1
|
Hu H, Hu Y, Xie B, Zhu J. High Sensitivity Electrochemical As (III) Sensor Based on Fe 3O 4/MoS 2 Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2288. [PMID: 37630874 PMCID: PMC10459275 DOI: 10.3390/nano13162288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Currently, heavy metal ion pollution in water is becoming more and more common, especially As (III), which is a serious threat to human health. In this experiment, a glassy carbon electrode modified with Fe3O4/MoS2 nanocomposites was used to select the square wave voltammetry (SWV) electrochemical detection method for the detection of trace As (III) in water. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that Fe3O4 nanoparticles were uniformly attached to the surface of MoS2 and were not easily agglomerated. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that Fe3O4/MoS2 has higher sensitivity and conductivity. After optimizing the experimental conditions, the Fe3O4/MoS2-modified glassy carbon electrode exhibited high sensitivity (3.67 μA/ppb) and a low detection limit (0.70 ppb), as well as excellent interference resistance and stability for As (III).
Collapse
Affiliation(s)
- Haibing Hu
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (Y.H.); (B.X.)
| | - Yunhu Hu
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (Y.H.); (B.X.)
| | - Baozhu Xie
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (Y.H.); (B.X.)
| | - Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Engineering Research Center of New Light Sources Technology and Equipment, Ministry of Education, Nanjing 211189, China
| |
Collapse
|
2
|
Karami-Kolmoti P, Beitollahi H, Modiri S. Electrochemical Sensor for Simple and Sensitive Determination of Hydroquinone in Water Samples Using Modified Glassy Carbon Electrode. Biomedicines 2023; 11:1869. [PMID: 37509508 PMCID: PMC10377069 DOI: 10.3390/biomedicines11071869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
This study addressed the use of manganese dioxide nanorods/graphene oxide nanocomposite (MnO2 NRs/GO) for modifying a glassy carbon electrode (GCE). The modified electrode (MnO2 NRs/GO/GCE) was used as an electrochemical sensor for the determination of hydroquinone (HQ) in water samples. Differential pulse voltammetry (DPV), cyclic voltammetry (CV), and chronoamperometry were used for more analysis of the HQ electrochemical behavior. Analyses revealed acceptable electrochemical functions with lower transfer resistance of electrons and greater conductivity of the MnO2 NRs/GO/GCE. The small peak-to-peak separation is an indication of a rapid electron transfer reaction. Therefore, this result is probably related to the effect of the MnO2 NRs/GO nanocomposite on the surface of GCE. In the concentration range of 0.5 μM to 300.0 μM with the detection limit as 0.012 μM, there was linear response between concentration of HQ and the current. The selectivity of the modified electrode was determined by detecting 50.0 μM of HQ in the presence of various interferent molecules. At the end, the results implied the acceptable outcome of the prepared electrode for determining HQ in the water samples.
Collapse
Affiliation(s)
- Parisa Karami-Kolmoti
- Department of Chemistry, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| | - Sina Modiri
- Polymer Department, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| |
Collapse
|
3
|
Kumar PS, G P, Elavarasan N, Sreeja BS. GO/ZnO nanocomposite - as transducer platform for electrochemical sensing towards environmental applications. CHEMOSPHERE 2023; 313:137345. [PMID: 36423727 DOI: 10.1016/j.chemosphere.2022.137345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/30/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Graphene Oxide-Zinc Oxide (GO-ZnO) - a new nanomaterial that has queued the interest of researchers. Their intriguing promising physical and electrochemical features of electrode material have led to its widespread use in electrochemical sensor applications. GO-ZnO based nanomaterial were extensively exploited in the construction of electrochemical sensors due to their adaptability and distinct qualities. On understanding the structural role of these materials, their modification processes are critical for realizing their full potential. The advancement of technology on new concepts and strategies has revolutionized the field of sensor devices with high sensitivities and selectivity. These tools can test a range of contaminants quickly, accurately, and affordably while performing automated chemical analysis in complicated matrices. This paper highlights the electrochemical transducer surface for sensing various analytes and current research activity on GO-ZnO nanocomposite. Additionally, we talked about current developments in GO-ZnO nanostructured composites to identify relevant analytes (i.e., Nitrophenols, Antibiotic Drugs, Biomolecules). While being used in the laboratory, the majority of produced systems have proven to bring about excellent gains. Their monitoring application still has a long way to go before it is fixed due to problems like technological advancements and multifunctional strategies to get around the challenges for improving the sensing systems.
Collapse
Affiliation(s)
- P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - Padmalaya G
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - N Elavarasan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - B S Sreeja
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| |
Collapse
|
4
|
Siva S, Jin JO, Choi I, Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosens Bioelectron 2023; 219:114845. [PMID: 36327568 DOI: 10.1016/j.bios.2022.114845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
Mycotoxins are the most common feed and food contaminants affecting animals and humans, respectively; continuous exposure causes tremendous health problems such as kidney disorders, infertility, immune suppression, liver inflammation, and cancer. Consequently, their control and quantification in food materials is crucial. Biosensors are potential tools for the rapid detection and quantification of mycotoxins with high sensitivity and selectivity. Nanoliposomes (NLs) are vesicular carriers formed by self-assembling phospholipids that surround the aqueous cores. Utilizing their biocompatibility, biodegradability, and high carrying capacity, researchers have employed NLs in biosensors for monitoring various targets in biological and food samples. The NLs are used for surface modification, signal marker delivery, and detection of toxins, bacteria, pesticides, and diseases. Here, we review marker-entrapped NLs used in the development of NL-based biosensors for mycotoxins. These biosensors are sensitive, selective, portable, and cost-effective analytical tools, and the resulting signal can be produced and/or amplified with or without destroying the NLs. In addition, this review emphasizes the benefits of the immunoliposome method in comparison with traditional detection approaches. We expect this review to serve as a valuable reference for researchers in this rapidly growing field. The insights provided may facilitate the rational design of next-generation NL-based biosensors.
Collapse
Affiliation(s)
- Subramanian Siva
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
5
|
Ofloxacin and norfloxacin simultaneous detection by ERGO/GCE and its application in medicine and aquaculture wastewater. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Biyana Regasa M, Nyokong T. Synergistic recognition and electrochemical sensing of 17β-Estradiol using ordered molecularly imprinted polymer-graphene oxide-silver nanoparticles composite films. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Wachholz Junior D, Deroco PB, Kubota LT. A copper-based metal-organic framework/reduced graphene oxide-modified electrode for electrochemical detection of paraquat. Mikrochim Acta 2022; 189:278. [PMID: 35829918 DOI: 10.1007/s00604-022-05358-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/25/2022] [Indexed: 01/16/2023]
Abstract
An electrochemical device using copper-based metalorganic franmeworks (MOF) associated with reduced graphene oxide to improve the charge transfer, stability, and adherence of the structures on the surface of the electrodes was developed. The syntheses of these materials were confirmed using scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Fourier transform infrared and Raman spectroscopy. For the first time, this type of sensor was applied to a systematic study to understand the action mechanism of MOFs and reduced graphene oxide in the electrochemical detection of paraquat pesticide. Under optimized conditions, paraquat was detected in standard solutions by differential pulse voltammetry (- 0.8 to - 0.3 V vs Ag/AgCl), achieving a linear response range between 0.30 and 5.00 μmol L-1. The limits of detection and quantification were 50.0 nmol L-1 and 150.0 nmol L-1, respectively. We assessed the accuracy of the proposed device to determine paraquat in water and human blood serum samples by recovery study, obtaining recovery values ranging from 98 to 104%. Furthermore, the selectivity of the proposed electrode for paraquat detection was evaluated against various interferences, demonstrating their promising application in environmental analysis.
Collapse
Affiliation(s)
- Dagwin Wachholz Junior
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, 13083-970, Brazil.,National Institute of Science and Technology in Bioanalytic (INCTBio), Campinas, Brazil
| | - Patrícia Batista Deroco
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, 13083-970, Brazil.,National Institute of Science and Technology in Bioanalytic (INCTBio), Campinas, Brazil
| | - Lauro Tatsuo Kubota
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, 13083-970, Brazil. .,National Institute of Science and Technology in Bioanalytic (INCTBio), Campinas, Brazil.
| |
Collapse
|
8
|
Tian Y, Yu D, Wang Y, Chen G. Performance and responses of aerobic granular sludge at different concentrations of graphene oxide after a single administered dose. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2210-2222. [PMID: 34038020 DOI: 10.1002/wer.1593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
To investigate the impact of graphene oxide (GO) under different concentrations (0, 50, 100, 150, and 200 mg/L) on aerobic granular sludge (AGS) after a single administered dose, the performance of nitrogen removal, microbial enzymatic activity, extracellular polymeric substances (EPSs), and microbial community structure was analyzed in batch tests. The results showed that the impact of GO concentrations on AGS was dose- and time-dependent. Short-term GO exposure could accelerate the nitrification process of AGS, while relatively concentrations (≥100 mg/L) inhibited the process when present for extended periods of time. The microbial enzymatic activity showed similar tendency. The production of lactate dehydrogenase release (LDH) in 200 mg/L group was increased 48.04% and EPS contents decreased 30.06% compared to the control group at 30th day and showed that high concentrations of GO have toxic effects on AGS. The microbial bacteria responded differently to the stimulation of different concentrations of GO. PRACTITIONER POINTS: GO affected AGS system performance in concentration- and time-dependent manners. The nitrification rate of AGS increased in the short term and reversed over time. Long-term exposure to high GO concentrations caused toxicity to AGS. Different microorganisms had diverse responses to GO concentrations.
Collapse
Affiliation(s)
- Yuan Tian
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Yanyan Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
9
|
Kalosakas G, Lathiotakis NN, Papagelis K. Width Dependent Elastic Properties of Graphene Nanoribbons. MATERIALS 2021; 14:ma14175042. [PMID: 34501132 PMCID: PMC8433791 DOI: 10.3390/ma14175042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
The mechanical response of graphene nanoribbons under uniaxial tension, as well as its dependence on the nanoribbon width, is presented by means of numerical simulations. Both armchair and zigzag edged graphene nanoribbons are considered. We discuss results obtained through two different theoretical approaches, viz. density functional methods and molecular dynamics atomistic simulations using empirical force fields especially designed to describe interactions within graphene sheets. Apart from the stress-strain curves, we calculate several elastic parameters, such as the Young’s modulus, the third-order elastic modulus, the intrinsic strength, the fracture strain, and the Poisson’s ratio versus strain, presenting their variation with the width of the nanoribbon.
Collapse
Affiliation(s)
- George Kalosakas
- Materials Science Department, University of Patras, GR-26504 Rio, Greece
- Correspondence: ; Tel.: +30-2610-996310
| | - Nektarios N. Lathiotakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-11635 Athens, Greece;
| | - Konstantinos Papagelis
- School of Physics, Department of Solid State Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| |
Collapse
|
10
|
|
11
|
A High-Response Electrochemical As(III) Sensor Using Fe3O4–rGO Nanocomposite Materials. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nowadays, heavy metal ion pollution in water is becoming more and more common, especially arsenic, which seriously threatens human health. In this work, we used Fe3O4–rGO nanocomposites to modify a glassy carbon electrode and selected square wave voltametric electrochemical detection methods to detect trace amounts of arsenic in water. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed that Fe3O4 nanoparticles were uniformly distributed on the rGO sheet, with a particle size of about 20 nm. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) showed that rGO provides higher sensitivity and conductive substrates. Under optimized experimental conditions, Fe3O4–rGO-modified glassy carbon electrodes showed a higher sensitivity (2.15 µA/ppb) and lower limit of detection (1.19 ppb) for arsenic. They also showed good selectivity, stability, and repeatability.
Collapse
|
12
|
Mariyappan V, Keerthi M, Chen SM, Jeyapragasam T. Nanostructured perovskite type gadolinium orthoferrite decorated RGO nanocomposite for the detection of nitrofurantoin in human urine and river water samples. J Colloid Interface Sci 2021; 600:537-549. [PMID: 34030010 DOI: 10.1016/j.jcis.2021.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
Nitrofurantoin (NFT) is mainly used in humans for the treatment of urinary tract infections. NFT is used as feed additives in animals, due to its broad antimicrobial activity. However, it shows more side effects on human health and the environment. Therefore low-cost, portable, and rapid sensors are necessary for the detection of NFT in real samples. Herein, we successfully developed an electrochemical sensor using a glassy carbon electrode (GCE) modified with gadolinium orthoferrite (GdFeO3) decorated on reduced graphene oxide (RGO) nanocomposite for the detection of NFT. The facile hydrothermal method was used to synthesis a novel GdFeO3/RGO nanocomposite, the morphological and structural characterization was confirmed by the FESEM, HRTEM, EDX, XRD, Raman, and XPS techniques. The formation mechanism of GdFeO3/RGO nanocomposite had been discussed. The effective intercalation of the nanostructured GdFeO3 to the RGO sheets leads to the significant enhancement in physicochemical properties such as electrical conductivity, electro-active surface area, structural stability, and electrochemical activity, which was observed from the EIS and CV experimental results. The electrochemical studies established that the developed GdFeO3/RGO sensor was highly sensitive and selective to NFT. Moreover, the GdFeO3/RGO sensor exhibits good sensitivity of 4.1985 μA μM-1 cm-2, a low detection limit (LOD) of 0.0153 µM and a linear range from 0.001 to 249 µM for NFT detection under optimized experimental conditions. In addition, the investigation of storage time on the CV response of the GdFeO3/RGO sensor indicates superior stability. Owing to these extraordinary analytical advantages, the as-fabricated sensor was applied to detect the NFT levels in human urine and river water samples with satisfactory results.
Collapse
Affiliation(s)
- Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Murugan Keerthi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Tharini Jeyapragasam
- Department of Chemistry, V.P.M.M College of Arts and Science for Women, V.P.M. Nagar, Krishnankovil, Srivilliputur (T.K), Virudhunagar 626190, India
| |
Collapse
|
13
|
Determining nadifloxacin in pharmaceutical formulations using novel differential pulse voltammetric approach. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tortolini C, Capecchi E, Tasca F, Pofi R, Venneri MA, Saladino R, Antiochia R. Novel Nanoarchitectures Based on Lignin Nanoparticles for Electrochemical Eco-Friendly Biosensing Development. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:718. [PMID: 33809211 PMCID: PMC8001205 DOI: 10.3390/nano11030718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Novel nanoarchitectures based on lignin nanoparticles (LNPs) were designed and realized for electrochemical eco-friendly biosensing development. Two types of lignin nanoparticles were utilized for the modification of a gold bare electrode, namely organosolv (OLNPs) and kraft lignin (KLNPs) nanoparticles, synthetized from a sulfur-free and a sulfur lignin, respectively. The electrochemical behavior of LNP-modified electrodes was studied using two electrochemical techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared to the gold bare electrode, an evident decrease in the faradaic current and increase of the ΔEp were observed in cyclic voltammograms. In addition, larger semicircles were registered in Nyquist plots. These results suggest a strong inhibition effect of the electron transfer reaction by LNPs layer, especially in the case of KLNPs. The modified electrodes, properly assembled with concanavalin A (ConA) and glucose oxidase (GOx), were successively tested as biosensing platforms for glucose, showing a sensitivity of (4.53 ± 0.467) and (13.74 ± 1.84) μA mM-1 cm2 for Au/SAMCys/OLNPs/ConA/GOx and Au/KLNPs/ConA/GOx biosensors, respectively. Finally, different layers of the KNLPs/ConA/GOx-modified Au electrode were tested, and the three-layered Au(KNLPs/ConA/GOx)3 showed the best analytical performance.
Collapse
Affiliation(s)
- Cristina Tortolini
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Eliana Capecchi
- Department of Biological and Ecological Sciences, University of Tuscia, Via s. Camillo de Lellis snc, 01100 Viterbo, Italy; (E.C.); (R.S.)
| | - Federico Tasca
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile;
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences, University of Tuscia, Via s. Camillo de Lellis snc, 01100 Viterbo, Italy; (E.C.); (R.S.)
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
15
|
Magnetic molecularly imprinting polymers and reduced graphene oxide modified electrochemical sensor for the selective and sensitive determination of luteolin in natural extract. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Lara-Canche AR, Garcia-Gutierrez DF, Torres-Gomez N, Reyes-Gonzalez JE, Bahena-Uribe D, Sepulveda-Guzman S, Hernandez-Calderon I, García Gutierrez DI. Solution processed nanostructured hybrid materials based on PbS quantum dots and reduced graphene oxide with tunable optoelectronic properties. NANOTECHNOLOGY 2021; 32:055604. [PMID: 33065556 DOI: 10.1088/1361-6528/abc209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanostructured hybrid materials (NHMs) are promising candidates to improve the performance of several materials in different applications. In the case of optoelectronic technologies, the ability to tune the optical absorption of such NHMs is an appealing feature. Along with the capacity to transform the absorbed light into charge carriers (CC), and their consequently efficient transport to the different electrodes. In this regard, NHM based on graphene-like structures and semiconductor QDs are appealing candidates, assuming the NHMs retain the light absorption and CC photogeneration properties of semiconductor QDs, and the excellent CC transport properties displayed by graphene-like materials. In the current work a solution-processed NHM using PbS quantum dots (QDs) and graphene oxide (GO) was fabricated in a layer-by-layer configuration by dip-coating. Afterwards, these NHMs were reduced by thermal or chemical methods. Reduction process had a direct impact on the final optoelectronic properties displayed by the NHMs. All reduced samples displayed a decrement in their resistivity, particularly the sample chemically reduced, displaying a 107 fold decrease; mainly attributed to N-doping in the reduced graphene oxide (rGO). The optical absorption coefficients also showed a dependence on the rGO's reduction degree, with reduced samples displaying higher values, and sample thermally reduced at 300 °C showing the highest absorption coefficient, due to the combined absorption of unaltered PbS QDs and the appearance of sp2 regions within rGO. The photogenerated current increased in most reduced samples, displaying the highest photocurrent the sample reduced at 400 °C, presenting a 2500-fold increment compared to the NHM before reduction, attributed to an enhanced CC transfer from PbS QDs to rGO, as a consequence of an improved band alignment between them. These results show clear evidence on how the optoelectronic properties of NHMs based on semiconductor nanoparticles and rGO, can be tuned based on their configuration and the reduction process parameters.
Collapse
Affiliation(s)
- A R Lara-Canche
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Mecánica y Eléctrica, FIME, AV. Universidad S/N Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P 66450, México
- Uuniversidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIDIIT, Av. Alianza Sur 101, Apodaca, Nuevo León C.P 65000, México
| | - D F Garcia-Gutierrez
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Mecánica y Eléctrica, FIME, AV. Universidad S/N Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P 66450, México
- Uuniversidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIDIIT, Av. Alianza Sur 101, Apodaca, Nuevo León C.P 65000, México
| | - N Torres-Gomez
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Mecánica y Eléctrica, FIME, AV. Universidad S/N Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P 66450, México
- Uuniversidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIDIIT, Av. Alianza Sur 101, Apodaca, Nuevo León C.P 65000, México
| | - J E Reyes-Gonzalez
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Mecánica y Eléctrica, FIME, AV. Universidad S/N Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P 66450, México
- Uuniversidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIDIIT, Av. Alianza Sur 101, Apodaca, Nuevo León C.P 65000, México
| | - D Bahena-Uribe
- Advanced Laboratory of Electron Nanoscopy, CINVESTAV, Ave. IPN 2508, 07360 Mexico City, Mexico
| | - S Sepulveda-Guzman
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Mecánica y Eléctrica, FIME, AV. Universidad S/N Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P 66450, México
- Uuniversidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIDIIT, Av. Alianza Sur 101, Apodaca, Nuevo León C.P 65000, México
| | - I Hernandez-Calderon
- Advanced Laboratory of Electron Nanoscopy, CINVESTAV, Ave. IPN 2508, 07360 Mexico City, Mexico
- Physics Department, DNyN, CINVESTAV, Ave. IPN 2508, 07360 Mexico City, Mexico
| | - D I García Gutierrez
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Mecánica y Eléctrica, FIME, AV. Universidad S/N Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P 66450, México
- Uuniversidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIDIIT, Av. Alianza Sur 101, Apodaca, Nuevo León C.P 65000, México
| |
Collapse
|
17
|
Boumya W, Taoufik N, Achak M, Barka N. Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. J Pharm Anal 2020; 11:138-154. [PMID: 34012690 PMCID: PMC8116204 DOI: 10.1016/j.jpha.2020.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022] Open
Abstract
Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects. Thus, the development of advantageous analytical tools to detect and determine paracetamol is required. Due to simplicity, higher sensitivity and selectivity as well as costefficiency, electrochemical sensors were fully investigated in last decades. This review describes the advancements made in the development of electrochemical sensors for the paracetamol detection and quantification in pharmaceutical and biological samples. The progress made in electrochemical sensors for the selective detection of paracetamol in the last 10 years was examined, with a special focus on highly innovative features introduced by nanotechnology. As the literature is rather extensive, we tried to simplify this work by summarizing and grouping electrochemical sensors according to the by which manner their substrates were chemically modified and the analytical performances obtained.
Collapse
Affiliation(s)
- Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, B.P. 145, 25000, Khouribga, Morocco.,Chouaib Doukkali University, Ecole Nationale des Sciences Appliquées, Laboratoire des Sciences de l'Ingénieur pour l'Energie, El Jadida, Morocco
| | - Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, B.P. 145, 25000, Khouribga, Morocco
| | - Mounia Achak
- Chouaib Doukkali University, Ecole Nationale des Sciences Appliquées, Laboratoire des Sciences de l'Ingénieur pour l'Energie, El Jadida, Morocco.,Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Noureddine Barka
- Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
18
|
Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Mikrochim Acta 2020; 187:639. [PMID: 33151419 PMCID: PMC7642243 DOI: 10.1007/s00604-020-04615-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and novel coronavirus 19 (COVID-19) epidemics represent the biggest global health threats in the last two decades. These infections manifest as bronchitis, pneumonia or severe, sometimes fatal, respiratory illness. The novel coronavirus seems to be associated with milder infections but it has spread globally more rapidly becoming a pandemic. This review summarises the state of the art of nanotechnology-based affinity biosensors for SARS, MERS and COVID-19 detection. The nanobiosensors are antibody- or DNA-based biosensors with electrochemical, optical or FET-based transduction. Various kinds of nanomaterials, such as metal nanoparticles, nanowires and graphene, have been merged to the affinity biosensors to enhance their analytical performances. The advantages of the use of the nanomaterials are highlighted, and the results compared with those obtained using non-nanostructured biosensors. A critical comparison with conventional methods, such as RT-PCR and ELISA, is also reported. It is hoped that this review will provide interesting information for the future development of new reliable nano-based platforms for point-of-care diagnostic devices for COVID-19 prevention and control.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
19
|
Brandolt R, Paupitz R. Theoretical study of collision dynamics of fullerenes on graphenylene and porous graphene membranes. J Mol Graph Model 2020; 100:107664. [PMID: 32731182 DOI: 10.1016/j.jmgm.2020.107664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022]
Abstract
A comparative study regarding the behavior of graphene, porous graphene and graphenylene monolayers under high energy impact is reported. Our results were obtained using a computational model constructed to perform investigations of the dynamics of high velocity fullerenes colliding with free standing sheets of those materials. We employed fully reactive molecular dynamics simulations in which the interatomic interactions were described using ReaxFF force field. During the simulations, free standing monolayers of the investigated materials were submitted to collision with a C60 fullerene molecule at impact angles within the range 0°≤θ≤75°. We considered kinetic energies in the range 0eV≤Ek≤1500eV, that corresponds to a projectile velocity v in the range 0Å/fs≤v≤0.2Å/fs. Also, the failure dynamics of each one of the 2-dimensional materials is described in a comparative analysis in which relevant differences and unique features observed in the mechanical stress dissipation processes are highlighted. Finally, performing hundreds of simulations we were able to map many possible scenarios for these collisions and to construct diagrams that elucidate, for each one of the materials, the possible behaviors under the action of a highly energetic C60 projectile as a function of energy and incident angle.
Collapse
Affiliation(s)
- Ricardo Brandolt
- Sao Paulo State University - UNESP, Physics Department, CEP-13506-900, Rio Claro, SP, Brazil
| | - Ricardo Paupitz
- Sao Paulo State University - UNESP, Physics Department, CEP-13506-900, Rio Claro, SP, Brazil.
| |
Collapse
|
20
|
Raczyński P, Górny K, Bełdowski P, Yuvan S, Dendzik Z. Application of Graphene as a Nanoindenter Interacting with Phospholipid Membranes-Computer Simulation Study. J Phys Chem B 2020; 124:6592-6602. [PMID: 32633958 PMCID: PMC7460090 DOI: 10.1021/acs.jpcb.0c02319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Synthesis
of graphene (GN) in 2004 stimulated wide interest in
potential applications of 2D materials in catalysis, optoelectronics,
biotechnology, and construction of sensing devices. In the presented
study, interactions between GN sheets and phospholipid bilayers are
examined using steered molecular dynamics simulations. GN sheets of
different sizes were inserted into a bilayer and subsequently withdrawn
from it at two different rates (1 and 2 m/s). In some cases, nanoindentation
led to substantial damage of the phospholipid bilayer; however, an
effective self-sealing process occurred even after significant degradation.
The average force and work, deflection of the membrane during indentation,
withdrawal processes, and structural changes caused by moving sheets
are discussed. These quantities are utilized to estimate the suitability
of GN sheets for targeted drug delivery or other nanomedicine tools.
The results are compared with those obtained for other nanostructures
such as homogeneous and heterogeneous nanotubes.
Collapse
Affiliation(s)
- Przemysław Raczyński
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Krzysztof Górny
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Piotr Bełdowski
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas Väg 51, SE-10044 Stockholm, Sweden.,Institute of Mathematics & Physics, UTP University of Science & Technology, 85-796 Bydgoszcz, Poland
| | - Steven Yuvan
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
| | - Zbigniew Dendzik
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
21
|
Zamiri G, Haseeb ASMA. Recent Trends and Developments in Graphene/Conducting Polymer Nanocomposites Chemiresistive Sensors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3311. [PMID: 32722341 PMCID: PMC7435888 DOI: 10.3390/ma13153311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
The use of graphene and its derivatives with excellent characteristics such as good electrical and mechanical properties and large specific surface area has gained the attention of researchers. Recently, novel nanocomposite materials based on graphene and conducting polymers including polyaniline (PANi), polypyrrole (PPy), poly (3,4 ethyldioxythiophene) (PEDOT), polythiophene (PTh), and their derivatives have been widely used as active materials in gas sensing due to their unique electrical conductivity, redox property, and good operation at room temperature. Mixing these two materials exhibited better sensing performance compared to pure graphene and conductive polymers. This may be attributed to the large specific surface area of the nanocomposites, and also the synergistic effect between graphene and conducting polymers. A variety of graphene and conducting polymer nanocomposite preparation methods such as in situ polymerization, electropolymerization, solution mixing, self-assembly approach, etc. have been reported and utilization of these nanocomposites as sensing materials has been proven effective in improving the performance of gas sensors. Review of the recent research efforts and developments in the fabrication and application of graphene and conducting polymer nanocomposites for gas sensing is the aim of this review paper.
Collapse
Affiliation(s)
- Golnoush Zamiri
- Centre of Advanced Materials, Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - A. S. M. A. Haseeb
- Centre of Advanced Materials, Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
22
|
Yucesoy DT, Khatayevich D, Tamerler C, Sarikaya M. Rationally designed chimeric solid‐binding peptides for tailoring solid interfaces. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Deniz T. Yucesoy
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
| | - Dimitry Khatayevich
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
| | - Candan Tamerler
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
- Department of Mechanical Engineering Bioengineering Program Institute for Bioengineering Research University of Kansas Lawrence Lawrence KS USA
| | - Mehmet Sarikaya
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
- Department of Chemical Engineering University of Washington Seattle WA USA
- Department of Oral Health Sciences University of Washington Seattle WA USA
| |
Collapse
|
23
|
Kanyong P, Krampa FD, Aniweh Y, Awandare GA. Polydopamine-functionalized graphene nanoplatelet smart conducting electrode for bio-sensing applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Electroanalysis of isoniazid and rifampicin: Role of nanomaterial electrode modifiers. Biosens Bioelectron 2019; 146:111731. [PMID: 31614253 DOI: 10.1016/j.bios.2019.111731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
Thanks to operational simplicity, speediness, possibility of miniaturization and real-time nature, electrochemical sensing is a supreme alternative for non-electrochemical methodologies in drug quantification. This review, highlights different nanotech-based sensory designs for electroanalysis of isoniazid and rifampicin, the most important medicines for patients with tuberculosis. We first, concisely mention analyses with bare electrodes, associated impediments and inspected possible strategies and then critically review the last two decades works with focus on different nano-scaled electrode modifiers. We organized and described the materials engaged in several categories: Surfactants modifiers, polymeric modifiers, metallic nanomaterials, carbon based nano-modifiers (reduced graphene oxide, multi-walled carbon nanotubes, ordered mesoporous carbon) and a large class of multifarious nano composites-based sensors and biosensors. The main drawbacks and superiorities associated with each array as well as the current trend in the areas is attempted to discuss. Summary of 79 employed electrochemical approaches for analysis of isoniazid and rifampicin has also been presented.
Collapse
|
25
|
A Graphene-Based Glycan Biosensor for Electrochemical Label-Free Detection of a Tumor-Associated Antibody. SENSORS 2019; 19:s19245409. [PMID: 31818011 PMCID: PMC6960651 DOI: 10.3390/s19245409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
The study describes development of a glycan biosensor for detection of a tumor-associated antibody. The glycan biosensor is built on an electrochemically activated/oxidized graphene screen-printed electrode (GSPE). Oxygen functionalities were subsequently applied for covalent immobilization of human serum albumin (HSA) as a natural nanoscaffold for covalent immobilization of Thomsen-nouvelle (Tn) antigen (GalNAc-O-Ser/Thr) to be fully available for affinity interaction with its analyte-a tumor-associated antibody. The step by step building process of glycan biosensor development was comprehensively characterized using a battery of techniques (scanning electron microscopy, atomic force microscopy, contact angle measurements, secondary ion mass spectrometry, surface plasmon resonance, Raman and energy-dispersive X-ray spectroscopy). Results suggest that electrochemical oxidation of graphene SPE preferentially oxidizes only the surface of graphene flakes within the graphene SPE. Optimization studies revealed the following optimal parameters: activation potential of +1.5 V vs. Ag/AgCl/3 M KCl, activation time of 60 s and concentration of HSA of 0.1 g L-1. Finally, the glycan biosensor was built up able to selectively and sensitively detect its analyte down to low aM concentration. The binding preference of the glycan biosensor was in an agreement with independent surface plasmon resonance analysis.
Collapse
|
26
|
A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal Chim Acta 2019; 1083:110-118. [DOI: 10.1016/j.aca.2019.07.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
27
|
Mosammam MK, Ganjali MR, Habibi-Kool-Gheshlaghi M, Faridbod F. Electroanalysis of Catecholamine Drugs using Graphene Modified Electrodes. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180917113206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
Catecholamine drugs are a family of electroactive pharmaceutics, which are
widely analyzed through electrochemical methods. However, for low level online determination and
monitoring of these compounds, which is very important for clinical and biological studies, modified
electrodes having high signal to noise ratios are needed. Numerous materials including nanomaterials
have been widely used as electrode modifies for these families during the years. Among them, graphene
and its family, due to their remarkable properties in electrochemistry, were extensively used in
modification of electrochemical sensors.
Objective:
In this review, working electrodes which have been modified with graphene and its derivatives
and applied for electroanalyses of some important catecholamine drugs are considered.
Collapse
Affiliation(s)
- Mahya Karami Mosammam
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mona Habibi-Kool-Gheshlaghi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Meng Y, Song Y, Guo C, Cui B, Ji H, Ma Z. Tailoring the dimensionality of carbon nanostructures as highly electrochemical supports for detection of carcinoembryonic antigens. RSC Adv 2019; 9:13431-13443. [PMID: 35519587 PMCID: PMC9063882 DOI: 10.1039/c9ra01847f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022] Open
Abstract
Partially- and fully-unzipped nitrogen-doped carbon nanotubes (NCNTs) were prepared by unzipping pristine NCNTs and three carbon nanostructures were applied to support Au nanoparticles (AuNPs) to form nanocomposites (Au/NCNTs, Au/PU-NCNTs, and Au/FU-NCNTs). The electrochemical behavior and the electrocatalytic activities of the nanocomposite-modified electrodes were examined. The oxygen functional groups, doped N content, and AuNP loaded concentrations are dependent on the unzipping-degree and then affect the electrochemical response and electrocatalytic performance of the electrodes. Besides, the three nanocomposites were also used for the immobilization of carcinoembryonic antigen (CEA) aptamer strands and applied for the detection of CEA. The Au/FU-NCNTs possess the optimal electrocatalytic activity and biosensing performance for the biomolecules and CEA, which is attributed to the maximum loaded AuNPs, the largest specific surface areas and the most active sites. The Au/FU-NCNT-based electrochemical aptasensor exhibits high sensitivity with a low detection limit of 6.84 pg mL-1 within a broad linear range of CEA concentration from 0.01 to 10 ng mL-1. All of these results indicate that the Au/FU-NCNTs may be a potential support for construction of aptasensors with high electrochemical effect and can be employed in the fields of biosensing or biomedical diagnosis.
Collapse
Affiliation(s)
- Yubo Meng
- College of Mechanical Engineering, Henan University of Engineering No. 1, Xianghe Road, Longhu Town Zhengzhou Henan 451191 P. R. China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Chuanpan Guo
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Bingbing Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Hongfei Ji
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Zongzheng Ma
- College of Mechanical Engineering, Henan University of Engineering No. 1, Xianghe Road, Longhu Town Zhengzhou Henan 451191 P. R. China
| |
Collapse
|
29
|
Teimuri-Mofrad R, Abbasi H, Hadi R. Graphene oxide-grafted ferrocene moiety via ring opening polymerization (ROP) as a supercapacitor electrode material. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Vinodhkumar G, Ramya R, Potheher IV, Vimalan M, Peter AC. Synthesis of reduced graphene oxide/Co3O4 nanocomposite electrode material for sensor application. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03777-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Jakubow‐Piotrowska K, Kowalewska B. Spatial Architecture of Modified Carbon Nanotubes/Electrochemically Reduced Graphene Oxide Nanomaterial for Fast Electron Transfer. Application in Glucose Biosensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201800773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Barbara Kowalewska
- Department of ChemistryUniversity of Warsaw Pasteura 1 PL-02-093 Warsaw Poland
| |
Collapse
|
32
|
Abstract
Background:
Graphene and its derivatives, as most promising carbonic nanomaterials have
been widely used in design and making electrochemical sensors and biosensors. Graphene quantum dots
are one of the members of this family which have been mostly known as fluorescent nanomaterials and
found extensive applications due to their remarkable optical properties. Quantum confinement and edge
effects in their structures also cause extraordinary electrochemical properties.
Objective:
Recently, graphene quantum dots besides graphene oxides and reduced graphene oxides have
been applied for modification of the electrodes too and exposed notable effects in electrochemical responses.
Here, we are going to consider these significant effects through reviewing some of the recent
published works.
Collapse
Affiliation(s)
- Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Afsaneh L. Sanati
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
33
|
Hydrogel-Graphene Oxide Nanocomposites as Electrochemical Platform to Simultaneously Determine Dopamine in Presence of Ascorbic Acid Using an Unmodified Glassy Carbon Electrode. JOURNAL OF COMPOSITES SCIENCE 2018. [DOI: 10.3390/jcs3010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The detection of dopamine, an important neurotransmitter in the central nervous system, is relevant because low levels of dopamine can cause brain disorders. Here, a novel electrochemical platform made of a hydrogel–graphene oxide nanocomposite was employed to electrochemically determine simultaneously dopamine (DA) and ascorbic acid (AA). Unlike previous work, where the base electrode is modified, the active material (graphene oxide, GO) was dispersed in the hydrogel matrix, making an active nanocomposite where the electrochemical detection occurs. The GO, hydrogel and nanocomposite synthesis is described. Dynamic Light Scattering, UV-visible and FTIR spectroscopies showed that the synthesized GO nanoparticles present 480 nm of diagonal size and a few sheets in height. Moreover, the polymer swelling, the adsorption capacity and the release kinetic of DA and AA were evaluated. The nanocomposite showed lower swelling capacity, higher DA partition coefficient and faster DA release rate than in the hydrogel. The electrochemical measurement proved that both materials can be employed to determine DA and AA. Additionally, the nanocomposite platform allowed the simultaneous determination of both molecules showing two well separated anodic peaks. This result demonstrates the importance of the incorporation of the nanomaterial inside of the hydrogel and proves that the nanocomposite can be used as a platform in an electrochemical device to determinate DA using an unmodified glassy carbon electrode.
Collapse
|
34
|
Ning J, He Q, Luo X, Wang M, Liu D, Wang J, Liu J, Li G. Rapid and Sensitive Determination of Vanillin Based on a Glassy Carbon Electrode Modified with Cu₂O-Electrochemically Reduced Graphene Oxide Nanocomposite Film. SENSORS 2018; 18:s18092762. [PMID: 30135387 PMCID: PMC6164793 DOI: 10.3390/s18092762] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 12/25/2022]
Abstract
A facile cuprous oxide nanoparticles functionalized electro-reduced graphene oxide modified glassy carbon electrode (denoted as Cu2O NPs-ERGO/GCE) was fabricated via a simple physical adsorption and electrochemical reduction approach. Cyclic voltammetry and second-order derivative linear scan voltammetry were used to investigate the electrocatalysis oxidation of vanillin on the Cu2O NPs-ERGO/GCE. The compound yielded a well-defined voltammetric response in 0.1 M H2SO4 at 0.916 V (vs. saturated calomel electrode (SCE)). A linear calibration graph was obtained in the concentration range of 0.1 μM to 10 μM and 10 μM to 100 μM, while the detection limit (S/N = 3) is 10 nM. In addition, the Cu2O NPs-ERGO/GCE presented well anti-interference ability, stability, and reproducibility. It was used to detect vanillin sensitively and rapidly in different commercial food products, and the results were in agreement with the values obtained by high performance liquid chromatography.
Collapse
Affiliation(s)
- Jingheng Ning
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Quanguo He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Xin Luo
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Min Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Donglin Liu
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Jianhui Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Jun Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
35
|
Zhou C, Chen J, Dang X, Ma X, Ai Y, Huang J, Chen H. A Selective Joint Determination of Salicylic Acid in Actinidia chinensis Combining a Molecularly Imprinted Monolithic Column and a Graphene Oxide Modified Electrode. ANAL SCI 2018; 34:823-829. [PMID: 29998965 DOI: 10.2116/analsci.18p025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new combination between selective polymer monolith microextraction (PMME) and sensitive differential pulse voltammetry (DPV) was developed for the determination of the phytohormone salicylic acid (SA) in Actinidia chinensis. A molecularly imprinted monolithic column (MIMC) thermally in-situ polymerized in a micropipette tip by using SA as a template, 4-vinyl pyridine (4-VP) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker in the mixed porogen of toluene and dodecanol, was employed for the microextraction of SA. The prepared MIMC was characterized by a Fourier transform infrared spectrometer (FI-TR), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). The results confirmed the binary continuous structure of the porous network. The extracted SA was determined by DPV on a graphene oxide (GO) modified electrode. The joint conditions between MIMC and DPV were investigated practically. Under the optimum conditions, SA could be determined selectively and sensitively in a linear range from 0.1 to 60.0 μg g-1. The limit of detection was 0.03 μg g-1 and the recoveries were between 86.2 and 105.2%. The proposed joint method was successfully used to determine SA in Actinidia chinensis.
Collapse
Affiliation(s)
- Can Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University
| | - Jianxiong Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment
| | - Xueping Dang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment
| | - Xiwen Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment
| | - Youhong Ai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University
| | - Jianlin Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University
| | - Huaixia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University
| |
Collapse
|
36
|
Munteanu RE, Stǎnicǎ L, Gheorghiu M, Gáspár S. Measurement of the Extracellular pH of Adherently Growing Mammalian Cells with High Spatial Resolution Using a Voltammetric pH Microsensor. Anal Chem 2018; 90:6899-6905. [PMID: 29732885 DOI: 10.1021/acs.analchem.8b01124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.
Collapse
Affiliation(s)
- Raluca-Elena Munteanu
- International Centre of Biodynamics , 1B Intrarea Portocalelor , 060101 Bucharest , Romania
| | - Luciana Stǎnicǎ
- International Centre of Biodynamics , 1B Intrarea Portocalelor , 060101 Bucharest , Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics , 1B Intrarea Portocalelor , 060101 Bucharest , Romania
| | - Szilveszter Gáspár
- International Centre of Biodynamics , 1B Intrarea Portocalelor , 060101 Bucharest , Romania
| |
Collapse
|
37
|
Liu C, Xu Z, Liu L. Covalent Bonded Graphene/Neutral Red Nanocomposite Prepared by One-step Electrochemical Method and its Electrocatalytic Properties Toward Uric Acid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chang Liu
- College of Pharmacy; Jinzhou Medical University, Jinzhou; 121001 P. R. China
| | - Zhikun Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education; School of Physics and Electronic Engineering, Harbin Normal University, Harbin; 150025 P. R. China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun; 130022 P. R. China
| |
Collapse
|
38
|
Deshmukh MA, Celiesiute R, Ramanaviciene A, Shirsat MD, Ramanavicius A. EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.131] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Enzyme–Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications. Methods Enzymol 2018; 609:293-333. [DOI: 10.1016/bs.mie.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Pérez-Blanco FO, Hernández-Escobar CA, Vega-Rios A, Flores-Gallardo SG, Zaragoza-Contreras EA. Polyaniline precursor with surfactant–monomer function for the synthesis of graphite nanosheet/polyaniline composites. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2161-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing. ACS Sens 2017; 2:616-620. [PMID: 28723173 DOI: 10.1021/acssensors.7b00066] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Graphene as a transducer material has produced some of the best-performing sensing approaches to date opening the door toward integrated miniaturized all-carbon point-of-care devices. Addressing this opportunity, laser-scribed graphene (LSG) electrodes are demonstrated here as highly sensitive and reliable biosensor transducers in blood serum analysis. These flexible electrodes with large electrochemical surface areas were fabricated using a direct-write laser process on polyimide foils. A universal immobilization approach is established by anchoring 1-pyrenebutyric acid to the graphene and subsequently covalently attaching an aptamer against the coagulation factor thrombin as an exemplary bioreceptor to the carboxyl groups. The resulting biosensor displays extremely low detection limits of 1 pM in buffer and 5 pM in the complex matrix of serum.
Collapse
Affiliation(s)
- Christoph Fenzl
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Pranati Nayak
- Materials Science & Engineering, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Thomas Hirsch
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Husam N. Alshareef
- Materials Science & Engineering, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Antje J. Baeumner
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
42
|
Ariani Z, Honarmand E, Mostaanzadeh H, Motaghedifard M, Behpour M. Electroanalytical Measurement of TEDA (Triethylenediamine) in the Masks of War. J ELECTROCHEM SCI TE 2017. [DOI: 10.33961/jecst.2017.8.1.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Zhu C, Du D, Lin Y. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron 2017; 89:43-55. [DOI: 10.1016/j.bios.2016.06.045] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
|
44
|
Abellán-Llobregat A, Vidal L, Rodríguez-Amaro R, Berenguer-Murcia Á, Canals A, Morallón E. Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.132] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Dinesh B, Veeramani V, Chen SM, Saraswathi R. In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Smarzewska S, Metelka R, Festinger N, Guziejewski D, Ciesielski W. Comparative Study on Electroanalysis of Fenthion Using Silver Amalgam Film Electrode and Glassy Carbon Electrode Modified with Reduced Graphene Oxide. ELECTROANAL 2017. [DOI: 10.1002/elan.201600710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sylwia Smarzewska
- Department of Inorganic and Analytical Chemistry; Faculty of Chemistry, University of Lodz; Poland
| | - Radovan Metelka
- Department of Analytical Chemistry; Faculty of Chemical Technology, University of Pardubice; Czech Republic
| | - Natalia Festinger
- Department of Inorganic and Analytical Chemistry; Faculty of Chemistry, University of Lodz; Poland
| | - Dariusz Guziejewski
- Department of Inorganic and Analytical Chemistry; Faculty of Chemistry, University of Lodz; Poland
| | - Witold Ciesielski
- Department of Inorganic and Analytical Chemistry; Faculty of Chemistry, University of Lodz; Poland
| |
Collapse
|
47
|
Devi P, Sharma C, Kumar P, Kumar M, Bansod BKS, Nayak MK, Singla ML. Selective electrochemical sensing for arsenite using rGO/Fe 3O 4 nanocomposites. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:85-94. [PMID: 27021430 DOI: 10.1016/j.jhazmat.2016.02.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/12/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Herein, we report rGO/Fe3O4 nanocomposites (NCs) free from noble metals, synthesized by facile one step chemical reduction method, for electrochemical detection of arsenite in water by square wave anodic stripping Voltammetry (SWASV). The synthesized NCs were characterized for its optical, morphological and structural properties. The NCs modified glassy carbon (GCE), NCs/GCE, electrodes showed a higher sensitivity (0.281μA/ppb) and lower LOD (0.12ppb) under optimized experimental conditions. The proposed NCs/GCE electrodes show no interference towards arsenite species in the presence of common cationic interferants, namely, Cu(II), Pb(II), Ni(II), Co(II), Cd(II), Cr(II), Zn(II), etc. In addition, the proposed electrode demonstrates a good stability, reproducibility and potential practical application in electrochemical detection of arsenite.
Collapse
Affiliation(s)
- Pooja Devi
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (AcSIR), New Delhi, India; Central Scientific Instruments Organisation, Sector-30 C, Chandigarh 160030, India.
| | - Chhavi Sharma
- Central Scientific Instruments Organisation, Sector-30 C, Chandigarh 160030, India
| | - Praveen Kumar
- Central Scientific Instruments Organisation, Sector-30 C, Chandigarh 160030, India
| | - Mahesh Kumar
- Division of Physics of Energy Harvesting, National Physical Laboratory, New Delhi, India
| | - Baban K S Bansod
- Central Scientific Instruments Organisation, Sector-30 C, Chandigarh 160030, India.
| | - Manoj K Nayak
- Central Scientific Instruments Organisation, Sector-30 C, Chandigarh 160030, India
| | - Madan L Singla
- Central Scientific Instruments Organisation, Sector-30 C, Chandigarh 160030, India
| |
Collapse
|
48
|
Determination of the activity of superoxide dismutase using a glassy carbon electrode modified with ferrocene imidazolium salts and hydroxy-functionalized graphene. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2018-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Kudur Jayaprakash G, Casillas N, Astudillo-Sánchez PD, Flores-Moreno R. Role of Defects on Regioselectivity of Nano Pristine Graphene. J Phys Chem A 2016; 120:9101-9108. [PMID: 27797503 DOI: 10.1021/acs.jpca.6b08810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gururaj Kudur Jayaprakash
- Departamento
de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García
Barragán 1421, Guadalajara, Jalisco, C.P. 44430, Mexico
| | - Norberto Casillas
- Departamento
de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad Guadalajara, Boulevard Marcelino García
Barragán 1421, Guadalajara, Jalisco, C.P. 44430, Mexico
| | - Pablo D. Astudillo-Sánchez
- Departamento
de Ingenierías, Centro Universitario de Tonalá, Universidad Guadalajara, Av. Nuevo Periférico No. 555, Ejido San
José Tatepozco, Tonalá, Jalisco, C.P. 48525, Mexico
| | - Roberto Flores-Moreno
- Departamento
de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad Guadalajara, Boulevard Marcelino García
Barragán 1421, Guadalajara, Jalisco, C.P. 44430, Mexico
| |
Collapse
|
50
|
Noorbakhsh A, Alnajar AIK. Antifouling properties of reduced graphene oxide nanosheets for highly sensitive determination of insulin. Microchem J 2016. [DOI: 10.1016/j.microc.2016.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|