1
|
Lozano-Prieto M, Camafeita E, Jorge I, Laguillo-Gómez A, Barrero-Rodríguez R, Devesa CA, Pertusa C, Calvo E, Sánchez-Madrid F, Vázquez J, Martin-Cofreces NB. In-gel protein digestion using acidic methanol produces a highly selective methylation of glutamic acid residues. J Proteomics 2024; 304:105229. [PMID: 38880355 DOI: 10.1016/j.jprot.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Mass-tolerant open search methods allow the high-throughput analysis of modified peptides by mass spectrometry. These techniques have paved the way to unbiased analysis of post-translational modifications in biological contexts, as well as of chemical modifications produced during the manipulation of protein samples. In this work, we have analyzed in-depth a wide variety of samples of different biological origin, including cells, extracellular vesicles, secretomes, centrosomes and tissue preparations, using Comet-ReCom, a recently improved version of the open search engine Comet-PTM. Our results demonstrate that glutamic acid residues undergo intensive methyl esterification when protein digestion is performed using in-gel techniques, but not using gel-free approaches. This effect was highly specific to Glu and was not found for other methylable residues such as Asp.
Collapse
Affiliation(s)
- Marta Lozano-Prieto
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea Laguillo-Gómez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rafael Barrero-Rodríguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Cristina A Devesa
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Enrique Calvo
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain.
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Noa B Martin-Cofreces
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Videomicroscopy Unit, Instituto de Investigación Sanitaria La Princesa (IIs-Princes), Madrid, Spain.
| |
Collapse
|
2
|
Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1047:75-83. [PMID: 28063777 DOI: 10.1016/j.jchromb.2016.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/02/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022]
Abstract
O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH2O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions.
Collapse
|
3
|
Bayer M, König S. Abundant cysteine side reactions in traditional buffers interfere with the analysis of posttranslational modifications and protein quantification - How to compromise. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1823-1828. [PMID: 27426460 DOI: 10.1002/rcm.7613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Malte Bayer
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Germany
| |
Collapse
|
4
|
Stemmler EA, Barton EE, Esonu OK, Polasky DA, Onderko LL, Bergeron AB, Christie AE, Dickinson PS. C-terminal methylation of truncated neuropeptides: an enzyme-assisted extraction artifact involving methanol. Peptides 2013; 46:108-25. [PMID: 23714174 DOI: 10.1016/j.peptides.2013.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
Neuropeptides are the largest class of signaling molecules used by nervous systems. Today, neuropeptide discovery commonly involves chemical extraction from a tissue source followed by mass spectrometric characterization. Ideally, the extraction procedure accurately preserves the sequence and any inherent modifications of the native peptides. Here, we present data showing that this is not always true. Specifically, we present evidence showing that, in the lobster Homarus americanus, the orcokinin family members, NFDEIDRSGFG-OMe and SSEDMDRLGFG-OMe, are non-native peptides generated from full-length orcokinin precursors as the result of a highly selective peptide modification (peptide truncation with C-terminal methylation) that occurs during extraction. These peptides were observed by MALDI-FTMS and LC-Q-TOFMS analyses when eyestalk ganglia were extracted in a methanolic solvent, but not when tissues were dissected, co-crystallized with matrix, and analyzed directly with methanol excluded from the sample preparation. The identity of NFDEIDRSGFG-OMe was established using MALDI-FTMS/SORI-CID, LC-Q-TOFMS/MS, and comparison with a peptide standard. Extraction substituting deuterated methanol for methanol confirmed that the latter is the source of the C-terminal methyl group, and MS/MS confirmed the C-terminal localization of the added CD3. Surprisingly, NFDEIDRSGFG-OMe is not produced via a chemical acid-catalyzed esterification. Instead, the methylated peptide appears to result from proteolytic truncation in the presence of methanol, as evidenced by a reduction in conversion with the addition of a protease-inhibitor cocktail; heat effectively eliminated the conversion. This unusual and highly specific extraction-derived peptide conversion exemplifies the need to consider both chemical and biochemical processes that may modify the structure of endogenous neuropeptides.
Collapse
Affiliation(s)
- Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bae N, Pollak A, Lubec G. Proteins from Erwinia asparaginase Erwinase ® and E. coli asparaginase 2 MEDAC ® for treatment of human leukemia, show a multitude of modifications for which the consequences are completely unclear. Electrophoresis 2011; 32:1824-8. [PMID: 21769889 DOI: 10.1002/elps.201100117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
L-Asparaginase from Erwinia chrysanthemi (ASPG_ERWCH; UniProtKB accession number P06608 (Erwinase(®))) and L-asparaginase 2 from Escherichia coli (ASPG2_ECOLI; UniProtKB accession number P00805 (Medac(®))), both L-asparagine amidohydrolases, are widely used for the treatment of acute lymphoblastic leukemia. A series of serious side effects have been reported and this warrants studies into the protein chemistry of the medical products sold. Mass spectrometry (MS) data on ASPG_ERWCH and ASPG2_ECOLI have not been published so far and herein a gel-based proteomics study was performed to provide information about sequence and modifications of the commercially available medical products. ASPG_ERWCH and ASPG2_ECOLI were applied onto two-dimensional gel electrophoresis, spots were in-gel digested with several proteases and resulting peptides and protein modifications were analysed by nano-ESI-LC-MS/MS. Four spots were observed for ASPG_ERWCH, six spots were observed for ASPG2_ECOLI and the identified proteins showed high sequence coverage without sequence conflicts. Several protein modifications including technical and posttranslational modifications were demonstrated. Protein modifications are known to change physicochemical, immunochemical, biological and pharmacological properties and results from this work may challenge re-designing of the product including possible removal of the modifications by the manufacturer because it is not known whether they are contributing to the serious adverse effects of the protein drug.
Collapse
Affiliation(s)
- Narkhyun Bae
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
6
|
|
7
|
Yasumitsu H, Ozeki Y, Kawsar SM, Toda T, Kanaly R. CGP stain: An inexpensive, odorless, rapid, sensitive, and in principle in vitro methylation-free Coomassie Brilliant Blue stain. Anal Biochem 2010; 406:86-8. [DOI: 10.1016/j.ab.2010.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 11/26/2022]
|
8
|
Anderson DC, Green GR, Smith K, Selker EU. Extensive and varied modifications in histone H2B of wild-type and histone deacetylase 1 mutant Neurospora crassa. Biochemistry 2010; 49:5244-57. [PMID: 20462202 DOI: 10.1021/bi100391w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA methylation is deficient in a histone deacetylase 1 (HDA1) mutant (hda-1) strain of Neurospora crassa with inactivated histone deacetylase 1. Difference two-dimensional (2D) gels identified the primary histone deacetylase 1 target as histone H2B. Acetylation was identified by LC-MS/MS at five different lysines in wild-type H2B and at 11 lysines in hda-1 H2B, suggesting Neurospora H2B is a complex combination of different acetylated species. Individual 2D gel spots were shifted by single lysine acetylations. FTICR MS-observed methylation ladders identify an ensemble of 20-25 or more modified forms for each 2D gel spot. Twelve different lysines or arginines were methylated in H2B from the wild type or hda-1; only two were in the N-terminal tail. Arginines were modified by monomethylation, dimethylation, or deimination. H2B from wild-type and hda-1 ensembles may thus differ by acetylation at multiple sites, and by additional modifications. Combined with asymmetry-generated diversity in H2B structural states in nucleosome core particles, the extensive modifications identified here can create substantial histone-generated structural diversity in nucleosome core particles.
Collapse
Affiliation(s)
- D C Anderson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | |
Collapse
|
9
|
|
10
|
Chen G, Liu H, Wang X, Li Z. In vitro methylation by methanol: proteomic screening and prevalence investigation. Anal Chim Acta 2009; 661:67-75. [PMID: 20113717 DOI: 10.1016/j.aca.2009.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/21/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
It is assumed that much more functional importance for protein activity than expected may be granted by methylation that occurs at the side-chain of aspartate or glutamate residue. In vitro methylation mainly comes from the use of methanol in sample preparation prior to MS analysis. In this study, we first performed the methylation site-directed proteomic screening of bovine serum albumin, ovalbumin and 20S proteasome for gel staining using a meaningfully indicative MS-pattern of peak tag (termed as 4P tag) and manual inspection for mass spectral data. As a result, there were 17 proteolytic peptides with 20 modified sites confirmed to be in vitro methylated. Subsequently, the prevalence investigation was performed, focusing on the reaction kinetic behavior of in vitro methylation. This study provided a simple and robust approach for confirmation of in vitro methylation by methanol, as well as the precautious guide for the use of methanol in proteomic study.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | |
Collapse
|
11
|
Birkó Z, Swiatek M, Szájli E, Medzihradszky KF, Vijgenboom E, Penyige A, Keseru J, van Wezel GP, Biró S. Lack of A-factor production induces the expression of nutrient scavenging and stress-related proteins in Streptomyces griseus. Mol Cell Proteomics 2009; 8:2396-403. [PMID: 19625340 DOI: 10.1074/mcp.m900194-mcp200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small gamma-butyrolactone A-factor is an important autoregulatory signaling molecule for the soil-inhabiting streptomycetes. Starvation is a major trigger for development, and nutrients are provided by degradation of the vegetative mycelium via a process of programmed cell death, reusing proteins, nucleic acids, and cell wall material. The A-factor regulon includes many extracellular hydrolases. Here we show via proteomics analysis that many nutrient-scavenging and stress-related proteins were overexpressed in an A-factor non-producing mutant of Streptomyces griseus B-2682. Transcript analysis showed that this is primarily due to differential transcription of the target genes during early development. The targets include proteins relating to nutrient stress and environmental stress and an orthologue of the Bacillus sporulation control protein Spo0M. The enhanced expression of these proteins underlines the stress that is generated by the absence of A-factor. Wild-type developmental gene expression was restored to the A-factor non-producing mutant by the signaling protein Factor C in line with our earlier observation that Factor C triggers A-factor production.
Collapse
Affiliation(s)
- Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sumpton D, Bienvenut W. Coomassie stains: are they really mass spectrometry compatible? RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1525-1529. [PMID: 19370711 DOI: 10.1002/rcm.4029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
13
|
Jin LT, Li XK, Cong WT, Hwang SY, Choi JK. Previsible silver staining of protein in electrophoresis gels with mass spectrometry compatibility. Anal Biochem 2008; 383:137-43. [DOI: 10.1016/j.ab.2008.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/25/2022]
|
14
|
Nock CM, Ball MS, White IR, Skehel JM, Bill L, Karuso P. Mass spectrometric compatibility of Deep Purple and SYPRO Ruby total protein stains for high-throughput proteomics using large-format two-dimensional gel electrophoresis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:881-886. [PMID: 18293286 DOI: 10.1002/rcm.3483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In order to identify putative biomarkers from two-dimensional (2D) gel electrophoresis it is necessary to use a visualization technique that is sensitive, has a large dynamic range and does not interfere with the identification of the protein. As mass spectrometry increases in sensitivity more pressure is placed on visualization techniques that facilitate proteomic workflows but do not interfere with downstream processing. Two stains reported to meet these requirements are SYPRO Ruby (Invitrogen) and Deep Purple (GE Healthcare). This study examined the compatibility of these stains with protein identification by selecting spots from replicate 2D gels of human plasma and subjecting these to protein identification using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Using a test of two populations of proportions it was found that proteins were statistically more likely to be identified from gels stained with Deep Purple. Additionally, the identifications from Deep Purple stained gels are of higher quality because they are based on multiple peptides.
Collapse
Affiliation(s)
- Christina M Nock
- GlaxoSmithKline Pharmaceuticals, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | | | | | | | | | | |
Collapse
|
15
|
Ball MS, Karuso P. Mass Spectral Compatibility of Four Proteomics Stains. J Proteome Res 2007; 6:4313-20. [DOI: 10.1021/pr070398z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malcolm S. Ball
- FLUOROtechnics Pty Limited, Macquarie University, Sydney, NSW, 2109, Australia, and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Peter Karuso
- FLUOROtechnics Pty Limited, Macquarie University, Sydney, NSW, 2109, Australia, and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
16
|
Lubec G, Afjehi-Sadat L. Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev 2007; 107:3568-84. [PMID: 17645314 DOI: 10.1021/cr068213f] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gert Lubec
- Medical University of Vienna, Department of Pediatrics, Waehringer Guertel 18, A-1090 Vienna, Austria.
| | | |
Collapse
|
17
|
Birkó Z, Bialek S, Buzás K, Szájli E, Traag BA, Medzihradszky KF, Rigali S, Vijgenboom E, Penyige A, Kele Z, van Wezel GP, Biró S. The Secreted Signaling Protein Factor C Triggers the A-factor Response Regulon in Streptomyces griseus. Mol Cell Proteomics 2007; 6:1248-56. [PMID: 17376769 DOI: 10.1074/mcp.m600367-mcp200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the prokaryotic genus Streptomyces produce over 60% of all known antibiotics and a wide range of industrial enzymes. A leading theme in microbiology is which signals are received and transmitted by these organisms to trigger the onset of morphological differentiation and antibiotic production. The small gamma-butyrolactone A-factor is an important autoregulatory signaling molecule in streptomycetes, and A-factor mutants are blocked in development and antibiotic production. In this study we showed that heterologous expression of the 324-amino acid secreted regulatory protein Factor C resulted in restoration of development and enhanced antibiotic production of an A-factor-deficient bald mutant of Streptomyces griseus, although the parental strain lacks an facC gene. Proteome analysis showed that in the facC transformant the production of several secreted proteins that belong to the A-factor regulon was restored. HPLC-MS/MS analysis indicated that this was due to restoration of A-factor production to wild-type levels in the transformant. This indicates a connection between two highly divergent types of signaling molecules and possible interplay between their regulatory networks.
Collapse
Affiliation(s)
- Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
John JPP, Chen WQ, Pollak A, Lubec G. Mass Spectrometric Studies on Mouse Hippocampal Synapsins Ia, IIa, and IIb and Identification of a Novel Phosphorylation Site at Serine-546. J Proteome Res 2007; 6:2695-710. [PMID: 17579389 DOI: 10.1021/pr070157r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synapsins are key phosphoproteins in the mammalian brain, and structural research on synapsins is still holding center stage. Proteins were extracted from hippocampal tissue and separated on two-dimensional gel electrophoresis (2-DE), and the spots were analyzed by MALDI-TOF-TOF and nano-LC-ESI-MS/MS. Synapsins Ia, IIa, and IIb were unambiguously identified and represented by 15 individual spots on 2-DE. Several serine phosphorylation sites were confirmed, and a novel phosphorylation site was observed at Ser-546 in synapsin IIa in all gels analyzed.
Collapse
Affiliation(s)
- Julius Paul Pradeep John
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
19
|
Brunner E, Gerrits B, Scott M, Roschitzki B. Differential display and protein quantification. EXS 2007; 97:115-40. [PMID: 17432266 DOI: 10.1007/978-3-7643-7439-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
High-throughput quantitation of proteins is of essential importance for all systems biology approaches and provides complementary information on steady-state gene expression and perturbation-induced systems responses. This information is necessary because it is, e.g., difficult to predict protein concentrations from the level of mRNAs, since regulatory processes at the posttranscriptional level adjust protein concentrations to prevailing conditions. Despite its importance, quantitative proteomics is still a challenging task because of the high dynamic range of protein concentrations in the cell and the variation in the physical properties of proteins. In this chapter we review the current status of, and options for, protein quantification in high-throughput experiments and discuss the suitability and limitations of different existing methods.
Collapse
Affiliation(s)
- Erich Brunner
- Functional Genomics Center Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
20
|
Schaefer H, Chamrad DC, Herrmann M, Stuwe J, Becker G, Klose J, Blueggel M, Meyer HE, Marcus K. Study of posttranslational modifications in lenticular αA-Crystallin of mice using proteomic analysis techniques. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1948-62. [PMID: 17157567 DOI: 10.1016/j.bbapap.2006.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/09/2006] [Accepted: 10/09/2006] [Indexed: 11/19/2022]
Abstract
In the present work the complexity in the 2D-gel protein pattern of murin lenticular alphaA-Crystallin was analyzed. An in depth study of the different protein isoforms was done combining different proteomic tools. Lens proteins of four different ages, from embryo to 100-week-old mice, were separated by large 2D-PAGE, revealing an increase in the number and intensity of the spots of alphaA-Crystallin during the process of aging. For further analyses the oldest mice were chosen. Comparison and evaluation of two different staining methods proved Imidazole-Zinc to be a good alternative to the generally used Coomassie stain. The characterization of the different alphaA-Crystallin protein species was done using nanoLC-ESI-MS/MS (liquid chromatography electrospray ionisation tandem mass spectrometry). Data interpretation was done by database searching, manual validation and a new MS/MS-interpretation tool for posttranslational modifications--the PTM-Explorer. Using this way, eight different phosphorylation sites were identified and localized; the identification of four of them was not published so far. Furthermore, quantitative N-terminal acetylation of alphaA-Crystallin and variable C-terminal truncation was observed, also not published in this extent yet. The results of the mass spectrometric analysis were validated by immunoblotting experiments using two different alphaA-Crystallin specific antibodies. In addition, a fluorescent phospho-specific stain was used to detect the protein spots including phosphorylation groups. Re-separation 2D-PAGE was done to round off the present study and explain the appearance of some of the protein spots in the gel as artifacts of the 2D-PAGE separation.
Collapse
MESH Headings
- Aging
- Amino Acid Sequence
- Animals
- Chromatography, Liquid
- Electrophoresis, Gel, Two-Dimensional/methods
- Imidazoles
- Immunoblotting
- Lens, Crystalline/embryology
- Lens, Crystalline/growth & development
- Lens, Crystalline/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Phosphoproteins/analysis
- Phosphorylation
- Protein Processing, Post-Translational
- Proteomics/methods
- Rosaniline Dyes
- Spectrometry, Mass, Electrospray Ionization
- Staining and Labeling
- Tandem Mass Spectrometry
- Zinc
- alpha-Crystallin A Chain/metabolism
Collapse
Affiliation(s)
- Heike Schaefer
- Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstr.150, 44801 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Santoni V, Verdoucq L, Sommerer N, Vinh J, Pflieger D, Maurel C. Methylation of aquaporins in plant plasma membrane. Biochem J 2006; 400:189-97. [PMID: 16839310 PMCID: PMC1635436 DOI: 10.1042/bj20060569] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A thorough analysis, using MS, of aquaporins expressed in plant root PM (plasma membrane) was performed, with the objective of revealing novel post-translational regulations. Here we show that the N-terminal tail of PIP (PM intrinsic protein) aquaporins can exhibit multiple modifications and is differentially processed between members of the PIP1 and PIP2 subclasses. Thus the initiating methionine was acetylated or cleaved in native PIP1 and PIP2 isoforms respectively. In addition, several residues were detected to be methylated in PIP2 aquaporins. Lys3 and Glu6 of PIP2;1, one of the most abundant aquaporins in the PM, occurred as di- and mono-methylated residues respectively. Ectopic expression in Arabidopsis suspension cells of PIP2;1, either wild-type or with altered methylation sites, revealed an interplay between methylation at the two sites. Measurements of water transport in PM vesicles purified from these cells suggested that PIP2;1 methylation does not interfere with the aquaporin intrinsic water permeability. In conclusion, the present study identifies methylation as a novel post-translational modification of aquaporins, and even plant membrane proteins, and may represent a critical advance towards the identification of new regulatory mechanisms of membrane transport.
Collapse
Affiliation(s)
- Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Agro-M/INRA/CNRS/UM2 UMR5004, 2 place Viala, F-34060 Montpellier cedex 1, France.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
To date, proteomics approaches have aimed to either identify novel proteins or change in protein expression/modification in various organisms under normal or disease conditions. One major aspect of functional proteomics is to identify protein biological properties in a given context, however, forward proteomics approaches alone cannot complete this goal. Indeed, with the increasing successes of such proteomics-based research strategies and the subsequent increasing amounts of proteins identified with unknown molecular functions, approaches allowing for systematic analyses of protein functions are desired. In this review, we propose to depict the complementarities of forward and reverse proteomics approaches in the definite understanding of protein functions. This dual strategy requires a data integration loop which allows for systematic characterization of protein function(s). The details of the integrative process combining both in silico and experimental resources and tools are presented. Altogether, we believe that the integration of forward and reverse proteomics approaches supported by bioinformatics will provide an efficient path towards systems biology.
Collapse
Affiliation(s)
- Sandrine Palcy
- Organelle Signaling laboratory, Department of Surgery, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
23
|
Schmidt F, Krah A, Schmid M, Jungblut PR, Thiede B. Distinctive mass losses of tryptic peptides generated by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:933-6. [PMID: 16470705 DOI: 10.1002/rcm.2382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
24
|
Hachmann JP, Amshey JW. Models of protein modification in Tris-glycine and neutral pH Bis-Tris gels during electrophoresis: effect of gel pH. Anal Biochem 2005; 342:237-45. [PMID: 15935323 DOI: 10.1016/j.ab.2005.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/09/2005] [Accepted: 04/12/2005] [Indexed: 11/16/2022]
Abstract
The pH of conventional Tris-glycine SDS-PAGE gels during a run is determined to be 9.5, in contrast to Bis-Tris-Mes gels where the pH is 7.2. Concentrations of free acrylamide are determined to be less than 10mM in commercial gels of both types, and it is found that of the major components in these gels, only glycine and protein amine or sulfhydryl functions are likely to react with residual acrylamide during the time frame of typical separations. The addition of acrylamide to sulfhydryl groups on proteins is modeled using glutathione and cysteine at acrylamide concentrations found in the commercial gels. Rate constants are determined for these reactions as well as for reaction with glycine at the pH that proteins will encounter in these gel types. The half-life for glutathione sulfhydryl at 10mM acrylamide and pH 7.2 is more than 4h at room temperature. Rates are significantly lower in Bis-Tris-Mes gels than in Tris-glycine gels, reducing the risk of adventitious protein modification. Commercial Bis-Tris-Mes gels provide a sample reduction buffer at pH 8.5 versus the conventional pH 6.8 of Tris-glycine gels. It is shown that significantly less protein degradation occurs during sample preparation at the higher pH used with Bis-Tris gels.
Collapse
|
25
|
Hirsch J, Hansen KC, Burlingame AL, Matthay MA. Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1-23. [PMID: 15187006 DOI: 10.1152/ajplung.00301.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomics aims to study the whole protein content of a biological sample in one set of experiments. Such an approach has the potential value to acquire an understanding of the complex responses of an organism to a stimulus. The large vascular and air space surface area of the lung expose it to a multitude of stimuli that can trigger a variety of responses by many different cell types. This complexity makes the lung a promising, but also challenging, target for proteomics. Important steps made in the last decade have increased the potential value of the results of proteomics studies for the clinical scientist. Advances in protein separation and staining techniques have improved protein identification to include the least abundant proteins. The evolution in mass spectrometry has led to the identification of a large part of the proteins of interest rather than just describing changes in patterns of protein spots. Protein profiling techniques allow the rapid comparison of complex samples and the direct investigation of tissue specimens. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. These methodologies have made the application of proteomics on the study of specific diseases or biological processes under clinically relevant conditions possible. The quantity of data that is acquired with these new techniques places new challenges on data processing and analysis. This article provides a brief review of the most promising proteomics methods and some of their applications to pulmonary research.
Collapse
Affiliation(s)
- Jan Hirsch
- Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Ave. HSW 825, San Francisco, CA 94143-0130, USA.
| | | | | | | |
Collapse
|
26
|
|
27
|
Lamer S, Jungblut PR. Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 752:311-22. [PMID: 11270870 DOI: 10.1016/s0378-4347(00)00446-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In theory, peptide mass fingerprinting by matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower microl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration.
Collapse
Affiliation(s)
- S Lamer
- Max-Planck-Institute for Infection Biology, Central Support Unit Biochemistry, Berlin, Germany
| | | |
Collapse
|
28
|
Berggren K, Chernokalskaya E, Steinberg TH, Kemper C, Lopez MF, Diwu Z, Haugland RP, Patton WF. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 2000; 21:2509-21. [PMID: 10939466 DOI: 10.1002/1522-2683(20000701)21:12<2509::aid-elps2509>3.0.co;2-9] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.
Collapse
|
29
|
Abstract
Mass spectrometry (MS) has become the technique of choice to identify proteins. This has been largely accomplished by the combination of high-resolution two-dimensional (2-D) gel separation with robotic sample preparation, automated MS measurement, data analysis, and database query. Developments during the last five years in MS associated with protein gel separation are reviewed.
Collapse
Affiliation(s)
- H W Lahm
- F. Hoffmann-LaRoche Ltd., Pharmaceutical Research, Roche Genetics, Basel, Switzerland.
| | | |
Collapse
|
30
|
Patton WF. A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 2000; 21:1123-44. [PMID: 10786886 DOI: 10.1002/(sici)1522-2683(20000401)21:6<1123::aid-elps1123>3.0.co;2-e] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As proteomics evolves into a high-throughput technology for the study of global protein regulation, new demands are continually being placed upon protein visualization and quantitation methods. Chief among these are increased detection sensitivity, broad linear dynamic range and compatibility with modern methods of microchemical analyses. The limitations of conventional protein staining techniques are increasingly being encountered as high sensitivity electrophoresis methods are interfaced with automated gel stainers, image analysis workstations, robotic spot excision instruments, protein digestion work stations, and mass spectrometers. Three approaches to fluorescence detection of proteins in two-dimensional (2-D) gels are currently practiced: covalent derivatization of proteins with fluorophores, intercalation of fluorophores into the sodium dodecyl sulfate (SDS) micelle, and direct electrostatic interaction with proteins by a Coomassie Brilliant Blue-type mechanism. This review discusses problems encountered in the analysis of proteins visualized with conventional stains and addresses advances in fluorescence protein detection, including immunoblotting, as well as the use of charge-coupled device (CCD) camera-based and laser-scanner-based image acquisition devices in proteomics.
Collapse
Affiliation(s)
- W F Patton
- Molecular Probes, Inc., Eugene, OR 97402, USA.
| |
Collapse
|
31
|
Patton WF. A thousand points of light: The application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 2000. [DOI: 10.1002/(sici)1522-2683(20000401)21:6%3c1123::aid-elps1123%3e3.0.co;2-e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Steinberg TH, Lauber WM, Berggren K, Kemper C, Yue S, Patton WF. Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution. Electrophoresis 2000; 21:497-508. [PMID: 10726749 DOI: 10.1002/(sici)1522-2683(20000201)21:3<497::aid-elps497>3.0.co;2-i] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SYPRO Tangerine stain is an environmentally benign alternative to conventional protein stains that does not require solvents such as methanol or acetic acid for effective protein visualization. Instead, proteins can be stained in a wide range of buffers, including phosphate-buffered saline or simply 150 mM NaCl using an easy, one-step procedure that does not require destaining. Stained proteins can be excited by ultraviolet light of about 300 nm or with visible light of about 490 nm. The fluorescence emission maximum of the dye is approximately 640 nm. Noncovalent binding of SYPRO Tangerine dye is mediated by sodium dodecyl sulfate (SDS) and to a lesser extent by hydrophobic amino acid residues in proteins. This is in stark contrast to acidic silver nitrate staining, which interacts predominantly with lysine residues or Coomassie Blue R, which in turn interacts primarily with arginine and lysine residues. The sensitivity of SYPRO Tangerine stain is similar to that of the SYPRO Red and SYPRO Orange stains - about 4-10 ng per protein band. This detection sensitivity is comparable to colloidal Coomassie blue staining and rapid silver staining procedures. Since proteins stained with SYPRO Tangerine dye are not fixed, they can easily be eluted from gels or utilized in zymographic assays, provided that SDS does not inactivate the protein of interest. This is demonstrated with in-gel detection of rabbit liver esterase activity using alpha-naphthyl acetate and Fast Blue BB dye as well as Escherichia coli beta-glucuronidase activity using ELF-97 beta-D-glucuronide. The dye is also suitable for staining proteins in gels prior to their transfer to membranes by electroblotting. Gentle staining conditions are expected to improve protein recovery after electroelution and to reduce the potential for artifactual protein modifications such as the alkylation of lysine and esterification of glutamate residues, which complicate interpretation of peptide fragment profiles generated by mass spectrometry.
Collapse
|
33
|
Castellanos-Serra L, Proenza W, Huerta V, Moritz RL, Simpson RJ. Proteome analysis of polyacrylamide gel-separated proteins visualized by reversible negative staining using imidazole-zinc salts. Electrophoresis 1999; 20:732-7. [PMID: 10344241 DOI: 10.1002/(sici)1522-2683(19990101)20:4/5<732::aid-elps732>3.0.co;2-q] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Identification and characterization of proteins isolated from natural sources by polyacrylamide gel electrophoresis has become a routine technique. However, efficient sample proteolysis and subsequent peptide extraction is still problematic. Here, we present an improved protocol for the rapid detection of polyacrylamide gel-separated proteins, in situ protein modification, proteolytic digestion and peptide extraction for subsequent protein identification and characterization by capillary high-performance liquid chromatography/tandem mass spectrometry. This simple technique employs the rapid imidazole-zinc reverse stain, in-gel S-pyridylethylation and proteolytic digestion of microcrushed polyacrylamide gel pieces with proteases. This technique obviates the need for buffer exchange or gel lyophilisation due to all of the sample manipulation steps being carried out at near neutral pH and thus lends itself readily to automation.
Collapse
|