1
|
Acharya PB, George A, Shrivastav PS. A Status Update on the Development of Polymer and Metal-Based Graphene Electrochemical Sensors for Detection and Quantitation of Bisphenol A. Crit Rev Anal Chem 2022; 54:669-690. [PMID: 35776701 DOI: 10.1080/10408347.2022.2094197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The detection and quantitation of bisphenol A (BPA) in the environment and food products has been a subject of considerable interest. BPA, a diphenylmethane derivative is a well-known industrial raw material with wide range of applications. It is a well-known endocrine disruptor and acts as an estrogen mimic. BPA is an environmental health concern and its accumulation in hydro-geological cycles is a matter of serious ecological peril. This review basically assesses various chemically modified electrodes composed of diverse components that have been employed to recognize BPA in different matrices. Electrochemical sensors prepared using graphene materials in combination with metals and polymers for selective detection of BPA have been discussed extensively. The emphasis is on detection of BPA in various samples encountered in routine use such as plastic bottles, receipts, baby feed bottles, milk samples, mineralized water, tissue paper, DVDs, and others. Although research in this field is in the exploratory stage, deeper insights into fundamental studies of sensing systems, fast analysis of real samples and validation of sensors are some of the factors that need major impetus. It is expected that chemically modified electrode-based sensing systems will soon take over as a viable option for monitoring diverse pollutants.
Collapse
Affiliation(s)
- Prachi B Acharya
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Archana George
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Moradi O. Electrochemical sensors based on carbon nanostructures for the analysis of bisphenol A-A review. Food Chem Toxicol 2022; 165:113074. [PMID: 35489466 DOI: 10.1016/j.fct.2022.113074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Overuse of Bisphenol A (BPA), a proven endocrine disruptor, has become a serious public health problem across the world. It has the potential to harm both the environment and human health, notably reproductive disorders, heart disease, and diabetes. Accordingly, much attention has been paid to the detection of BPA to promote food safety and environmental health. Carbon based nanostructures have proven themselves well in a variety of applications, such as energy storage, catalysis and sensors, due to their remarkable properties. Therefore, researchers have recently focused on fabricating electrochemical BPA sensors based on carbon nanostructures due to their unique advantages, such as real-time monitoring, simplicity, high selectivity, high sensitivity and easy operation. The purpose of the current review was to summarize the recent findings on carbon nanostructures for electrochemically sensing the BPA, as well as relevant future prospects and ongoing challenges.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Jia D, Li Q, Luo T, Monfort O, Mailhot G, Brigante M, Hanna K. Impacts of environmental levels of hydrogen peroxide and oxyanions on the redox activity of MnO 2 particles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1351-1361. [PMID: 34350930 DOI: 10.1039/d1em00177a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the widespread presence of hydrogen peroxide (H2O2) in surface water and groundwater systems, little is known about the impact of environmental levels of H2O2 on the redox activity of minerals. Here we demonstrate that environmental concentrations of H2O2 can alter the reactivity of birnessite-type manganese oxide, an earth-abundant functional material, and decrease its oxidative activity in natural systems across a wide range of pH values (4-8). The H2O2-induced reductive dissolution generates Mn(II) that will re-bind to MnO2 surfaces, thereby affecting the surface charge of MnO2. Competition of Bisphenol A (BPA), used as a target compound here, and Mn(II) to interact with reactive surface sites may cause suppression of the oxidative ability of MnO2. This suppressive effect becomes more effective in the presence of oxyanions such as phosphate or silicate at concentrations comparable to those encountered in natural waters. Unlike nitrate, adsorption of phosphate or silicate onto birnessite increased in the presence of Mn(II) added or generated through H2O2-induced reduction of MnO2. This suggests that naturally occurring anions and H2O2 may have synergetic effects on the reactivity of birnessite-type manganese oxide at a range of environmentally relevant H2O2 amounts. As layered structure manganese oxides play a key role in the global carbon cycle as well as pollutant dynamics, the impact of environmental levels of hydrogen peroxide (H2O2/MnO2 molar ratio ≤ 0.3) should be considered in environmental fate and transport models.
Collapse
Affiliation(s)
- Daqing Jia
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Qinzhi Li
- Univ. Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Tao Luo
- Univ. Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Olivier Monfort
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovicova 6, Mlynska Dolina, 842 15 Bratislava, Slovakia
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Khalil Hanna
- Univ. Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
- Institut Universitaire de France (IUF), MESRI, 1 Rue Descartes, 75231 Paris, France
| |
Collapse
|
5
|
|
6
|
Eftekhari A, Dalili M, Karimi Z, Rouhani S, Hasanzadeh A, Rostamnia S, Khaksar S, Idris AO, Karimi-Maleh H, Yola ML, Msagati TAM. Sensitive and selective electrochemical detection of bisphenol A based on SBA-15 like Cu-PMO modified glassy carbon electrode. Food Chem 2021; 358:129763. [PMID: 34000688 DOI: 10.1016/j.foodchem.2021.129763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
This work reports the electrochemical detection of bisphenol A (BPA) using a novel and sensitive electrochemical sensor based on the Cu functionalized SBA-15 like periodic mesoporous organosilica-ionic liquid composite modified glassy carbon electrode (Cu@TU-PMO/IL/GCE). The structural morphology of Cu@TU-PMO is characterized by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), Field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET). The catalytic activity of the modified electrode toward oxidation of BPA was interrogated with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in phosphate buffer solution (pH 7.0) using the fabricated sensor. The electrochemical detection of the analyte was carried out at a neutral pH and the scan rate studies revealed that the sensor was stable. Under the optimal conditions, a linear range from 5.0 nM to 2.0 µM and 4.0 to 500 µM for detecting BPA was observed with a detection limit of 1.5 nM (S/N = 3). The sensor was applied to detect BPA in tap and seawater samples, and the accuracy of the results was validated by high-performance liquid chromatography (HPLC). The proposed method provides a powerful tool for the rapid and sensitive detection of BPA in environmental samples.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Maragheh University of Medical Sciences, PO Box: 78151-55158, Maragheh, Iran.
| | - Maryam Dalili
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO BOX 55181-83111, Maragheh, Iran
| | - Ziba Karimi
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO BOX 55181-83111, Maragheh, Iran
| | - Shamila Rouhani
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Amir Hasanzadeh
- Maragheh University of Medical Sciences, PO Box: 78151-55158, Maragheh, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran; Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO BOX 55181-83111, Maragheh, Iran.
| | - Samad Khaksar
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Azeez Olayiwola Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028 Johannesburg, South Africa.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
7
|
Hasan MM, Islam T, Imran A, Alqahtani B, Shah SS, Mahfoz W, Karim MR, Alharbi HF, Aziz MA, Ahammad AS. Mechanistic insights of the oxidation of bisphenol A at ultrasonication assisted polyaniline-Au nanoparticles composite for highly sensitive electrochemical sensor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137968] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Tan X, Yang H, Ran X, Li Z, Zhang L, Gao W, Zhou X, Du G, Yang L. Pillar[6]arene-modified gold nanoparticles grafted on cellulose nanocrystals for the electrochemical detection of bisphenol A. NEW J CHEM 2021. [DOI: 10.1039/d1nj02040d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The as-prepared CNCs@CP6-AuNP nanohybrid and its application in sensing BPA.
Collapse
Affiliation(s)
- Xiaoping Tan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Hongxing Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Xin Ran
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Zhi Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Lianpeng Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Wei Gao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Xiaojian Zhou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Guanben Du
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| | - Long Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains
- Ministry of Education
- Southwest Forestry University
- Kunming 650224
- China
| |
Collapse
|
9
|
GORDUK O. Poly(glutamic acid) Modified Pencil Graphite Electrode for Voltammetric Determination of Bisphenol A. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.728165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Fadillah G, Triana S, Chasanah U, Saleh TA. Titania-nanorods modified carbon paste electrode for the sensitive voltammetric determination of BPA in exposed bottled water. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Flexible Carbon Electrodes for Electrochemical Detection of Bisphenol-A, Hydroquinone and Catechol in Water Samples. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040103] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The detection of pollutant traces in the public water supply and aquifers is essential for the safety of the population. In this article, we demonstrate that a simple electrochemical procedure in acidic solution can be employed for enhancing the sensitivity of flexible screen-printed carbon electrodes (SPEs) to detect bisphenol-A (BPA), hydroquinone, and catechol, simultaneously. The SPEs were pretreated electrochemically in a H2SO4 solution, which did not affect their morphology, yielding high current signals with well separated oxidation peaks. The sensitivity values were 0.28, 0.230, and 0.056 µA L µmol−1 with detection limits of 0.12, 0.82, and 0.95 µmol L−1 for hydroquinone, catechol, and BPA, respectively. The sensors were reproducible and selective for detecting BPA in plastic cups, and with adequate specificity not to be affected by interferents from water samples. The simple, inexpensive, and flexible SPE may thus be used to detect emerging pollutants and monitor the water quality.
Collapse
|
12
|
Tahtaisleyen S, Gorduk O, Sahin Y. Electrochemical Determination of Sunset Yellow Using an Electrochemically Prepared Graphene Oxide Modified – Pencil Graphite Electrode (EGO-PGE). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1767120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Selen Tahtaisleyen
- Faculty of Arts & Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Ozge Gorduk
- Faculty of Arts & Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Yucel Sahin
- Faculty of Arts & Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
13
|
Jemmeli D, Marcoccio E, Moscone D, Dridi C, Arduini F. Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta 2020; 216:120924. [PMID: 32456933 DOI: 10.1016/j.talanta.2020.120924] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/26/2022]
Abstract
Bisphenol A is one the most relevant endocrine disruptors for its toxicity and ubiquity in the environment, being largely employed as raw material for manufacturing processes of a wide number of compounds. Furthermore, bisphenol A is released in the drinking water when plastic-based bottles are incorrectly transported under sunlight, delivering contaminated drinking water. For the health of human beings and the environment, rapid and on site detection of bisphenol A in drinking water is an important issue. Herein, we report a novel and cost-effective printed electrochemical sensor for an enzymatic-free bisphenol A detection. This sensor encompasses the entire electrochemical cell printed on filter paper and the reagents for the measurement loaded in the cellulose fiber network, for delivering a reagent-free analytical tool. The working electrode was printed using ink modified with carbon black, a cost effective nanomaterial for sensitive and sustainable bisphenol A determination. Several parameters including pH, frequency, and amplitude were optimized allowing for a detection limit of 0.03 μM with two linear ranges 0.1-0.9 μM and 1 μM-50 μM, using square wave voltammetry as electrochemical technique. The satisfactory recovery values found in river and drinking water samples demonstrated the suitability of this sensor for screening analyses in water samples. These results revealed the attractiveness of this paper-based device thanks to the synergic combination of paper and carbon black as cost-effective materials.
Collapse
Affiliation(s)
- Dhouha Jemmeli
- NANOMISENE Laboratory LR16CRMN01, Center for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, B.P334, 4054, Sahloul Sousse, Tunisia
| | - Eleonora Marcoccio
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Cherif Dridi
- NANOMISENE Laboratory LR16CRMN01, Center for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, B.P334, 4054, Sahloul Sousse, Tunisia
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED via Renato Rascel 30, 00128, Rome, Italy.
| |
Collapse
|
14
|
Aberkane F, Barakat A, Elaissari A, Zine N, Bendaikha T, Errachid A. Electrochemical Sensor Based on Thioether Oligomer Poly(N‐vinylpyrrolidone)‐modified Gold Electrode for Bisphenol A Detection. ELECTROANAL 2019. [DOI: 10.1002/elan.201900060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fairouz Aberkane
- University of Batna 1, Laboratory LCCE, Faculty of matter sciencesDepartment of chemistry 05000 Batna Algeria
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, LAGEP-UMR 5007 F-69622 Lyon France
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, ISA-UMR 5280 F-69622 Lyon France
| | - Abdoullatif Barakat
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, ISA-UMR 5280 F-69622 Lyon France
| | - Abdelhamid Elaissari
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, LAGEP-UMR 5007 F-69622 Lyon France
| | - Nadia Zine
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, ISA-UMR 5280 F-69622 Lyon France
| | - Tahar Bendaikha
- University of Batna 1, Laboratory LCCE, Faculty of matter sciencesDepartment of chemistry 05000 Batna Algeria
| | - Abdelhamid Errachid
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, ISA-UMR 5280 F-69622 Lyon France
| |
Collapse
|
15
|
Sidwaba U, Ntshongontshi N, Feleni U, Wilson L, Waryo T, Iwuoha EI. Manganese Peroxidase-Based Electro-Oxidation of Bisphenol A at Hydrogellic Polyaniline-Titania Nanocomposite-Modified Glassy Carbon Electrode. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-0510-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|