1
|
Yadav S, Sewariya S, Singh P, Chandra R, Jain P, Kumari K. Analytic and In Silico Methods to Understand the Interactions between Dinotefuran and Haemoglobin. Chem Biodivers 2024; 21:e202400495. [PMID: 38838069 DOI: 10.1002/cbdv.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
This work lies in the growing concern over the potential impacts of pesticides on human health and the environment. Pesticides are extensively used to protect crops and control pests, but their interaction with essential biomolecules like haemoglobin (Hb) remains poorly understood. Spectrofluorometric, electrochemical, and in silico investigations have been chosen as potential methods to delve into this issue, as they offer valuable insights into the molecular-level interactions between pesticides and haemoglobin. The research aims to address the gaps in knowledge and contribute to developing safer and more sustainable pesticide practices. The interaction was studied by spectroscopic techniques (UV-Visible & Fluorescence), in silico studies (molecular docking & molecular dynamics simulations) and electrochemical techniques (cyclic voltammetry and tafel). The studies showed effective binding of dinotefuran with the Hb which will cause toxicity to human. The formation of a stable molecular complex between ofloxacin and Haemoglobin was shown via molecular docking and the binding energy was found to be -5.37 kcal/mol. Further, molecular dynamics simulations provide an insight for the stability of the complex (Hb-dinotefuran) for a span of 250 ns with a binding free energy of -53.627 kJ/mol. Further, cyclic voltammetry and tafel studies show the interaction of dinotefuran with Hb effectively.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Shubham Sewariya
- Department of Chemistry, University of Delhi, Delhi, India
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
3
|
Keles G, Sifa Ataman E, Taskin SB, Polatoglu İ, Kurbanoglu S. Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. BIOSENSORS 2024; 14:238. [PMID: 38785712 PMCID: PMC11117604 DOI: 10.3390/bios14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Nanostructured metal oxides (NMOs) provide electrical properties such as high surface-to-volume ratio, reaction activity, and good adsorption strength. Furthermore, they serve as a conductive substrate for the immobilization of biomolecules, exhibiting notable biological activity. Capitalizing on these characteristics, they find utility in the development of various electrochemical biosensing devices, elevating the sensitivity and selectivity of such diagnostic platforms. In this review, different types of NMOs, including zinc oxide (ZnO), titanium dioxide (TiO2), iron (II, III) oxide (Fe3O4), nickel oxide (NiO), and copper oxide (CuO); their synthesis methods; and how they can be integrated into biosensors used for medical diagnosis are examined. It also includes a detailed table for the last 10 years covering the morphologies, analysis techniques, analytes, and analytical performances of electrochemical biosensors developed for medical diagnosis.
Collapse
Affiliation(s)
- Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Elif Sifa Ataman
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sueda Betul Taskin
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - İlker Polatoglu
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| |
Collapse
|
4
|
Guo Y, Tang Y, Tan Y, Li Y, Xiang Y. Nanomaterials for Fluorescent Detection of Hemoglobin. Crit Rev Anal Chem 2024:1-15. [PMID: 38227424 DOI: 10.1080/10408347.2023.2301660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Hemoglobin plays a vital role in a series of biological activities. Abnormal levels of hemoglobin in blood are associated with many clinical diseases. Therefore, development of simple and accurate methods for sensing hemoglobin is of considerable significance. The blowout advancement in nanotechnology has urged the use of different types of fluorescent nanomaterials for hemoglobin assay. The past decades have witnessed the rapid progress of fluorescent nanosensors for hemoglobin assay. In the review, the sensing principles of fluorescent nanomaterials for sensing hemoglobin were briefly discussed. The advances of fluorescent nanosensors for detection of hemoglobin were further highlighted. And the sensing performance of fluorescent nanosensors versus traditional detection approaches was compared. Finally, the challenges and future directions of fluorescent nanomaterials for detection of hemoglobin are discussed. The review will arouse much more attention to the construction of hemoglobin sensors and facilitate rapid development of fluorescent nanosensors of hemoglobin.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yiting Tang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yu Tan
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yubin Xiang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| |
Collapse
|
5
|
Çuvadar B, Yılmaz H. Non-invasive hemoglobin estimation from conjunctival images using deep learning. Med Eng Phys 2023; 120:104038. [PMID: 37838394 DOI: 10.1016/j.medengphy.2023.104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/30/2023] [Accepted: 08/20/2023] [Indexed: 10/16/2023]
Abstract
Hemoglobin, a crucial protein found in erythrocytes, transports oxygen throughout the body. Deviations from optimal hemoglobin levels in the blood are linked to medical conditions, serving as diagnostic markers for certain diseases. The hemoglobin level is usually measured invasively with different devices using the blood sample. In the physical interpretation, some signs are traditionally used. These signs are the palms, face, nail beds, pallor of the conjunctiva, and palmar wrinkles. Studies have shown that conjunctival pallor can yield more effective results in detecting anemia than the pallor of the palms or nail beds. This study is aimed to predict the hemoglobin level by deep learning method, non-invasive, cheap, fast, high accuracy, and without creating medical waste. In this context, conjunctival images and age, weight, height, gender, and hemoglobin values were collected from 388 people who donated blood to the Turkish Red Crescent. A dataset was generated by augmenting the gathered data with body mass index data. Within the scope of this investigation, the limits of agreement (LoA) value at a 95% confidence interval was computed to be 1.23 g/dL, while the bias was established as 0.26 g/dL. The mean absolute percentage error (MAPE) values were determined to be 3.4%, and the root mean squared error (RMSE) was calculated to be 0.68 g/dL. These findings exhibit a successful outcome compared to similar investigations, signifying that this non-invasive method can be employed for hemoglobin level estimation. Furthermore, the estimated hemoglobin levels could aid in diagnosing several hemoglobin-related ailments.
Collapse
Affiliation(s)
- Beyza Çuvadar
- Biomedical Engineering Department, Karabuk University, Karabuk, Turkey
| | - Hakan Yılmaz
- Medical Engineering Department, Karabuk University, Karabuk 78050, Turkey.
| |
Collapse
|
6
|
Teniou A, Rhouati A, Rabai S, Catanante G, Marty JL. Design of a label-free aptasensor for electrochemical determination of hemoglobin: investigation of the peroxidase-like activity of hemoglobin for the sensing of different substrates. Analyst 2023. [PMID: 37466196 DOI: 10.1039/d3an00345k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The unbalanced hemoglobin level in biological fluids can cause several diseases; hence it can be used as a biomarker for diagnosis. We aim, in the present study, to construct a label-free electrochemical aptasensor for the quantification of hemoglobin. For that, a conjugate of L-cysteine and gold nanoparticles was used for the aptamer immobilization on screen printed carbon electrodes. Using square wave voltammetry, the calibration plot was obtained and it was linear in the range of 50 ng ml-1 to 36 000 ng ml-1 while the detection limit was 1.2 ng ml-1. After the binding of Hb on the modified screen-printed carbon electrode surface, the peroxidase-like activity of the bound hemoglobin was explored in the quantification of different substrates. Hydrogen peroxide and nitrite were chosen as model analytes. Amperometric measurements showed wide linear ranges: 0.2 μM-7.7 mM and 3.6 nM-1.3 mM for H2O2 and nitrite, respectively, with detection limits of 0.044 μM and 0.55 nM. In the proposed strategy, the aptamer provides excellent orientation and a biocompatible environment for hemoglobin whose catalytic activity plays a key role in H2O2 and nitrite analysis.
Collapse
Affiliation(s)
- Ahlem Teniou
- Bioengineering laboratory, Higher National School of Biotechnology, Constantine, Algeria.
| | - Amina Rhouati
- Bioengineering laboratory, Higher National School of Biotechnology, Constantine, Algeria.
| | - Selma Rabai
- Laboratory of Sensors, Instrumentations and Process (LCIP), University of Khenchela, Khenchela, Algeria
| | | | | |
Collapse
|
7
|
Alam A, Fatima B, Shafi S, Sarwar Z, Hussain D, Jawad SEZ, Majeed S, Imran M, Najam-Ul-Haq M. Facile synthesis of Ag@Fe 3O 4/ZnO nanomaterial for label-free electrochemical detection of methemoglobin in anemic patients. Sci Rep 2023; 13:8711. [PMID: 37248281 DOI: 10.1038/s41598-023-35737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Methemoglobinemia (MetHb, Fe3+) is a chronic disease arising from the unequal distribution of oxyhemoglobin (HbFe2+, OHb) in the blood circulatory system. The oxidation of standard oxyhemoglobin forms methemoglobin, causing cyanosis (skin bluish staining). Methemoglobin cannot bind the pulmonary gaseous ligands such as oxygen (O2) and carbon monoxide (CO). As an oxidizing agent, the biochemical approach (MetHb, Fe3+) is modified in vitro by sodium nitrite (NaNO2). The silver-doped iron zinc oxide (Ag@Fe3O4/ZnO) is hydrothermally synthesized and characterized by analytical and spectroscopic techniques for the electrochemical sensing of methemoglobin via cyclic voltammetry (CV). Detection parameters such as concentration, pH, scan rate, electrochemical active surface area (ECSA), and electrochemical impedance spectroscopy (EIS) are optimized. The linear limit of detection for Ag@Fe3O4/ZnO is 0.17 µM. The stability is determined by 100 cycles of CV and chronoamperometry for 40 h. The serum samples of anemia patients with different hemoglobin levels (Hb) are analyzed using Ag@Fe3O4/ZnO modified biosensor. The sensor's stability, selectivity, and response suggest its use in methemoglobinemia monitoring.
Collapse
Affiliation(s)
- Ayub Alam
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sameera Shafi
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Zohaib Sarwar
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shan E Zahra Jawad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Imran
- Department of Biochemistry, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
8
|
Tariq Z, Qadeer MI, Anjum I, Hano C, Anjum S. Thalassemia and Nanotheragnostics: Advanced Approaches for Diagnosis and Treatment. BIOSENSORS 2023; 13:bios13040450. [PMID: 37185525 PMCID: PMC10136341 DOI: 10.3390/bios13040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Thalassemia is a monogenic autosomal recessive disorder caused by mutations, which lead to abnormal or reduced production of hemoglobin. Ineffective erythropoiesis, hemolysis, hepcidin suppression, and iron overload are common manifestations that vary according to genotypes and dictate, which diagnosis and therapeutic modalities, including transfusion therapy, iron chelation therapy, HbF induction, gene therapy, and editing, are performed. These conventional therapeutic methods have proven to be effective, yet have several disadvantages, specifically iron toxicity, associated with them; therefore, there are demands for advanced therapeutic methods. Nanotechnology-based applications, such as the use of nanoparticles and nanomedicines for theragnostic purposes have emerged that are simple, convenient, and cost-effective methods. The therapeutic potential of various nanoparticles has been explored by developing artificial hemoglobin, nano-based iron chelating agents, and nanocarriers for globin gene editing by CRISPR/Cas9. Au, Ag, carbon, graphene, silicon, porous nanoparticles, dendrimers, hydrogels, quantum dots, etc., have been used in electrochemical biosensors development for diagnosis of thalassemia, quantification of hemoglobin in these patients, and analysis of conventional iron chelating agents. This review summarizes the potential of nanotechnology in the development of various theragnostic approaches to determine thalassemia-causing gene mutations using various nano-based biosensors along with the employment of efficacious nano-based therapeutic procedures, in contrast to conventional therapies.
Collapse
Affiliation(s)
- Zahra Tariq
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | | | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Chemical Biology, Eure & Loir Campus, University of Orleans, 28000 Chartres, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
9
|
Avcı O, Tepeli Büyüksünetçi Y, Anık Ü. Electrochemical Determination of Hemoglobin by the İmmobilization of the Analyte into a Carbon Felt Electrode (CFE) Using Cyclic Voltammetry (CV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Okan Avcı
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey
| | - Yudum Tepeli Büyüksünetçi
- Sensors, Biosensors and Nonao-Diagnostic Laboratory, Research Laboratory Center, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey
| | - Ülkü Anık
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey
| |
Collapse
|
10
|
Cancelliere R, Di Tinno A, Di Lellis AM, Contini G, Micheli L, Signori E. Cost-effective and disposable label-free voltammetric immunosensor for sensitive detection of interleukin-6. Biosens Bioelectron 2022; 213:114467. [PMID: 35760020 DOI: 10.1016/j.bios.2022.114467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
IL-6 detection is highly desirable since can monitor many diseases in humans and assess the response to treatments. Herein, two novel label-free voltammetric immunosensors for rapid and accurate interleukin-6 (IL-6) detection in human serum are presented. The immunosensors are fabricated by immobilising two different IL-6 antibodies, identified as mAb-IL-6 clone-5 and clone-7, on in-house produced screen-printed electrodes modified with inexpensive recycling biochar (Bio-SPEs). To ensure high structural fidelity and performance, an in-depth electrochemical characterization of the layer-by-layer assembly of the immunosensor was conducted by cyclic voltammetry (CV) and sensing was performed using square wave voltammetry (SWV). The two immunosensors showed good analytical performances in human serum, exhibiting a wide linear range (LR) between 26-125 and 30-138 pg/mL, a good limit of detection (LOD) of 4.8 and 5.4 pg/mL and selectivity for IL-6 over other common cytokines, including IL-1β and TNF-α. Performance comparison of IL-6 immunosensors with those of a commercial spectrophotometric ELISA kit (LOD of 20 pg/mL, RSD% of 15%) denotes a better sensitivity and reproducibility of the proposed label-free devices, associated with a reduced detection time (30 min instead of more than 3 h for ELISA test). Furthermore, the proposed immunosensors were successfully applied in blood samples (with only a dilution of 1:100 v/v in PBS and without additional treatments) with good sensitivity (LOD of 14.3 pg/mL) and reproducibility (RSD% < 11%), thus paving the way for their application as viable diagnostic and therapeutic point-of-care tools alternative to the IL-6 detection techniques routinely used (ELISA and Western Blot).
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - Alessio Di Tinno
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy; Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043, Cassino, FR, Italy
| | | | - Giorgio Contini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133, Roma, Italy; Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy.
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy.
| | - Emanuela Signori
- Istituto di Farmacologia Traslazionale-CNR (IFT-CNR), Via Fosso del Cavaliere 100, 00133, Roma, Italy.
| |
Collapse
|
11
|
Zhan Z, Li Y, Zhao Y, Zhang H, Wang Z, Fu B, Li WJ. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. BIOSENSORS 2022; 12:bios12040221. [PMID: 35448281 PMCID: PMC9024622 DOI: 10.3390/bios12040221] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 05/17/2023]
Abstract
Glycated hemoglobin (HbA1c) is the gold standard for measuring glucose levels in the diagnosis of diabetes due to the excellent stability and reliability of this biomarker. HbA1c is a stable glycated protein formed by the reaction of glucose with hemoglobin (Hb) in red blood cells, which reflects average glucose levels over a period of two to three months without suffering from the disturbance of the outside environment. A number of simple, high-efficiency, and sensitive electrochemical sensors have been developed for the detection of HbA1c. This review aims to highlight current methods and trends in electrochemistry for HbA1c monitoring. The target analytes of electrochemical HbA1c sensors are usually HbA1c or fructosyl valine/fructosyl valine histidine (FV/FVH, the hydrolyzed product of HbA1c). When HbA1c is the target analyte, a sensor works to selectively bind to specific HbA1c regions and then determines the concentration of HbA1c through the quantitative transformation of weak electrical signals such as current, potential, and impedance. When FV/FVH is the target analyte, a sensor is used to indirectly determine HbA1c by detecting FV/FVH when it is hydrolyzed by fructosyl amino acid oxidase (FAO), fructosyl peptide oxidase (FPOX), or a molecularly imprinted catalyst (MIC). Then, a current proportional to the concentration of HbA1c can be produced. In this paper, we review a variety of representative electrochemical HbA1c sensors developed in recent years and elaborate on their operational principles, performance, and promising future clinical applications.
Collapse
Affiliation(s)
- Zhikun Zhan
- School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yang Li
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
- Correspondence: (Y.Z.); (W.J.L.)
| | - Hongyu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
| | - Zhen Wang
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Boya Fu
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
- Correspondence: (Y.Z.); (W.J.L.)
| |
Collapse
|
12
|
Kishnani V, Park S, Nakate UT, Mondal K, Gupta A. Nano-functionalized paper-based IoT enabled devices for point-of-care testing: a review. Biomed Microdevices 2021; 24:2. [PMID: 34792679 PMCID: PMC8600500 DOI: 10.1007/s10544-021-00588-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/04/2022]
Abstract
Over the last few years, the microfluidics phenomenon coupled with the Internet of Things (IoT) using innovative nano-functional materials has been recognized as a sustainable and economical tool for point-of-care testing (POCT) of various pathogens influencing human health. The sensors based on these phenomena aim to be designed for cost-effectiveness, make it handy, environment-friendly, and get an accurate, easy, and rapid response. Considering the burgeoning importance of analytical devices in the healthcare domain, this review paper is based on the gist of sensing aspects of the microfabricated paper-based analytical devices (μPADs). The article discusses the various used design methodologies and fabrication approaches and elucidates the recently reported surface modification strategies, detection mechanisms viz., colorimetric, electrochemical, fluorescence, electrochemiluminescence, etc. In a nutshell, this article summarizes the state-of-the-art research work carried out over the nano functionalized paper-based analytical devices and associated challenges/solutions in the point of care testing domain.
Collapse
Affiliation(s)
- Vinay Kishnani
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur-342037, Rajasthan, India
| | - Sungjune Park
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Umesh T Nakate
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur-342037, Rajasthan, India.
| |
Collapse
|
13
|
Cook S, Honeychurch KC. Forensic electrochemical presumptive blood test based on the voltammetric behaviour of methylene blue and whole blood. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4985-4993. [PMID: 34622254 DOI: 10.1039/d1ay01358k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ability to identify the presence of blood residues is important in a number of fields, such as in the forensic and archaeological sciences. A number of tests presently exist; however, these suffer drawbacks, such as difficulties with the interpretation of positive results and interferences from common chemicals and reagents. In this present study, for the first time, we demonstrate the possibility of applying an electrochemical technique as a semi-quantitative presumptive test for the detection of blood residues. Our method is based on the cyclic voltammetric behaviour of the methylene blue mediated detection of haemoglobin present in blood residues. Initial studies investigated the voltammetric behaviour of methylene blue and the possibility of using it for the mediated detection of haemoglobin. Using this approach, it was shown to be possible to detect haemoglobin and hence the presence of blood. We have shown the possibility of successfully identifying the presence of whole blood residues recovered from cloth gaining a coefficient of variation of 5.3%. Our method was shown to overcome many of the commonly reported interferences and interpretation issues. The results demonstrate that the developed method could be successfully used for the detection of blood residues in such samples requiring only simple dilution of the sample.
Collapse
Affiliation(s)
- Sarah Cook
- Faculty of Health and Applied Sciences, Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - Kevin C Honeychurch
- Faculty of Health and Applied Sciences, Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
14
|
Han X, Zhang Y, Tian J, Wu T, Li Z, Xing F, Fu S. Polymer‐based microfluidic devices: A comprehensive review on preparation and applications. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xue Han
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Yonghui Zhang
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Tiange Wu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Shenggui Fu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| |
Collapse
|
15
|
Chantkran W, Jamnarnwej P, Sritanabutr P, Arnutti P. Evaluation of point-of-care testing device for anemia detection: A cross-sectional method comparison study from Thailand. J Clin Lab Anal 2021; 35:e23976. [PMID: 34427961 PMCID: PMC8529128 DOI: 10.1002/jcla.23976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND A comparison study is crucial before launching a new medical device; therefore, we compared the Mission Ultra Hb Testing System with the Sysmex XN-3000 automated hematology analyzer in Thai adult males and non-pregnant adult females. METHODS Parallel studies were conducted using discarded venous K2-ethylenediaminetetraacetic acid samples from participants requiring hematological investigations. According to the World Health Organization criteria, the participants were categorized as overall, anemia, and non-anemia for analysis. RESULTS Three hundred participants were included in this study. In all participants, near-perfect correlation and agreement were observed between the two methods for Hb measurement (r = 0.963, p < 0.001) with an interclass correlation coefficient (ICC) of 0.981 (95% confidence interval [CI]: 0.976-0.985) and Hct measurement (r = 0.941, p < 0.001) with an ICC of 0.965 (95% CI: 0.956-0.972). The sensitivity and specificity of the device in detecting anemia were 86.2% (95% CI: 79.7-91.2) and 98.6% (95% CI: 95.2-99.8), respectively. The area under the curve was 0.976 (95% CI: 0.963-0.989). The device showed average biases of 0.76 g/dl (95% limits of agreement [LOA]: -1.03 to 2.54) for Hb measurement and -2.73% (95% LOA: -9.28 to 3.82) for Hct measurement in all participants. CONCLUSION Agreement between the Mission Ultra Hb Testing System and Sysmex XN-3000 was observed. The device was excellent for detecting anemia. However, the essential evidence showing biases of the Hb and Hct measurements obtained from the device was revealed. Laboratory interpretation should be carefully performed, particularly at the near cut-off values.
Collapse
Affiliation(s)
- Wittawat Chantkran
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Pitipat Jamnarnwej
- Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Pipat Sritanabutr
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Pasra Arnutti
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
| |
Collapse
|
16
|
Lu Z, Giles LW, Tabor RF, Teo BM. Norepinephrine derived carbon dots for live-cell imaging and effective hemoglobin determination. SOFT MATTER 2021; 17:6765-6772. [PMID: 34196338 DOI: 10.1039/d1sm00791b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, carbon dots (CDs) have attracted wide attention for their potential use as fluorescence probes in biological and analytical chemistry due to their great stability and high fluorescence quantum yields. In our work, norepinephrine (NE)-derived CDs with green luminescence and an average size of 10 nm were fabricated using a one-step hydrothermal route. As-prepared CDs show a strong emission at a wavelength of 520 nm when excited at 420 nm, and demonstrate pH and concentration dependent fluorescence behaviour. Multiple functional groups on the CDs allow their protonation/deprotonation and thus alter fluorescence intensity and peak position in different pH conditions. Prepared CDs show significant potential to be used as a live-cell imaging agent with long-term photostability. Furthermore, a simple but effective method to determine the concentration of hemoglobin (Hb) in diluted human blood samples was also developed based on the inner filter effect (IFE). The method demonstrates good linearity from 0.01-10 μM, with a limit of determination (LOD) of 52 nM.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
17
|
Chinnakurli Dwarakanath Shruthi, Gurukar Shivappa Suresh. Synthesis of Palladium Nanoribbons and Their Application in Electrochemical Detection of Hemoglobin. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s102319352104008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Fu L, Su W, Chen F, Zhao S, Zhang H, Karimi-Maleh H, Yu A, Yu J, Lin CT. Early sex determination of Ginkgo biloba based on the differences in the electrocatalytic performance of extracted peroxidase. Bioelectrochemistry 2021; 140:107829. [PMID: 33964612 DOI: 10.1016/j.bioelechem.2021.107829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022]
Abstract
Ginkgo biloba is a dioecious plant. Male ginkgoes are mainly used in landscaping, while females are mainly used for fruit production. However, sex identification of ginkgo is a difficult task, especially at the seedling stage. In this work, we present for the first time the use of electrochemical techniques for the identification of ginkgo sex based on the differences in peroxides within male and female ginkgos. Graphene was used to concentrate peroxides in ginkgo extract, thereby improving electrochemical signal sensitivity. The electrochemical reduction of hydrogen peroxide catalyzed by peroxidase was used as a prob for sex determination in ginkgo. This electrochemical identification technique can be used not only for the analysis of adult ginkgo, but also successfully for the analysis of tissue culture seedlings and live seedlings. This electrochemical sensor has excellent discrimination ability due to the difference in peroxidase content in the leaves and petiole of ginkgo of different sexes. This electrochemical sensor allows for a rapid identification of the sex of ginkgo and has a very strong potential for field analysis.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China.
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Huaiwei Zhang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P. O. Box 611731, Chengdu, PR China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| |
Collapse
|
19
|
K. Hussain K, Malavia D, M. Johnson E, Littlechild J, Winlove CP, Vollmer F, Gow NAR. Biosensors and Diagnostics for Fungal Detection. J Fungi (Basel) 2020; 6:E349. [PMID: 33302535 PMCID: PMC7770582 DOI: 10.3390/jof6040349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection is critical to the successful treatment of life-threatening infections caused by fungal pathogens, as late diagnosis of systemic infection almost always equates with a poor prognosis. The field of fungal diagnostics has some tests that are relatively simple, rapid to perform and are potentially suitable at the point of care. However, there are also more complex high-technology methodologies that offer new opportunities regarding the scale and precision of fungal diagnosis, but may be more limited in their portability and affordability. Future developments in this field are increasingly incorporating new technologies provided by the use of new format biosensors. This overview provides a critical review of current fungal diagnostics and the development of new biophysical technologies that are being applied for selective new sensitive fungal biosensors to augment traditional diagnostic methodologies.
Collapse
Affiliation(s)
- Khalil K. Hussain
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| | - Dhara Malavia
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| | - Elizabeth M. Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
- UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Science Quarter Southmead Hospital, Southmead, Bristol BS10 5NB, UK
| | - Jennifer Littlechild
- Biocatalysis Centre, University of Exeter, The Henry Wellcome Building for Biocatalysis, Stocker Road, Exeter EX4 4QD, UK;
| | - C. Peter Winlove
- Department of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, UK;
| | - Frank Vollmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK;
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| |
Collapse
|
20
|
|
21
|
Tan S, Long Y, Han Q, Guan H, Liang Q, Ding M. Designed Fabrication of Polymer-Mediated MOF-Derived Magnetic Hollow Carbon Nanocages for Specific Isolation of Bovine Hemoglobin. ACS Biomater Sci Eng 2020; 6:1387-1396. [PMID: 33455361 DOI: 10.1021/acsbiomaterials.9b01793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is highly required to develop well-designed separation materials for the specific isolation of certain proteins in proteomic research. Herein, the new type of metal-organic framework (MOF)-derived polymer-mediated magnetic hollow nanocages was fabricated via stress-induced orientation contraction, which was further applied for specific enrichment of proteins. The core-shell nanocomposites comprised of polymer-mediated ZIF-67 cores and polydopamine (PDA) shells, after annealing, generated magnetic hollow carbon nanocages with hierarchical pores and structures. Particularly, the magnetic carbonized PDA@F127/ZIF-67 hollow nanocages exhibited a remarkable adsorption capacity toward bovine hemoglobin (BHB) up to 834.3 mg g-1, which was significantly greater than that of the directed carbonized ZIF-67 nanoparticles. The results also exhibited the notable specificity of the obtained nanocages on complex biosamples, including intact mixed proteins and fetal calf serum. The hierarchically hollow porous structure greatly improves the specific surface area and reduces the mass transfer resistance, leading to enhanced high adsorption for target protein BHB. This novel method will be promising for the applications in purification and enrichment of biomacromolecules for complex biosamples, which successfully solve the problem of low adsorption efficiency and tedious separating process of the previous MOF-derived materials.
Collapse
Affiliation(s)
- Siyuan Tan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Long
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Han
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huiyuan Guan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
22
|
Mozammal Hossain MD, Moon JM, Gurudatt NG, Park DS, Choi CS, Shim YB. Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosens Bioelectron 2019; 142:111515. [PMID: 31325673 DOI: 10.1016/j.bios.2019.111515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
Abstract
Separation and detection of hemoglobin (Hb) and glycated hemoglobin fractions (HbA1c, HbAld1+2, HbAle, HbAld3a, HbAla+b, HbA2, and HbAld3b) was performed using an electrochemical AC field modulated separation channel (EMSC) coupled with a sensor probe. The sensor was fabricated based on immobilization of a redox mediator on the poly(2,2':5',5″-terthiophene-3'-p-benzoic acid, pTTBA) and N,S-doped porous carbon (NSPC) nanocomposite. The different types of catalytic redox mediators such as Nile Blue (NB), toluidine blue O (TBO), and Neutral Red (NR) were evaluated to achieve the efficient detection. Of these, the NB-based sensor showed the best analytical signal for Hb and HbA1c, thus it was characterized using various electrochemical and surface analysis methods. After that, the sensor was coupled with the EMSC to achieve the separation detection of the Hb family. The frequency and amplitude of the AC electrical field applied onto the EMSC walls were the main driving forces for the separation and sensitive detection of the analytes. Under optimized conditions, linear dynamic ranges for Hb and HbA1c among their fractions were obtained between 1.0 × 10-6 to 3.5 mM and 3.0 × 10-6 to 0.6 mM with the detection limit of 8.1 × 10-7 ± 3.0 × 10-8 and 9.2 × 10-7 ± 5 × 10-8 mM, respectively. Interference effects of other biomolecules were also investigated and the clinical applicability of the device was evaluated by the determination of total Hb and % HbA1c in real human blood samples.
Collapse
Affiliation(s)
- M D Mozammal Hossain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - N G Gurudatt
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, and Internal Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, and Internal Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea.
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea; Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
23
|
Tiravia M, Sabuzi F, Cirulli M, Pezzola S, Di Carmine G, Cicero DO, Floris B, Conte V, Galloni P. 3,7-Bis(N
-methyl-N
-phenylamino)phenothiazinium Salt: Improved Synthesis and Aggregation Behavior in Solution. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martina Tiravia
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Martina Cirulli
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road E1 4NS London United Kingdom
| | - Silvia Pezzola
- BT-InnoVaChem srl; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Graziano Di Carmine
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari 4 44121 Ferrara Italy
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Barbara Floris
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica snc 00133 Rome Italy
| |
Collapse
|
24
|
Li Q, Peng K, Yu Y, Ruan X, Wei Y. One-pot synthesis of highly fluorescent silicon nanoparticles for sensitive and selective detection of hemoglobin. Electrophoresis 2019; 40:2129-2134. [PMID: 30811619 DOI: 10.1002/elps.201900023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 01/04/2023]
Abstract
In this work, a simple, selective, and sensitive probe for hemoglobin based on the quenched fluorescence of silicon nanoparticles (SiNPs) was fabricated. The SiNPs were synthesized by a simple hydrothermal treatment from N-[3-(trimethoxysilyl)propyl]ethylenediamine and sodium citrate. The as-prepared SiNPs exhibited good water-solubility and high fluorescence with the quantum yield of 70%. The fluorescence of the SiNPs could be remarkably quenched by hemoglobin. A wide linear range was obtained from 50 nM to 4000 nM with a LOD of 40 nM. The quenching mechanism was investigated by UV-Vis absorption spectrometry and time-resolved fluorescence spectrometry.
Collapse
Affiliation(s)
- Quan Li
- State Key Laboratory of Chemical Resource Engineering Beijing University Of Chemical Technology Beijing P. R. China
| | - Kaite Peng
- State Key Laboratory of Chemical Resource Engineering Beijing University Of Chemical Technology Beijing P. R. China
| | - Yingchun Yu
- State Key Laboratory of Chemical Resource Engineering Beijing University Of Chemical Technology Beijing P. R. China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital Capital Medical University Beijing P. R. China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering Beijing University Of Chemical Technology Beijing P. R. China
| |
Collapse
|
25
|
Zhou T, Ashley J, Feng X, Sun Y. Detection of hemoglobin using hybrid molecularly imprinted polymers/carbon quantum dots-based nanobiosensor prepared from surfactant-free Pickering emulsion. Talanta 2018; 190:443-449. [DOI: 10.1016/j.talanta.2018.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
26
|
Pramanik K, Sarkar P, Bhattacharyay D, Majumdar P. One Step Electrode Fabrication for Direct Electron Transfer Cholesterol Biosensor Based on Composite of Polypyrrole, Green Reduced Graphene Oxide and Cholesterol Oxidase. ELECTROANAL 2018. [DOI: 10.1002/elan.201800318] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Krishnendu Pramanik
- Biosensor Laboratory, Department of Polymer Science and Technology; University of Calcutta; 92 A.P.C. Road Kolkata, West Bengal India 70009
- Department of Chemical Engineering; Calcutta Institute of Technology; Banitabla, Howrah, West Bengal India 711316
| | - Priyabrata Sarkar
- Biosensor Laboratory, Department of Polymer Science and Technology; University of Calcutta; 92 A.P.C. Road Kolkata, West Bengal India 70009
- Department of Chemical Engineering; Calcutta Institute of Technology; Banitabla, Howrah, West Bengal India 711316
| | - Dipankar Bhattacharyay
- Biosensor Laboratory, Department of Polymer Science and Technology; University of Calcutta; 92 A.P.C. Road Kolkata, West Bengal India 70009
- Department of Chemical Engineering; Calcutta Institute of Technology; Banitabla, Howrah, West Bengal India 711316
| | - Pavel Majumdar
- Centre of Excellence for Green Energy and Sensor Systems (CEGESS); Indian Institute of Engineering Science and Technology (IIEST); Shibpur, Howrah, West Bengal India 711103
| |
Collapse
|
27
|
Akhtar MH, Hussain KK, Gurudatt NG, Chandra P, Shim YB. Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens Bioelectron 2018; 116:108-115. [PMID: 29860089 DOI: 10.1016/j.bios.2018.05.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 01/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) was detected in the extracellular matrix of neuronal cells using a dual probe immunosensor (DPI), where one of them was used as a working and another bioconjugate loading probe. The working probe was fabricated by covalently immobilizing capture anti-BDNF (Cap Ab) on the gold nanoparticles (AuNPs)/conducting polymer composite layer. The bioconjugate probe was modified by drop casting a bioconjugate particles composed of conducting polymer self-assembled AuNPs, immobilized with detection anti-BDNF (Det Ab) and toluidine blue O (TBO). Each sensor layer was characterized using the surface analysis and electrochemical methods. Two modified probes were precisely faced each other to form a microfluidic channel structure and the gap between inside modified surfaces was about 19 µm. At optimized conditions, the DPI showed a linear dynamic range from 4.0 to 600.0 pg/ml with a detection limit of 1.5 ± 0.012 pg/ml. Interference effect of IgG, arginine, glutamine, serine, albumin, and fibrinogene were examined and stability of the developed biosensor was also investigated. The reliability of the DPI sensor was evaluated by monitoring the extracellular release of BDNF using exogenic activators (ethanol, K+, and nicotine) in neuronal and non-neuronal cells. In addition, the effect of nicotine onto neuroblastoma cancer cells (SH-SY5Y) was studied in detail.
Collapse
Affiliation(s)
- Mahmood H Akhtar
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Khalil K Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - N G Gurudatt
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Pranjal Chandra
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea.
| |
Collapse
|