1
|
Cheng S, Wang F, Zuo S, Zhang F, Wang Q, He P. Simultaneous Detection of Biomarkers in Urine Using a Multicalibration Potentiometric Sensing Array Combined with a Portable Analyzer. Anal Chem 2024. [PMID: 39152903 DOI: 10.1021/acs.analchem.4c03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Domestic monitoring devices make real-time and long-term health monitoring possible, allowing people to track their health status regularly. Uric acid (UA), creatinine, and urea in urine are three important biomarkers for various diseases, especially kidney diseases. This work proposed a 10-channel potentiometric sensing array containing a UA electrode group, a creatinine electrode group, a urea electrode group, a pH electrode group, and one pair of reference channels, which could be connected with a portable potentiometric analyzer, realizing the simultaneous detection of UA, creatinine, urea, and pH in urine. The prepared Pt/carbon nanotubes (CNTs)-uricase, creatinine deiminase, Au@urease, and polyaniline were employed as the sensing materials, showing responses to four targets with high sensitivity and selectivity. To improve the accuracy of domestic monitoring, a calibration channel was integrated into each electrode group to calibrate the basic potential of the sensing channels, and the influences of pH and temperature on the responses were investigated through the pH electrode group and an external temperature probe to calibrate the slope and intercept. With the preset of the deduced calibration parameters and computational formula for the four targets in the analyzer in Lab Mode, the concentrations of UA, creatinine, and urea and the pH of the human urine samples were directly displayed on the screen of the analyzer in Practical Mode. The agreement of these results with those obtained from commercial kits and pH meters reveals the high potential of these methods for developing domestic devices to facilitate health monitoring.
Collapse
Affiliation(s)
- Shengqi Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Fan Wang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
| | - Shaohua Zuo
- School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
2
|
Clua Estivill M, Baez JF, Blondeau P, Andrade FJ. Electrochemical Pixels: Semi-open electrochemical cells with a vertically stacked design. Biosens Bioelectron 2024; 246:115877. [PMID: 38042050 DOI: 10.1016/j.bios.2023.115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
A novel electrochemical cell design in a vertically stacked configuration is presented. Through a layered structure using a top macroporous working electrode, a polyelectrolyte, and a bottom metallic conductor a standalone electrochemical cell with an internal reference electrode is built. This sensor allows monitoring an electrochemical property of an external solution with only one electrode in direct contact with the sample. Using paper-based platinum electrode for the porous top electrode and Nafion as polyelectrolyte material, the self-powered detection of hydrogen peroxide is performed. The system can be operated in multiple modes. In a capacitive way, the open circuit potential is measured. Alternatively, in a self-powered current mode, the system emulates a fuel cell. Additionally, a potential-current switched mode is also demonstrated. Because of this unique design and operational features this sensor is considered as an electrochemical pixel. To further demonstrate the advantages of this device, the detection of glucose is performed by building an array of sensors using a single back (reference) electrode and multiple working electrodes. These results lay the groundwork for the development of a new generation of simple and low cost biochemical sensors and electrochemical sensing arrays.
Collapse
Affiliation(s)
- Marc Clua Estivill
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Jhonattan F Baez
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Pascal Blondeau
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Francisco J Andrade
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
3
|
Aghababaie M, Foroushani ES, Changani Z, Gunani Z, Mobarakeh MS, Hadady H, Khedri M, Maleki R, Asadnia M, Razmjou A. Recent Advances In the development of enzymatic paper-based microfluidic biosensors. Biosens Bioelectron 2023; 226:115131. [PMID: 36804663 DOI: 10.1016/j.bios.2023.115131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Using microfluidic paper-based analytical devices has attracted considerable attention in recent years. This is mainly due to their low cost, availability, portability, simple design, high selectivity, and sensitivity. Owing to their specific substrates and catalytic functions, enzymes are the most commonly used bioactive agents in μPADs. Enzymatic μPADs are various in design, fabrication, and detection methods. This paper provides a comprehensive review of the development of enzymatic μPADs by considering the methods of detection and fabrication. Particularly, techniques for mass production of these enzymatic μPADs for use in different fields such as medicine, environment, agriculture, and food industries are critically discussed. This paper aims to provide a critical review of μPADs and discuss different fabrication methods as the central parts of the μPADs production categorized into printable and non-printable methods. In addition, state-of-the-art technologies such as fully printed enzymatic μPADs for rapid, low-cost, and mass production and improvement have been considered.
Collapse
Affiliation(s)
- Marzieh Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Elnaz Sarrami Foroushani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Zinat Changani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Zahra Gunani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, FInland.
| | - Mahsa Salehi Mobarakeh
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Mechanical and Aerospace Engineering, Carleton University, Colonel by Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hanieh Hadady
- Cell Science Research Centre, Royan Institute of Biotechnology, Isfahan, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Parshina A, Yelnikova A, Kolganova T, Titova T, Yurova P, Stenina I, Bobreshova O, Yaroslavtsev A. Perfluorosulfonic Acid Membranes Modified with Polyaniline and Hydrothermally Treated for Potentiometric Sensor Arrays for the Analysis of Combination Drugs. MEMBRANES 2023; 13:311. [PMID: 36984697 PMCID: PMC10058550 DOI: 10.3390/membranes13030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
A novel potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. The potentiometric sensors (Donnan potential (DP) was used as an analytical signal) with an inner reference solution were based on perfluorosulfonic acid (PFSA) membranes modified with polyaniline (PANI) by in situ oxidative polymerization. The order of the membrane treatment with precursor solutions and their concentrations was varied. Additionally, the PFSA/PANI composite membranes were hydrothermally treated at 120 °C. The influence of the preparation conditions and the composition of membranes on their sorption and transport properties was studied. We estimated the factors affecting the sensitivity of DP-sensors based on the PFSA/PANI composite membranes to ions of sulfamethoxazole and trimethoprim simultaneously presented in solutions. A developed multisensory system provided a simultaneous determination of two analytes in aqueous solutions without preliminary separation, derivatization, or probe treatment. The re-estimation of the calibration characteristics of the multisensory system did not show a statistically significant difference after a year of its use. The limits of detection of sulfamethoxazole and trimethoprim were 1.4 × 10-6 and 8.5 × 10-8 M, while the relative errors of their determination in the combination drug were 4 and 5% (at 5 and 6% relative standard deviation), respectively.
Collapse
Affiliation(s)
- Anna Parshina
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Anastasia Yelnikova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Tatyana Kolganova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Tatyana Titova
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Polina Yurova
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Olga Bobreshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| |
Collapse
|
5
|
Apel PY, Velizarov S, Volkov AV, Eliseeva TV, Nikonenko VV, Parshina AV, Pismenskaya ND, Popov KI, Yaroslavtsev AB. Fouling and Membrane Degradation in Electromembrane and Baromembrane Processes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Recent Advances in Electrochemical Sensing of Hydrogen Peroxide (H 2O 2) Released from Cancer Cells. NANOMATERIALS 2022; 12:nano12091475. [PMID: 35564184 PMCID: PMC9103167 DOI: 10.3390/nano12091475] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Cancer is by far the most common cause of death worldwide. There are more than 200 types of cancer known hitherto depending upon the origin and type. Early diagnosis of cancer provides better disease prognosis and the best chance for a cure. This fact prompts world-leading scientists and clinicians to develop techniques for the early detection of cancer. Thus, less morbidity and lower mortality rates are envisioned. The latest advancements in the diagnosis of cancer utilizing nanotechnology have manifested encouraging results. Cancerous cells are well known for their substantial amounts of hydrogen peroxide (H2O2). The common methods for the detection of H2O2 include colorimetry, titration, chromatography, spectrophotometry, fluorimetry, and chemiluminescence. These methods commonly lack selectivity, sensitivity, and reproducibility and have prolonged analytical time. New biosensors are reported to circumvent these obstacles. The production of detectable amounts of H2O2 by cancerous cells has promoted the use of bio- and electrochemical sensors because of their high sensitivity, selectivity, robustness, and miniaturized point-of-care cancer diagnostics. Thus, this review will emphasize the principles, analytical parameters, advantages, and disadvantages of the latest electrochemical biosensors in the detection of H2O2. It will provide a summary of the latest technological advancements of biosensors based on potentiometric, impedimetric, amperometric, and voltammetric H2O2 detection. Moreover, it will critically describe the classification of biosensors based on the material, nature, conjugation, and carbon-nanocomposite electrodes for rapid and effective detection of H2O2, which can be useful in the early detection of cancerous cells.
Collapse
|
7
|
Walker NL, Dick JE. Versatile potentiometric metabolite sensing without dioxygen interference. Biosens Bioelectron 2022; 201:113888. [PMID: 35032843 PMCID: PMC8851596 DOI: 10.1016/j.bios.2021.113888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/02/2022]
Abstract
The field of electrochemical biosensors has been dominated by amperometric and voltammetric sensors; however, these are limited greatly in their signal dependence on electrode size. Open circuit potentiometric sensors are emerging as an alternative due to their signal insensitivity to electrode size. Here, we present a second-generation biosensor that uses a modified chitosan hydrogel to entrap a dehydrogenase or other oxidoreductase enzyme of interest. The chitosan is modified with a desired electron mediator such that in the presence of the analyte, the enzyme will oxidize or reduce the mediator, thus altering the measured interfacial potential. Using the above design, we demonstrate a swift screening method for appropriate enzyme-mediator pairs based on open circuit potentiometry, as well as the efficacy of the biosensor design using two dehydrogenase enzymes (FADGDH and ADH) and peroxidase. Using 1,2-naphthoquinone as the mediator for FADGDH, dynamic ranges from 0.1 to 50 mM glucose are achieved. We additionally demonstrate the ease of fabrication and modification, a lifetime of ≥28 days, insensitivity to interferents, miniaturization to the microscale, and sensor efficacy in the presence of the enzyme's natural cofactor. These results forge a foundation for the generalized use of potentiometric biosensors for a wide variety of analytes within biologically-relevant systems where oxygen can be an interferent.
Collapse
|
8
|
Qi L, Liang R, Jiang T, Qin W. Anti-fouling polymeric membrane ion-selective electrodes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Borràs‐Brull M, Blondeau P, Riu J. Characterization and Validation of a Platinum Paper‐based Potentiometric Sensor for Glucose Detection in Saliva. ELECTROANAL 2021. [DOI: 10.1002/elan.202060221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marta Borràs‐Brull
- Department of Analytical and Organic Chemistry Universitat Rovira i Virgili Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Pascal Blondeau
- Department of Analytical and Organic Chemistry Universitat Rovira i Virgili Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Jordi Riu
- Department of Analytical and Organic Chemistry Universitat Rovira i Virgili Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| |
Collapse
|
10
|
Freeman CJ, Ullah B, Islam MS, Collinson MM. Potentiometric Biosensing of Ascorbic Acid, Uric Acid, and Cysteine in Microliter Volumes Using Miniaturized Nanoporous Gold Electrodes. BIOSENSORS-BASEL 2020; 11:bios11010010. [PMID: 33379137 PMCID: PMC7823660 DOI: 10.3390/bios11010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
Potentiometric redox sensing is a relatively inexpensive and passive approach to evaluate the overall redox state of complex biological and environmental solutions. The ability to make such measurements in ultra-small volumes using high surface area, nanoporous electrodes is of particular importance as such electrodes can improve the rates of electron transfer and reduce the effects of biofouling on the electrochemical signal. This work focuses on the fabrication of miniaturized nanoporous gold (NPG) electrodes with a high surface area and a small footprint for the potentiometric redox sensing of three biologically relevant redox molecules (ascorbic acid, uric acid, and cysteine) in microliter volumes. The NPG electrodes were inexpensively made by attaching a nanoporous gold leaf prepared by dealloying 12K gold in nitric acid to a modified glass capillary (1.5 mm id) and establishing an electrode connection with copper tape. The surface area of the electrodes was ~1.5 cm2, providing a roughness factor of ~16 relative to the geometric area of 0.09 cm2. Scanning electron microscopy confirmed the nanoporous framework. A linear dependence between the open-circuit potential (OCP) and the logarithm of concentration (e.g., Nernstian-like behavior) was obtained for all three redox molecules in 100 μL buffered solutions. As a first step towards understanding a real system, the response associated with changing the concentration of one redox species in the presence of the other two was examined. These results show that at NPG, the redox potential of a solution containing biologically relevant concentrations of ascorbic acid, uric acid, and cysteine is strongly influenced by ascorbic acid. Such information is important for the measurement of redox potentials in complex biological solutions.
Collapse
Affiliation(s)
- Christopher J. Freeman
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| | - Borkat Ullah
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
| | - Md. Shafiul Islam
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
| | - Maryanne M. Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.U.); (M.S.I.)
- Correspondence:
| |
Collapse
|
11
|
Bouri M, Zuaznabar‐Gardona JC, Novell M, Blondeau P, Andrade FJ. Paper‐based Potentiometric Biosensor for Monitoring Galactose in Whole Blood. ELECTROANAL 2020. [DOI: 10.1002/elan.202060285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohamed Bouri
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| | - Julio C. Zuaznabar‐Gardona
- current address: Nanobiotechnology & Bioanalysis Group Departament d'Enginyeria Química Universitat Rovira i Virgili Avinguda Països Catalans 26 43007 Tarragona Spain
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| | - Marta Novell
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| | - Francisco J. Andrade
- Department of Analytical Chemistry and Organic Chemistry Universitat Rovira i Virgili C/Marcel lí Domingo, 1. Tarragona 43007 Spain
| |
Collapse
|
12
|
Micrometer-scale light-addressable potentiometric sensor on an optical fiber for biological glucose determination. Anal Chim Acta 2020; 1123:36-43. [DOI: 10.1016/j.aca.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 11/18/2022]
|
13
|
Cánovas R, Blondeau P, Andrade FJ. Modulating the mixed potential for developing biosensors: Direct potentiometric determination of glucose in whole, undiluted blood. Biosens Bioelectron 2020; 163:112302. [PMID: 32568689 DOI: 10.1016/j.bios.2020.112302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
The growing demand for tools to generate chemical information in decentralized settings is creating a vast range of opportunities for potentiometric sensors, since their combination of robustness, simplicity of operation and cost can hardly be rivalled by any other technique. In previous works, we have shown that the mixed potential of a Pt electrode can be controlled with analytical purposes using a coating of Nafion, thus providing a way to develop a potentiometric biosensor for glucose. Unfortunately, the linear range of this device did not match the relevant clinical range for glucose in blood. This work presents a novel strategy to control the mixed potential that allows the development of a potentiometric biosensor for the direct detection of glucose in whole, undiluted blood without any sample pretreatment. By changing the ionomer, the analytical response can be tuned, shifting the linear range while keeping the sensitivity. Aquivion, a polyelectrolyte from the same family as Nafion, is used to stabilize the mixed potential of a platinized paper-based electrode, to entrap the enzyme and to reduce the interference from negatively charged species. Factors affecting the generation of the signal and the principle of detection are discussed. Optimization of the biosensor composition was achieved with particular focus on the characterization of the linear range and sensitivity. The accurate measurement of blood sugar levels in a single drop of whole blood with excellent recovery is presented.
Collapse
Affiliation(s)
- Rocío Cánovas
- Department of Analytical and Organic Chemistry, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Pascal Blondeau
- Department of Analytical and Organic Chemistry, Universitat Rovira I Virgili, 43007, Tarragona, Spain
| | - Francisco J Andrade
- Department of Analytical and Organic Chemistry, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
14
|
Abstract
Hydrogen peroxide (H2O2) is an important molecule within the human body, but many of its roles in physiology and pathophysiology are not well understood. To better understand the importance of H2O2 in biological systems, it is essential that researchers are able to quantify this reactive species in various settings, including in vitro, ex vivo and in vivo systems. This review covers a broad range of H2O2 sensors that have been used in biological systems, highlighting advancements that have taken place since 2015.
Collapse
|
15
|
Baez JF, Compton M, Chahrati S, Cánovas R, Blondeau P, Andrade FJ. Controlling the mixed potential of polyelectrolyte-coated platinum electrodes for the potentiometric detection of hydrogen peroxide. Anal Chim Acta 2019; 1097:204-213. [PMID: 31910961 DOI: 10.1016/j.aca.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
Abstract
The use of a Pt electrode coated with a layer of Nafion has been described in previous works as an attractive way to perform the potentiometric detection of hydrogen peroxide. Despite of the attractive features of this approach, the nature of the non-Nernstian response of this system was not properly addressed. In this work, using a mixed potential model, the open circuit potential of the Pt electrode is shown to be under kinetic control of the oxygen reduction reaction (ORR). It is proposed that hydrogen peroxide acts as an oxygenated species that blocks free sites on the Pt surface, interfering with the ORR. Therefore, the effect of the polyelectrolyte coating can be understood in terms of the modulation of the factors that affects the kinetics of the ORR, such as an increase of the H+ concentration, minimization of the effect of the spectator species, etc. Because of the complexity and the lack of models that accurately describe systems with practical applications, this work is not intended to provide a mechanistic but rather a phenomenological view on problem. A general framework to understand the factors that affect the potentiometric response is provided. Experimental evidence showing that the use of polyelectrolyte coatings are a powerful way to control the mixed potential open new ways for the development of robust and simple potentiometric sensors.
Collapse
Affiliation(s)
- Jhonattan F Baez
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Matthew Compton
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Sylviane Chahrati
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Rocío Cánovas
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Francisco J Andrade
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain.
| |
Collapse
|
16
|
Apel PY, Bobreshova OV, Volkov AV, Volkov VV, Nikonenko VV, Stenina IA, Filippov AN, Yampolskii YP, Yaroslavtsev AB. Prospects of Membrane Science Development. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619020021] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
18
|
Hoekstra R, Blondeau P, Andrade FJ. IonSens: A Wearable Potentiometric Sensor Patch for Monitoring Total Ion Content in Sweat. ELECTROANAL 2018. [DOI: 10.1002/elan.201800128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rafael Hoekstra
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| | - Francisco J. Andrade
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili (URV), Campus Sescelades, c/.; Marcel⋅lí Domingo, 1 Tarragona 43007 Spain
| |
Collapse
|
19
|
Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioprocess Biosyst Eng 2017; 41:313-329. [DOI: 10.1007/s00449-017-1878-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023]
|
20
|
Cánovas R, Parrilla M, Blondeau P, Andrade FJ. A novel wireless paper-based potentiometric platform for monitoring glucose in blood. LAB ON A CHIP 2017; 17:2500-2507. [PMID: 28653727 DOI: 10.1039/c7lc00339k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel low-cost, compact and sensitive paper-based platform for the accurate monitoring of glucose in biological fluids is presented. Paper-based working and reference electrodes are combined to build a whole potentiometric cell, which also fits a sampling module for simple and fast determination of glucose in a single drop of blood. The working electrode is built using a platinized filter paper coated with a Nafion membrane that entraps the enzyme glucose oxidase; the reference electrode is made by casting a polyvinylbutyral-based membrane onto a conductive paper. The system works by detecting the hydrogen peroxide generated as a result of the enzymatic reaction. Selectivity is achieved due to the permselective behaviour of Nafion, while a significant enhancement of the sensitivity is reached by exploiting the Donnan-coupled formal potential. Under optimum conditions, a sensitivity of -95.9 ± 4.8 mV per decade in the 0.3-3 mM range is obtained. Validation of the measurements has been performed against standard methods in human serum and blood. Final integration with a wireless reader allows for truly in situ measurements with a less than 2 minute procedure including a two-point calibration, washing and measurement. This low-cost analytical device opens up new prospects for rapid diagnostic results in non-laboratory settings.
Collapse
Affiliation(s)
- Rocío Cánovas
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Marc Parrilla
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Pascal Blondeau
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Francisco J Andrade
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| |
Collapse
|