1
|
Ivanov A, Shamagsumova R, Larina M, Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer's Disease Drug Determination. BIOSENSORS 2024; 14:93. [PMID: 38392012 PMCID: PMC10886970 DOI: 10.3390/bios14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Neurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed.
Collapse
Affiliation(s)
- Alexey Ivanov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Rezeda Shamagsumova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Marina Larina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia;
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
2
|
Mazzaracchio V, Serani A, Fiore L, Moscone D, Arduini F. All-solid state ion-selective carbon black-modified printed electrode for sodium detection in sweat. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. BIOSENSORS-BASEL 2021; 11:bios11090328. [PMID: 34562920 PMCID: PMC8467589 DOI: 10.3390/bios11090328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
In the last 10 years, paper-based electrochemical biosensors have gathered attention from the scientific community for their unique advantages and sustainability vision. The use of papers in the design the electrochemical biosensors confers to these analytical tools several interesting features such as the management of the solution flow without external equipment, the fabrication of reagent-free devices exploiting the porosity of the paper to store the reagents, and the unprecedented capability to detect the target analyte in gas phase without any sampling system. Furthermore, cost-effective fabrication using printing technologies, including wax and screen-printing, combined with the use of this eco-friendly substrate and the possibility of reducing waste management after measuring by the incineration of the sensor, designate these type of sensors as eco-designed analytical tools. Additionally, the foldability feature of the paper has been recently exploited to design and fabricate 3D multifarious biosensors, which are able to detect different target analytes by using enzymes, antibodies, DNA, molecularly imprinted polymers, and cells as biocomponents. Interestingly, the 3D structure has recently boosted the self-powered paper-based biosensors, opening new frontiers in origami devices. This review aims to give an overview of the current state origami paper-based biosensors, pointing out how the foldability of the paper allows for the development of sensitive, selective, and easy-to-use smart and sustainable analytical devices.
Collapse
|
4
|
Abdelrahman MS, Khattab TA, Kamel S. Hydrazone‐Based Supramolecular Organogel for Selective Chromogenic Detection of Organophosphorus Nerve Agent Mimic. ChemistrySelect 2021. [DOI: 10.1002/slct.202004850] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Meram S. Abdelrahman
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| | - Tawfik A. Khattab
- Dyeing Printing and Auxiliaries Department National Research Centre Cairo 12622 Egypt
| | - Samir Kamel
- Chemical Industries Research Division National Research Centre Cairo 12622 Egypt
| |
Collapse
|
5
|
Roda A, Arduini F, Mirasoli M, Zangheri M, Fabiani L, Colozza N, Marchegiani E, Simoni P, Moscone D. A challenge in biosensors: Is it better to measure a photon or an electron for ultrasensitive detection? Biosens Bioelectron 2020; 155:112093. [DOI: 10.1016/j.bios.2020.112093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
|
6
|
Cinti S, Minotti C, Moscone D, Palleschi G, Arduini F. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens Bioelectron 2017; 93:46-51. [DOI: 10.1016/j.bios.2016.10.091] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
|
7
|
Arduini F, Cinti S, Scognamiglio V, Moscone D, Palleschi G. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Anal Chim Acta 2017; 959:15-42. [PMID: 28159104 DOI: 10.1016/j.aca.2016.12.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices.
Collapse
Affiliation(s)
- Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems "INBB", Viale Medaglie d'Oro, 305, Rome, Italy.
| | - Stefano Cinti
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Via Salaria Km 29.300, 00015, Monterotondo, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems "INBB", Viale Medaglie d'Oro, 305, Rome, Italy
| | - Giuseppe Palleschi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems "INBB", Viale Medaglie d'Oro, 305, Rome, Italy
| |
Collapse
|
8
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
9
|
Amine A, Arduini F, Moscone D, Palleschi G. Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 2015; 76:180-94. [PMID: 26227311 DOI: 10.1016/j.bios.2015.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/28/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
Abstract
Enzyme inhibitors like drugs and pollutants are closely correlated to human and environmental health, thus their monitoring is of paramount importance in analytical chemistry. Enzymatic biosensors represent cost-effective, miniaturized and easy to use devices; particularly biosensors based on enzyme inhibition are useful analytical tools for fast screening and monitoring of inhibitors. The present review will highlight the research carried out in the last 9 years (2006-2014) on biosensors based on enzyme inhibition. We underpin the recent advances focused on the investigation in new theoretical approachs and in the evaluation of biosensor performances for reversible and irreversible inhibitors. The use of nanomaterials and microfluidic systems as well as the applications of the various biosensors in real samples is critically reviewed, demonstrating that such biosensors allow the development of useful devices for a fast and reliable alarm system.
Collapse
Affiliation(s)
- A Amine
- Faculty of Sciences and Techniques, University Hassan II of Casablanca, Morocco.
| | - F Arduini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - D Moscone
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - G Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Consorzio Interuniversitario Biostrutture e Biosistemi "INBB", Viale Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
10
|
Automatable Flow System for Paraoxon Detection with an Embedded Screen-Printed Electrode Tailored with Butyrylcholinesterase and Prussian Blue Nanoparticles. CHEMOSENSORS 2015. [DOI: 10.3390/chemosensors3020129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
A choline oxidase amperometric bioassay for the detection of mustard agents based on screen-printed electrodes modified with Prussian Blue nanoparticles. SENSORS 2015; 15:4353-67. [PMID: 25688587 PMCID: PMC4367415 DOI: 10.3390/s150204353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022]
Abstract
In this work a novel bioassay for mustard agent detection was proposed. The bioassay is based on the capability of these compounds to inhibit the enzyme choline oxidase. The enzymatic activity, which is correlated to the mustard agents, was electrochemically monitored measuring the enzymatic product, hydrogen peroxide, by means of a screen-printed electrode modified with Prussian Blue nanoparticles. Prussian Blue nanoparticles are able to electrocatalyse the hydrogen peroxide concentration reduction at low applied potential (-50 mV vs. Ag/AgCl), thus allowing the detection of the mustard agents with no electrochemical interferences. The suitability of this novel bioassay was tested with the nitrogen mustard simulant bis(2-chloroethyl)amine and the sulfur mustard simulants 2-chloroethyl ethyl sulfide and 2-chloroethyl phenyl sulfide. The bioassay proposed in this work allowed the detection of mustard agent simulants with good sensitivity and fast response, which are excellent premises for the development of a miniaturised sensor well suited for an alarm system in case of terrorist attacks.
Collapse
|
12
|
Baker PA, Goltz MN, Schrand AM, Yoon DY, Kim DS. Organophosphate vapor detection on gold electrodes using peptide nanotubes. Biosens Bioelectron 2014; 61:119-23. [DOI: 10.1016/j.bios.2014.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
13
|
Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1370-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Liu Y, Bonizzoni M. A Supramolecular Sensing Array for Qualitative and Quantitative Analysis of Organophosphates in Water. J Am Chem Soc 2014; 136:14223-9. [DOI: 10.1021/ja507905r] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuanli Liu
- Department
of Chemistry, The University of Alabama, P.O. Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Marco Bonizzoni
- Department
of Chemistry, The University of Alabama, P.O. Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
15
|
Govindhan M, Adhikari BR, Chen A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 2014. [DOI: 10.1039/c4ra10399h] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the development of nanomaterials-based electrochemical sensors for environmental monitoring and food safety applications are assessed.
Collapse
Affiliation(s)
| | | | - Aicheng Chen
- Department of Chemistry
- Lakehead University
- Thunder Bay, Canada
| |
Collapse
|
16
|
Arduini F, Amine A. Biosensors based on enzyme inhibition. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:299-326. [PMID: 23934362 DOI: 10.1007/10_2013_224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present chapter describes the use of biosensors based on enzyme inhibition as analytical tools. The parameters that affect biosensor sensitivity, such as the amount of immobilized enzyme, incubation time, and immobilization type, were critically evaluated, highlighting how the knowledge of enzymatic kinetics can help researchers optimize the biosensor in an easy and fast manner. The applications of these biosensors demonstrating their wide application have been reported. The objective of this survey is to give a critical description of biosensors based on enzyme inhibition, of their assembly, and their application in the environmental, food, and pharmaceutical fields.
Collapse
Affiliation(s)
- Fabiana Arduini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy,
| | | |
Collapse
|