studies of live neuron cells, electrophysiological measurements and other signal transduction pathways. Despite these remarkable achievements, certain improvements remain necessary in the device performance and clinical applications of FET-based biosensors; thus, several prospects about the future development of nanowire transistor-based instruments for biosensing employments are discussed at the end of this review.
Collapse
Affiliation(s)
- Bor-Ran Li
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | | | | | | |
Collapse
|
19
|
Pineda S, Han ZJ, Ostrikov K. Plasma-Enabled Carbon Nanostructures for Early Diagnosis of Neurodegenerative Diseases. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4896-4929. [PMID: 28788112 PMCID: PMC5455823 DOI: 10.3390/ma7074896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 12/13/2022]
Abstract
Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.
Collapse
Affiliation(s)
- Shafique Pineda
- Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia.
- Plasma Nanoscience@Complex Systems, School of Physics, the University of Sydney, Sydney, NSW 2006, Australia.
| | - Zhao Jun Han
- Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia.
| | - Kostya Ostrikov
- Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia.
- Plasma Nanoscience@Complex Systems, School of Physics, the University of Sydney, Sydney, NSW 2006, Australia.
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
20
|
Hsu YR, Kang YW, Fang JY, Lee GY, Chyi JI, Chang CK, Huang CC, Hsu CP, Huang TH, Huang YF, Sun YC, Hsu CH, Chen CC, Li SS, Yeh JA, Yao DJ, Ren F, Wang YL. Investigation of C-terminal domain of SARS nucleocapsid protein-Duplex DNA interaction using transistors and binding-site models. SENSORS AND ACTUATORS. B, CHEMICAL 2014; 193:334-339. [PMID: 32288246 PMCID: PMC7126644 DOI: 10.1016/j.snb.2013.11.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 05/28/2023]
Abstract
AlGaN/GaN high electron mobility transistors (HEMTs) were used to sense the binding between double stranded DNA (dsDNA) and the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (N protein). The sensing signals were the drain current change of the HEMTs induced by the protein-dsDNA binding. Binding-site models using surface coverage ratios were utilized to analyze the signals from the HEMT-based sensors to extract the dissociation constants and predict the number of binding sites. Two dissociation constants, K D1 = 0.0955 nM, K D2 = 51.23 nM, were obtained by fitting the experimental results into the two-binding-site model. The result shows that this technique is more competitive than isotope-labeling electrophoretic mobility shift assay (EMSA). We demonstrated that AlGaN/GaN HEMTs were highly potential in constructing a semiconductor-based-sensor binding assay to extract the dissociation constants of nucleotide-protein interaction.
Collapse
Affiliation(s)
- You-Ren Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Yen-Wen Kang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Jung-Ying Fang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Geng-Yen Lee
- Department of Electrical engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan, ROC
| | - Jen-Inn Chyi
- Department of Electrical engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan, ROC
| | - Chung-ke Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Chih-Cheng Huang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Chen-Pin Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Tai-huang Huang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Chia-Hsien Hsu
- Division of Medical Engineering, National Health Research Institutes, MiaoLi, Taiwan, ROC
| | - Chih-Chen Chen
- Division of Medical Engineering, National Health Research Institutes, MiaoLi, Taiwan, ROC
| | - Sheng-Shian Li
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - J. Andrew Yeh
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| |
Collapse
|
21
|
Oncescu V, Lee S, Gumus A, Karlsson K, Erickson D. Autonomous device for application in late-phase hemorrhagic shock prevention. PLoS One 2014; 9:e89903. [PMID: 24587112 PMCID: PMC3933680 DOI: 10.1371/journal.pone.0089903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Hemorrhagic shock (HS) is the leading cause of death for people with traumatic injuries. The onset of HS is correlated with marked changes in the plasma vasopressin levels and some studies indicate that administrating vasopressin in the bloodstream can help stabilize the situation. This situation calls naturally for the use of implantable devices for both the monitoring and treatment of HS. In this work, we present a self-powered hemorrhagic-shock autonomous integrated device (hemoAID) that continuously monitors vasopressin levels and releases vasopressin automatically when levels drop below a certain threshold. We demonstrate that the device can operate at physiological concentrations of vasopressin, in sheep serum, thus paving the way towards the development of an autonomous implantable device for HS prevention.
Collapse
Affiliation(s)
- Vlad Oncescu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Seoho Lee
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Abdurrahman Gumus
- Electrical and Computer Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kolbeinn Karlsson
- Electrical and Computer Engineering, Cornell University, Ithaca, New York, United States of America
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sekhon SS, Kim SG, Lee SH, Jang A, Min J, Ahn JY, Kim YH. Advances in pathogen-associated molecules detection using Aptamer based biosensors. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-013-0039-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Carbon Nanowall Field Effect Transistors Using a Self-Aligned Growth Process. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2014. [DOI: 10.1380/ejssnt.2014.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Chen Y, Liang D, Gao XPA, Alexander JID. Sensing and energy harvesting of fluidic flow by InAs nanowires. NANO LETTERS 2013; 13:3953-3957. [PMID: 23899249 DOI: 10.1021/nl402185h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Indium arsenide (InAs) nanowire (NW) field effect transistors (FETs) were incorporated into a microfluidic channel to detect the flow rate change as well as to harvest fluid flow energy for electric power generation. Discrete changes in the electric current through InAs NW FETs were observed upon flow rate changes at steps of 1 mL/h (equivalent to ~3 mm/s change in average linear velocity). The current also showed a sign change upon reversing flow direction. By comparing the response of the device with and without a driving voltage between source-drain electrodes, we conclude that the dominant contribution in the response is the streaming potential tuned conductance of NW. In the absence of source-drain voltage, we further demonstrate that the ionic flow could enable generation of an ~mV electrical potential (or ~nA electrical current) inside the InAs NW per mL/h increase of flow rate, most likely due to the charge dragging effect.
Collapse
Affiliation(s)
- Ying Chen
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | | | | |
Collapse
|
25
|
High-throughput Peptide epitope mapping using carbon nanotube field-effect transistors. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:849303. [PMID: 23956755 PMCID: PMC3728521 DOI: 10.1155/2013/849303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022]
Abstract
Label-free and real-time detection technologies can dramatically reduce the time and cost of pharmaceutical testing and development. However, to reach their full promise, these technologies need to be adaptable to high-throughput automation. To demonstrate the potential of single-walled carbon nanotube field-effect transistors (SWCNT-FETs) for high-throughput peptide-based assays, we have designed circuits arranged in an 8 × 12 (96-well) format that are accessible to standard multichannel pipettors. We performed epitope mapping of two HIV-1 gp160 antibodies using an overlapping gp160 15-mer peptide library coated onto nonfunctionalized SWCNTs. The 15-mer peptides did not require a linker to adhere to the non-functionalized SWCNTs, and binding data was obtained in real time for all 96 circuits. Despite some sequence differences in the HIV strains used to generate these antibodies and the overlapping peptide library, respectively, our results using these antibodies are in good agreement with known data, indicating that peptides immobilized onto SWCNT are accessible and that linear epitope mapping can be performed in minutes using SWCNT-FET.
Collapse
|
26
|
Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosens Bioelectron 2013; 50:278-93. [PMID: 23872609 DOI: 10.1016/j.bios.2013.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 01/04/2023]
Abstract
Since the introduction by Gold et al. in 1990, nucleic acid aptamers had evolved to become a true contender in biosensors for protein and cell detections. Aptamers are short strands of synthetically designed DNA or RNA oligonucleotides that can be self-assembled into unique 3-dimensional structures and can bind to different proteins, cells or even small molecules at a high level of specificity and affinity. In recent years, there had been many reports in literature in using aptamers in place of conventional antibodies as capture biomolecules on the surface. This is mainly due to the better thermal stability properties and ease in production. Consequently, also these characteristics allowed the aptamers to find use in field effect transistors (FETs) based upon 1D nanostructured (1D-NS) as label-free biosensing. In terms of designing label-free platforms for biosensors applications, 1D-NS FET had been an attractive option due to reported high sensitivities toward protein targets arising from the large surface area for detection as well as to their label-free nature. Since the first aptamer-based 1D-NS FET biosensor had surfaced in 2005, there had been many more improvements in the overall design and sensitivity in recent years. In this review, the latest developments in synergizing these two interesting areas of research (aptamers and 1D-NS FET) will be discussed for a range of different nanowire types as well as for the detection results.
Collapse
|
27
|
Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon nanotubes. SENSORS 2013; 13:6865-81. [PMID: 23698275 PMCID: PMC3690085 DOI: 10.3390/s130506865] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/22/2013] [Accepted: 05/17/2013] [Indexed: 01/20/2023]
Abstract
In this paper, a panel of single-stranded DNA aptamers with high affinity and specificity against Salmonella Paratyphi A was selected from an enriched oligonucleotide pool by a whole-cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, during which four other Salmonella serovars were used as counter-selection targets. It was determined through a fluorescence assay that the selected aptamers had high binding ability and specificity to this pathogen. The dissociation constant of these aptamers were up to nanomolar range, and aptamer Apt22 with the lowest Kd (47 ± 3 nM) was used in cell imaging experiments. To detect this bacteria with high specificity and cost-efficiently, a novel useful detection method was also constructed based on the noncovalent self-assembly of single-walled carbon nanotubes (SWNTs) and DNAzyme-labeled aptamer detection probes. The amounts of target bacteria could be quantified by exploiting chemoluminescence intensity changes at 420 nm and the detection limit of the method was 103 cfu/mL. This study demonstrated the applicability of Salmonella specific aptamers and their potential for use in the detection of Salmonella in food, clinical and environmental samples.
Collapse
|
28
|
Justino CI, Freitas AC, Amaral JP, Rocha-Santos TA, Cardoso S, Duarte AC. Disposable immunosensors for C-reactive protein based on carbon nanotubes field effect transistors. Talanta 2013; 108:165-70. [DOI: 10.1016/j.talanta.2013.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 11/30/2022]
|
29
|
Huang CC, Lee GY, Chyi JI, Cheng HT, Hsu CP, Hsu YR, Hsu CH, Huang YF, Sun YC, Chen CC, Li SS, Andrew Yeh J, Yao DJ, Ren F, Wang YL. AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study. Biosens Bioelectron 2013; 41:717-22. [PMID: 23102432 PMCID: PMC7157921 DOI: 10.1016/j.bios.2012.09.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/14/2012] [Accepted: 09/27/2012] [Indexed: 01/09/2023]
Abstract
Antibody-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect a short peptide consisting of 20 amino acids. One-binding-site model and two-binding-site model were used for the analysis of the electrical signals, revealing the number of binding sites on an antibody and the dissociation constants between the antibody and the short peptide. In the binding-site models, the surface coverage ratio of the short peptide on the sensor surface is relevant to the electrical signals resulted from the peptide-antibody binding on the HEMTs. Two binding sites on an antibody were observed and two dissociation constants, 4.404×10(-11) M and 1.596×10(-9) M, were extracted from the binding-site model through the analysis of the surface coverage ratio of the short peptide on the sensor surface. We have also shown that the conventional method to extract the dissociation constant from the linear regression of curve-fitting with Langmuir isotherm equation may lead to an incorrect information if the receptor has more than one binding site for the ligand. The limit of detection (LOD) of the sensor observed in the experimental result (~10 pM of the short peptide) is very close to the LOD (around 2.7-3.4 pM) predicted from the value of the smallest dissociation constants. The sensitivity of the sensor is not only dependent on the transistors, but also highly relies on the affinity of the ligand-receptor pair. The results demonstrate that the AlGaN/GaN HEMTs cannot only be used for biosensors, but also for the biological affinity study.
Collapse
Affiliation(s)
- Chih-Cheng Huang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Geng-Yen Lee
- Department of Electrical engineering, National Central University, Jhongli City, Taoyuan County 32001, Taiwan, ROC
| | - Jen-Inn Chyi
- Department of Electrical engineering, National Central University, Jhongli City, Taoyuan County 32001, Taiwan, ROC
| | - Hui-Teng Cheng
- Department of Nephrology, National Taiwan University Hospital, Hsinchu branch, Hsinchu 300, Taiwan, ROC
| | - Chen-Pin Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - You-Ren Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Chia-Hsien Hsu
- Division of Medical Engineering, National Health Research Institutes, MiaoLi, Taiwan, ROC
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Chih-Chen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Sheng-Shian Li
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - J. Andrew Yeh
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| |
Collapse
|
30
|
He P, Oncescu V, Lee S, Choi I, Erickson D. Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. Anal Chim Acta 2012; 759:74-80. [PMID: 23260679 DOI: 10.1016/j.aca.2012.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 11/24/2022]
Abstract
Vasopressin is an indicating biomarker for blood pressure in the human body and low vasopressin levels can be indicative of late-phase hemorrhagic shock or other traumatic injuries. In this paper we have developed an aptamer-based label-free microfluidic biosensor for the electrochemical detection of vasopressin. The detection area consists of aptamers immobilized on carbon nanotubes which specifically capture the vasopressin molecules in solution resulting in changes in conductivity across the sensor. We report a limit of detection of 43 pM in standard solutions and demonstrate high detection specificity toward vasopressin when different interferents are present. The miniaturized microfluidic biosensor offers continuous monitoring of different vasopressin levels with good potential for portability. Ultimately such a system could serve as a point-of-care diagnostics tool for patients with excessive bleeding when standard medical infrastructure is not available.
Collapse
Affiliation(s)
- Peng He
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, United States
| | | | | | | | | |
Collapse
|
31
|
Pacios M, Martin-Fernandez I, Borrisé X, del Valle M, Bartrolí J, Lora-Tamayo E, Godignon P, Pérez-Murano F, Esplandiu MJ. Real time protein recognition in a liquid-gated carbon nanotube field-effect transistor modified with aptamers. NANOSCALE 2012; 4:5917-5923. [PMID: 22899008 DOI: 10.1039/c2nr31257c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The combination of optimized and passivated Field Effect Transistors (FETs) based on carbon nanotubes (CNTs) together with the appropriate choice and immobilization strategy of aptamer receptors and buffer concentration have allowed the highly sensitive and real time biorecognition of proteins in a liquid-gated configuration. Specifically we have followed the biorecognition process of thrombin by its specific aptamer. The aptamer modified device is sensitive enough to capture a change in the electronic detection mechanism, one operating at low protein concentrations and the other in a higher target concentration range. The high sensitivity of the device is also sustained by the very low detection limits achieved (20 pM) and their high selectivity when other target proteins are used. Moreover, the experimental results have allowed us to quantify the equilibrium constant of the protein-aptamer binding and confirm its high affinity by using the Langmuir equation.
Collapse
Affiliation(s)
- Mercè Pacios
- Grup de Sensors i Biosensors, Departament de Química, Facultat de Ciències, Edifici C-nord, UniversitatAutònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee CY, Wu KY, Su HL, Hung HY, Hsieh YZ. Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens Bioelectron 2012; 39:133-8. [PMID: 22883750 DOI: 10.1016/j.bios.2012.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 11/19/2022]
Abstract
In this study, we developed an ultrasensitive label-free aptamer-based electrochemical biosensor, featuring a highly specific anti-human immunoglobulin E (IgE) aptamer as a capture probe, for human IgE detection. Construction of the aptasensor began with the electrodeposition of gold nanoparticles (AuNPs) onto a graphite-based screen-printed electrode (SPE). After immobilizing the thiol-capped anti-human IgE aptamer onto the AuNPs through self-assembly, we treated the electrode with mercaptohexanol (MCH) to ensure that the remaining unoccupied surfaces of the AuNPs would not undergo nonspecific binding. We employed a designed complementary DNA featuring a guanine-rich section in its sequence (cDNA G1) as a detection probe to bind with the unbound anti-human IgE aptamer. We measured the redox current of methylene blue (MB) to determine the concentration of human IgE in the sample. When the aptamer captured human IgE, the binding of cDNA G1 to the aptamer was inhibited. Using cDNA G1 in the assay greatly amplified the redox signal of MB bound to the detection probe. Accordingly, this approach allowed the linear range (coefficient of determination: 0.996) for the analysis of human IgE to extend from 1 to 100,000pM; the limit of detection was 0.16pM. The fabricated aptasensor exhibited good selectivity toward human IgE even when human IgG, thrombin, and human serum albumin were present at 100-fold concentrations. This method should be readily applicable to the detection of other analytes, merely by replacing the anti-human IgE aptamer/cDNA G1 pair with a suitable anti-target molecule aptamer and cDNA.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | | | | | | | |
Collapse
|
33
|
Ma X, Sim SJ. Ultrasensitive detection of the reduced form of nicotinamide adenine dinucleotide based on carbon nanotube field effect transistor. Analyst 2012; 137:3328-34. [PMID: 22669083 DOI: 10.1039/c2an16253a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed a simple, ultrasensitive, and quantitative detection method for the reduced form of nicotinamide adenine dinucleotide (NADH), based on carbon nanotube field effect transistors (CNTFETs). Following the injection of NADH at different concentrations, we obtained different electrical signals from a semiconductor characterization system mimicking biological catalysis of NADH dehydrogenase (CoI). Here, FET was fabricated via photolithography, attaching silicon wells, as the detection chamber, on the channel area of the single wall carbon nanotube (SWCNT). SWCNTs were functionalized with phenazine derivant, a counterpart of the key functional prosthetic group of CoI enzyme. In the presence of NADH, electrons transferred to phenazine derivant through SWCNT, by analogous means of the electron transport chain formed by a series of iron-sulfur (FeS) clusters in CoI. Using this method, the limit of detection was as low as 1 pM, and the range of linear response was 10 pM to 500 nM. Significantly, this approach possesses great potential for applications in real-time detection of NADH at extremely low concentrations, and rigorous analysis for NADH in electrochemical fields.
Collapse
Affiliation(s)
- Xingyi Ma
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
34
|
Zhang J, Wu Y, Zhang B, Li M, Jia S, Jiang S, Zhou H, Zhang Y, Zhang C, Turner APF. Label-Free Electrochemical Detection of Tetracycline by an Aptamer Nano-Biosensor. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.670784] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Kurkina T, Balasubramanian K. Towards in vitro molecular diagnostics using nanostructures. Cell Mol Life Sci 2012; 69:373-88. [PMID: 22009454 PMCID: PMC11115035 DOI: 10.1007/s00018-011-0855-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
Nanostructures appear to be promising for a number of applications in molecular diagnostics, mainly due to the increased surface-to-volume ratio they can offer, the very low limit of detection achievable, and the possibility to fabricate point-of-care diagnostic devices. In this paper, we review examples of the use of nanostructures as diagnostic tools that bring in marked improvements over prevalent classical assays. The focus is laid on the various sensing paradigms that possess the potential or have demonstrated the capability to replace or augment current analytical strategies. We start with a brief introduction of the various types of nanostructures and their physical properties that determine the transduction principle. This is followed by a concise collection of various functionalization protocols used to immobilize biomolecules on the nanostructure surface. The sensing paradigms are discussed in two contexts: the nanostructure acting as a label for detection, or the nanostructure acting as a support upon which the molecular recognition events take place. In order to be successful in the field of molecular diagnostics, it is important that the nanoanalytical tools be evaluated in the appropriate biological environment. The final section of the review compiles such examples, where the nanostructure-based diagnostic tools have been tested on realistic samples such as serum, demonstrating their analytical power even in the presence of complex matrix effects. The ability of nanodiagnostic tools to detect ultralow concentrations of one or more analytes coupled with portability and the use of low sample volumes is expected to have a broad impact in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Tetiana Kurkina
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Kannan Balasubramanian
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
36
|
Citartan M, Gopinath SCB, Tominaga J, Tan SC, Tang TH. Assays for aptamer-based platforms. Biosens Bioelectron 2012; 34:1-11. [PMID: 22326894 DOI: 10.1016/j.bios.2012.01.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/14/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022]
Abstract
Aptamers are single stranded DNA or RNA oligonucleotides that have high affinity and specificity towards a wide range of target molecules. Aptamers have low molecular weight, amenable to chemical modifications and exhibit stability undeterred by repetitive denaturation and renaturation. Owing to these indispensable advantages, aptamers have been implemented as molecular recognition element as alternative to antibodies in various assays for diagnostics. By amalgamating with a number of methods that can provide information on the aptamer-target complex formation, aptamers have become the elemental tool for numerous biosensor developments. In this review, administration of aptamers in applications involving assays of fluorescence, electrochemistry, nano-label and nano-constructs are discussed. Although detection strategies are different for various aptamer-based assays, the core of the design strategies is similar towards reporting the presence of specific target binding to the corresponding aptamers. It is prognosticated that aptamers will find even broader applications with the development of new methods of transducing aptamer target binding.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Infectious Disease Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | | | | | | | | |
Collapse
|
37
|
Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl 2011; 51:1316-32. [PMID: 22213382 DOI: 10.1002/anie.201006630] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/11/2022]
Abstract
In recent years new nucleic acid and protein-based combinatorial molecules have attracted the attention of researchers working in various areas of science, ranging from medicine to analytical chemistry. These molecules, called aptamers, have been proposed as alternatives to antibodies in many different applications. The aim of this Review is to illustrate the peculiarities of these combinatorial molecules which have initially been explored for their importance in molecular medicine, but have enormous potential in other biotechnological fields historically dominated by antibodies, such as bioassays. A description of these molecules is given, and the methods for their selection and production are also summarized. Moreover, critical aspects related to these molecules are discussed.
Collapse
Affiliation(s)
- Marco Mascini
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
38
|
Mascini M, Palchetti I, Tombelli S. Nucleinsäure- und Peptidaptamere: Grundlagen und bioanalytische Aspekte. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Blondeau P, Xavier Rius-Ruiz F, Düzgün A, Riu J, Xavier Rius F. Covalent functionalization of single-walled carbon nanotubes with adenosine monophosphate: Towards the synthesis of SWCNT–Aptamer hybrids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Jones LP, Stefansson S, Kim MS, Ahn SN. Comparison of radioimmuno and carbon nanotube field-effect transistor assays for measuring insulin-like growth factor-1 in a preclinical model of human breast cancer. J Nanobiotechnology 2011; 9:36. [PMID: 21888628 PMCID: PMC3182969 DOI: 10.1186/1477-3155-9-36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 09/02/2011] [Indexed: 02/07/2023] Open
Abstract
Background To realize the promise of personalized medicine, diagnostic instruments used for detecting and measuring biomarkers must become smaller, faster and less expensive. Although most techniques used currently to detect biomarkers are sensitive and specific, many suffer from several disadvantages including their complexity, high cost and long turnaround time. One strategy to overcome these problems is to exploit carbon nanotube (CNT) based biosensors, which are sensitive, use inexpensive disposable components and can be easily adapted to current assay protocols. In this study we investigated the applicability of using a CNT field-effect transistor (CNT-FET) as a diagnostic instrument for measuring cancer biomarkers in serum using a mouse model of Breast Cancer Susceptibility 1-related breast cancer. Insulin like growth factor-1 (IGF-1) was chosen because it is highly relevant in breast cancer and because measuring serum IGF-1 levels by conventional methods is complicated due to specific IGF-1 serum binding proteins. Findings Our results show that there is good correlation between the two platforms with respect to detecting serum IGF-1. In fact, the CNT-FETs required only one antibody, gave real-time results and required approximately 100-fold less mouse serum than the radioimmunoassay. Conclusions Both IGF-1 radioimmuno and CNT-FET assays gave comparable results. Indeed, the CNT-FET assay was simpler and faster than the radioimmunoassay. Additionally, the low serum sample required by CNT-FETs can be especially advantageous for studies constricted by limited amount of human clinical samples and for mouse studies, since animals often need to be sacrificed to obtain enough serum for biomarker evaluation.
Collapse
Affiliation(s)
- Laundette P Jones
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore St, BRB-400-2 Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
41
|
Sun Y, Cai S, Cao Z, Lau C, Lu J. Aptameric system for the highly selective and ultrasensitive detection of protein in human serum based on non-stripping gold nanoparticles. Analyst 2011; 136:4144-51. [PMID: 21881666 DOI: 10.1039/c1an15520b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel approach is proposed in this study for the development of an aptameric assay system for protein based on non-stripping gold nanoparticles (NPs)-triggered chemiluminescence (CL) upon target binding. The strategy chiefly depends on the formation of a sandwich-type immunocomplex among the capture antibody immobilized on the polystyrene microwells, target protein and aptamer-functionalized gold NPs. Introduction of target protein into the assay system leads to the attachment of gold NPs onto the surface of the microwells and thus the assembled gold NPs could trigger the reaction between luminol and AgNO(3) with a CL emission. Further signal amplification was achieved by a simple gold metal catalytic deposition onto the gold NPs. Such an amplified CL transduction allowed for the detection of model target IgE down to the 50 fM, which is better than most existing aptameric methods for IgE detection. This new protocol also provided a good capability in discriminating IgE from nontarget proteins such as IgG, IgA, IgM and interferon. The practical application of the proposed gold NPs-based immunoassay was successfully carried out for the determination of IgE in 35 human serum samples. Overall, the proposed assay system exhibits excellent analytical characteristics (e.g., a detection limit on the attomolar scale and a linear dynamic range of 4 orders of magnitude), and it is also straightforward to adapt this strategy to detect a spectrum of other proteins by using different aptamers. This new CL strategy might create a novel technology for developing simple biosensors in the sensitive and selective detection of target protein in a variety of clinical, environmental and biodefense applications.
Collapse
Affiliation(s)
- Yanhua Sun
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | | | | | | | | |
Collapse
|
42
|
Makowski MS, Ivanisevic A. Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1863-75. [PMID: 21638783 PMCID: PMC3876889 DOI: 10.1002/smll.201100211] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Indexed: 05/17/2023]
Abstract
Rapid and accurate molecular blood analysis is essential for disease diagnosis and management. Field-effect transistor (FET) biosensors are a type of device that promise to advance blood point-of-care testing by offering desirable characteristics such as portability, high sensitivity, brief detection time, low manufacturing cost, multiplexing, and label-free detection. By controlling device parameters, desired FET biosensor performance is obtained. This review focuses on the effects of sensing environment, micro-/nanoscale device structure, operation mode, and surface functionalization on device performance and long-term stability.
Collapse
Affiliation(s)
- Matthew S. Makowski
- Weldon School of Biomedical Engineering Purdue University 206 S. Martin Jischke Drive West Lafayette, IN 47907, USA
- Department of Material Science and Engineering North Carolina State University Joint Department of Biomedical Engineering NCSU/UNC-CH 911 Partner's Way Raleigh, NC 27695, USA
| | - Albena Ivanisevic
- Weldon School of Biomedical Engineering Purdue University 206 S. Martin Jischke Drive West Lafayette, IN 47907, USA
- Department of Material Science and Engineering North Carolina State University Joint Department of Biomedical Engineering NCSU/UNC-CH 911 Partner's Way Raleigh, NC 27695, USA
| |
Collapse
|
43
|
Shiang YC, Hsu CL, Huang CC, Chang HT. Gold Nanoparticles Presenting Hybridized Self-Assembled Aptamers That Exhibit Enhanced Inhibition of Thrombin. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101718] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Shiang YC, Hsu CL, Huang CC, Chang HT. Gold nanoparticles presenting hybridized self-assembled aptamers that exhibit enhanced inhibition of thrombin. Angew Chem Int Ed Engl 2011; 50:7660-5. [PMID: 21717538 DOI: 10.1002/anie.201101718] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Yen-Chun Shiang
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
45
|
Park YK, Bold B, Lee WK, Jeon MH, An KH, Jeong SY, Shim YK. D-(+)-galactose-conjugated single-walled carbon nanotubes as new chemical probes for electrochemical biosensors for the cancer marker galectin-3. Int J Mol Sci 2011; 12:2946-57. [PMID: 21686160 PMCID: PMC3116166 DOI: 10.3390/ijms12052946] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022] Open
Abstract
d-(+)-Galactose-conjugated single-walled carbon nanotubes (SWCNTs) were synthesized for use as biosensors to detect the cancer marker galectin-3. To investigate the binding of galectin-3 to the d-(+)-galactose-conjugated SWCNTs, an electrochemical biosensor was fabricated by using molybdenum electrodes. The binding affinities of the conjugated SWCNTs to galectin-3 were quantified using electrochemical sensitivity measurements based on the differences in resistance together with typical I-V characterization. The electrochemical sensitivity measurements of the d-(+)-galactose-conjugated SWCNTs differed significantly between the samples with and without galectin-3. This indicates that d-(+)-galactose-conjugated SWCNTs are potentially useful electrochemical biosensors for the detection of cancer marker galectin-3.
Collapse
Affiliation(s)
- Young Kum Park
- Department of Nano System Engineering, Inje University, Gimhae, 612-749, Korea; E-Mails: (Y.K.P.); (B.B.); (W.K.L.); (M.H.J.)
| | - Bayarmaa Bold
- Department of Nano System Engineering, Inje University, Gimhae, 612-749, Korea; E-Mails: (Y.K.P.); (B.B.); (W.K.L.); (M.H.J.)
| | - Woo Kyung Lee
- Department of Nano System Engineering, Inje University, Gimhae, 612-749, Korea; E-Mails: (Y.K.P.); (B.B.); (W.K.L.); (M.H.J.)
| | - Min Hyon Jeon
- Department of Nano System Engineering, Inje University, Gimhae, 612-749, Korea; E-Mails: (Y.K.P.); (B.B.); (W.K.L.); (M.H.J.)
| | - Kay Hyeok An
- Carbon Valley R & D Division, Jeonju Institute of Machinery and Carbon Composites, Jeonju, 561-844, Korea; E-Mail:
| | - Seung Yol Jeong
- Nano Carbon Materials Research Group, Korea Electrotechnology Research Institute, Changwon, 641-120, Korea; E-Mail:
| | - Young Key Shim
- Department of Nano System Engineering, Inje University, Gimhae, 612-749, Korea; E-Mails: (Y.K.P.); (B.B.); (W.K.L.); (M.H.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-055-320-3871; Fax: +82-055-321-7034
| |
Collapse
|
46
|
Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 2010; 132:18012-3. [PMID: 21128665 DOI: 10.1021/ja108127r] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A label-free immunosensor based on an aptamer-modified graphene field-effect transistor (G-FET) is demonstrated. Immunoglobulin E (IgE) aptamers with an approximate height of 3 nm were successfully immobilized on a graphene surface, as confirmed by atomic force microscopy. The aptamer-modified G-FET showed selective electrical detection of IgE protein. From the dependence of the drain current variation on the IgE concentration, the dissociation constant was estimated to be 47 nM, indicating good affinity and the potential for G-FETs to be used in biological sensors.
Collapse
Affiliation(s)
- Yasuhide Ohno
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
47
|
Sun Z, Qiang W, Li H, Hao N, Xu D, Chen HY. Electric detection of DNA with PDMS microgap electrodes and silver nanoparticles. Analyst 2010; 136:540-4. [PMID: 21079881 DOI: 10.1039/c0an00512f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work a novel microdevice sensor has been developed by plating gold on the PDMS surface to generate a sandwich-type gap electrode for DNA detection. The microdevice utilizes a gold band electrode-PDMS-gold band electrode configuration and the minimum detectable volume could be as low as 5 μL. The 20 μm PDMS-based gap was chemically modified with DNA capture probes and DNA sandwich hybrids were formed with the addition of DNA target and silver nanoparticle probes. To increase detection sensitivity, parallel detection zones have been developed in which the relevant resistances decrease substantially upon hybridyzation. By measuring the change in electrical conductivity, the DNA target in the concentration range of 1000-0.1 nM can be assayed and the limit of lowest detectable concentration was achieved at 0.01 nM.
Collapse
Affiliation(s)
- Ziyin Sun
- Key Lab of Analytical Chemistry for Life Science, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
48
|
Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 2010; 29:169-88. [PMID: 21034805 DOI: 10.1016/j.biotechadv.2010.10.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/03/2010] [Accepted: 10/10/2010] [Indexed: 12/15/2022]
Abstract
Electrochemical (EC) sensing approaches have exploited the use of carbon nanotubes (CNTs) as electrode materials owing to their unique structures and properties to provide strong electrocatalytic activity with minimal surface fouling. Nanofabrication and device integration technologies have emerged along with significant advances in the synthesis, purification, conjugation and biofunctionalization of CNTs. Such combined efforts have contributed towards the rapid development of CNT-based sensors for a plethora of important analytes with improved detection sensitivity and selectivity. The use of CNTs opens an opportunity for the direct electron transfer between the enzyme and the active electrode area. Of particular interest are also excellent electrocatalytic activities of CNTs on the redox reaction of hydrogen peroxide and nicotinamide adenine dinucleotide, two major by-products of enzymatic reactions. This excellent electrocatalysis holds a promising future for the simple design and implementation of on-site biosensors for oxidases and dehydrogenases with enhanced selectivity. To date, the use of an anti-interference layer or an artificial electron mediator is critically needed to circumvent unwanted endogenous electroactive species. Such interfering species are effectively suppressed by using CNT based electrodes since the oxidation of NADH, thiols, hydrogen peroxide, etc. by CNTs can be performed at low potentials. Nevertheless, the major future challenges for the development of CNT-EC sensors include miniaturization, optimization and simplification of the procedure for fabricating CNT based electrodes with minimal non-specific binding, high sensitivity and rapid response followed by their extensive validation using "real world" samples. A high resistance to electrode fouling and selectivity are the two key pending issues for the application of CNT-based biosensors in clinical chemistry, food quality and control, waste water treatment and bioprocessing.
Collapse
Affiliation(s)
- Sandeep Kumar Vashist
- NUSNNI Nanocore, National University of Singapore, 5A Engineering Drive 1, Singapore
| | | | | | | | | |
Collapse
|
49
|
Van den Bossche J, Al-Jamal WT, Tian B, Nunes A, Fabbro C, Bianco A, Prato M, Kostarelos K. Efficient receptor-independent intracellular translocation of aptamers mediated by conjugation to carbon nanotubes. Chem Commun (Camb) 2010; 46:7379-81. [PMID: 20830345 DOI: 10.1039/c0cc02092c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have covalently grafted aptamers onto carboxylated carbon nanotubes to design a novel vector system that can easily translocate into the cytosol of different cell types independent of receptor-mediated uptake. We propose the use of carbon nanotubes for the efficient intracellular delivery of biologically active aptamers for potential therapeutic applications.
Collapse
Affiliation(s)
- Jeroen Van den Bossche
- Nanomedicine Laboratory, Centre for Drug Delivery, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, UK WC1N 1AX
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fu D, Li LJ. Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene. NANO REVIEWS 2010; 1:NANO-1-5354. [PMID: 22110861 PMCID: PMC3215217 DOI: 10.3402/nano.v1i0.5354] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/02/2010] [Accepted: 08/09/2010] [Indexed: 11/14/2022]
Abstract
The interface between biosystems and nanomaterials is emerging for detection of various biomolecules and subtle cellular activities. In particular, the development of cost-effective and sequence-selective DNA detection is urgent for the diagnosis of genetic or pathogenic diseases. Graphene-based nanocarbon materials, such as carbon nanotubes and thin graphene layers, have been employed as biosensors because they are biocompatible, extraordinarily sensitive, and promising for large-area detection. Electrical and label-free detection of DNA can be achieved by monitoring the conductance change of devices fabricated from these carbon materials. Here, the recent advances in this research area are briefly reviewed. The key issues and perspectives of future development are also discussed.
Collapse
Affiliation(s)
- Dongliang Fu
- Research Center for Applied Science, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|