1
|
Sandbaumhüter FA, Aerts JT, Theurillat R, Andrén PE, Thormann W, Jansson ET. Enantioselective CE-MS analysis of ketamine metabolites in urine. Electrophoresis 2023; 44:125-134. [PMID: 36398998 PMCID: PMC10108174 DOI: 10.1002/elps.202200175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
The chiral drug ketamine has long-lasting antidepressant effects with a fast onset and is also suitable to treat patients with therapy-resistant depression. The metabolite hydroxynorketamine (HNK) plays an important role in the antidepressant mechanism of action. Hydroxylation at the cyclohexanone ring occurs at positions 4, 5, and 6 and produces a total of 12 stereoisomers. Among those, the four 6HNK stereoisomers have the strongest antidepressant effects. Capillary electrophoresis with highly sulfated γ-cyclodextrin (CD) as a chiral selector in combination with mass spectrometry (MS) was used to develop a method for the enantioselective analysis of HNK stereoisomers with a special focus on the 6HNK stereoisomers. The partial filling approach was applied in order to avoid contamination of the MS with the chiral selector. Concentration of the chiral selector and the length of the separation zone were optimized. With 5% highly sulfated γ-CD in 20 mM ammonium formate with 10% formic acid and a 75% filling the four 6HNK stereoisomers could be separated with a resolution between 0.79 and 3.17. The method was applied to analyze fractionated equine urine collected after a ketamine infusion and to screen the fractions as well as unfractionated urine for the parent drug ketamine and other metabolites, including norketamine and dehydronorketamine.
Collapse
Affiliation(s)
| | - Jordan T Aerts
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Regula Theurillat
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Erik T Jansson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Pascual-Caro S, Borrull F, Aguilar C, Calull M. Comparison of different chiral selectors for the enantiomeric determination of amphetamine-type substances in human urine by solid-phase extraction followed by capillary electrophoresis-tandem mass spectrometry. Electrophoresis 2021; 43:437-445. [PMID: 34652814 DOI: 10.1002/elps.202100231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
The present study develops a method for the enantioseparation of a group of amphetamines and their metabolites in urine by CE coupled to MS/MS (CE-MS/MS). Amphetamines present a chiral center and thus two enantiomers, which is important from a toxicological point of view because they may have different pharmacokinetic and pharmacological properties. It is therefore essential to find suitable methods to distinguish both enantiomers. Today the use of CE is becoming more important in this field since, with the simple addition of a chiral selector to the background electrolyte, the enantioseparation can easily be achieved. However, when CE is coupled to MS, the use of volatile chiral selectors and compatible background electrolytes or other strategies such as the countercurrent migration approach are required to avoid contamination of the ion source from nonvolatile species. In the present study, we use the latter strategy to evaluate six different chiral selectors using CE-MS/MS. As a sample pre-treatment, two cationic-exchange sorbents-Oasis WCX and Oasis MCX-are compared for the urine pre-treatment. Using this method, it was possible to achieve the complete chiral separation of the amphetamines under study with detection limits ranging between 0.8 and 1.5 ng/mL and method quantification limits between 2.0 and 8.0 ng/mL. Matrix-matched calibration curves up to 150 ng/mL were used to cover the usual concentration ranges at which amphetamines have generally been found in toxicological and forensic analyses.
Collapse
Affiliation(s)
- Sergi Pascual-Caro
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carme Aguilar
- Serra Hunter Professor, Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel˙lí Domingo, 1, Tarragona, 43007, Spain
| | - Marta Calull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
3
|
Fejős I, Tóth G, Várnai B, Szabó ZI, Köteles I, Malanga M, Béni S. Enantioseparation of solriamfetol and its major impurity phenylalaninol by capillary electrophoresis using sulfated gamma cyclodextrin. Electrophoresis 2021; 42:1818-1825. [PMID: 34109644 DOI: 10.1002/elps.202100076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/11/2022]
Abstract
R-solriamfetol is a recently approved drug used for the treatment of excessive sleepiness associated with narcolepsy and sleep apnea. Herein, a capillary electrophoretic method was developed, enabling the simultaneous analysis of the API and its S-enantiomer in addition to the enantiomers of its major impurity phenylalaninol. Twenty-nine different cyclodextrins (CDs), including native, neutral, and charged ones were screened as potential chiral selectors, and the best results were obtained with sulfated CDs. Randomly sulfated-β-CD exhibited outstanding enantioresolution, the peaks of phenylalaninol enantiomers inserted between the two peaks of solriamfetol enantiomers, while sulfated-γ-CD (S-γ-CD) showed remarkable resolution values in a much shorter analysis time with the optimal enantiomer migration order. Among the single isomer sulfated CD derivatives, substituent dependent enantiomer migration order reversal could also be observed in the case of heptakis(6-O-sulfo)-β-CD (HS-β-CD) or heptakis(2,3-O-dimethyl-6-O-sulfo)-β-CD (HDMS-β-CD) with R-,S-solriamfetol, and heptakis(2,3-O-diacetyl-6-O-sulfo)-β-CD (HDAS-β-CD) resulting S-,R-solriamfetol migration order. The sulfated-γ-CD system was chosen for method optimization applying orthogonal experimental design. The optimized method (45 mM Tris-acetate buffer, pH 4.5, 4 mM S-γ-CD, 21°C, +19.5 kV) was capable for the baseline separation of solriamfetol and phenylalaninol enantiomers within 7 min. The optimized method was validated according to the ICH guidelines and successfully applied for the analysis of pharmaceutical preparation (Sunosi® 75 mg tablet), thus it may serve as a routine procedure for the laboratories of regulatory authorities as well as in Pharmacopoeias.
Collapse
Affiliation(s)
- Ida Fejős
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Bianka Várnai
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Zoltán István Szabó
- Department of Pharmaceutical Industry and Management, George Emil Palad University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd, Budapest, Hungary
| | - Szabolcs Béni
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Loganathan D, Yi R, Patel B, Zhang J, Kong N. A sensitive HPLC-MS/MS method for the detection, resolution and quantitation of cathinone enantiomers in horse blood plasma and urine. Anal Bioanal Chem 2021; 413:2147-2161. [PMID: 33517480 DOI: 10.1007/s00216-021-03182-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Resolution of cathinone enantiomers in equine anti-doping analysis is becoming more important to distinguish the inadvertent ingestion of plant-based products from those of deliberate administration of designer synthetic analogs. With this in mind, a rapid and sensitive method was developed and validated for the detection, resolution and quantitative determination of cathinone enantiomers in horse blood plasma and urine. The analytes were recovered from the blood plasma and urine matrices by using a liquid-liquid extraction after adjusting the pH to 9. The recovered analytes were derivatized with Nα-(2,4-dinitro-5-fluorophenyl)-L-valinamide, a chiral derivatizing agent analogous to Marfey's reagent. The resulting diastereoisomers were baseline resolved under a reversed-phase liquid chromatographic condition. Derivatization of the analytes not only allowed the separation of the enantiomers using cost-effective traditional liquid chromatography conditions and reversed-phase columns but also increased the sensitivity, at least to an order of magnitude, when tandem mass spectrometry is used for the detection. A limit of detection of 0.05 ng/mL was achieved for cathinone enantiomers for both matrices. Acceptable intraday and interday precision and accuracy along with satisfactory dilution accuracy and precision were observed during the method validation. The method suitability was tested using the post administration urine samples collected after single doses of cathinone and ephedrine as single-enantiomeric form and methcathinone as racemic form. Finally, a proof of concept of the isomeric ratio in urine samples to distinguish the presence of cathinone as a result of accidental ingestion of plant-based product from that of an illicit use of a designer product is demonstrated. To the best of our knowledge, this is the first such work where cathinone enantiomers were resolved and quantified in horse blood plasma and urine at sub nanogram levels.
Collapse
Affiliation(s)
- Devan Loganathan
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada.
| | - Rong Yi
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada
| | - Bhavesh Patel
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada
| | - Julia Zhang
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada
| | - Noel Kong
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, 8577 Commerce Court, Burnaby, BC, V5A 4N5, Canada
| |
Collapse
|
5
|
Hemasa AL, Naumovski N, Maher WA, Ghanem A. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals. NANOMATERIALS 2017; 7:nano7070186. [PMID: 28718832 PMCID: PMC5535252 DOI: 10.3390/nano7070186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
Abstract
Carbon nanotubes (CNTs) possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas chromatography (GC). Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns.
Collapse
Affiliation(s)
- Ayman L Hemasa
- Chirality Program, Biomedical Science, University of Canberra, Bruce, Australian Capital Territory (ACT) 2617, Australia.
| | - Nenad Naumovski
- Collaborative Research in Bioactives and Biomarkers Group (CRIBB), University of Canberra, Bruce, Australian Capital Territory (ACT) 2617, Australia.
| | - William A Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory (ACT) 2617, Australia.
| | - Ashraf Ghanem
- Chirality Program, Biomedical Science, University of Canberra, Bruce, Australian Capital Territory (ACT) 2617, Australia.
| |
Collapse
|
6
|
Albals D, Heyden YV, Schmid MG, Chankvetadze B, Mangelings D. Chiral separations of cathinone and amphetamine-derivatives: Comparative study between capillary electrochromatography, supercritical fluid chromatography and three liquid chromatographic modes. J Pharm Biomed Anal 2016; 121:232-243. [DOI: 10.1016/j.jpba.2015.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
|
7
|
Kartsova LA, Bessonova EA. Biomedical applications of capillary electrophoresis. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Mikuma T, Iwata YT, Miyaguchi H, Kuwayama K, Tsujikawa K, Kanamori T, Inoue H. The use of a sulfonated capillary on chiral capillary electrophoresis/mass spectrometry of amphetamine-type stimulants for methamphetamine impurity profiling. Forensic Sci Int 2015; 249:59-65. [DOI: 10.1016/j.forsciint.2015.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
9
|
Moini M, Rollman CM. Compatibility of highly sulfated cyclodextrin with electrospray ionization at low nanoliter/minute flow rates and its application to capillary electrophoresis/electrospray ionization mass spectrometric analysis of cathinone derivatives and their optical isomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:304-10. [PMID: 26411628 DOI: 10.1002/rcm.7106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 05/14/2023]
Abstract
RATIONALE Sodium salts of cyclodextrins are commonly used in capillary electrophoresis/mass spectrometry (CE/MS) analysis of illicit drugs and their optical isomers. To avoid the suppression effect of cyclodextrins under electrospray ionization (ESI), the partial filling technique (PFT) is commonly utilized, which has a limited resolution. Low-flow nano-ESI has been shown to reduce the suppression effect of the salts. To test the compatibility of low-flow ESI with a background electrolyte (BGE) containing sodium salts of cyclodextrin, sheathless narrow capillary CE/MS with flow rates of low nanoliters/minute (nL/min) was applied to the separation and detection of cathinones and their positional and optical isomers for the first time. METHODS Low-flow sheathless CE/MS using a 20-µm-i.d. capillary in conjunction with a porous tip interface was used for the separation of cathinone derivatives and their optical isomers. Highly sulfated γ-cyclodextrin (HS-γ-CD) in conjunction with (+)-18-crown-6-tetracarboxylic acid ((+)-18-C-6-TCA) was used as the BGE and an ion trap mass spectrometer operating in full scan mode was utilized. RESULTS Utilizing low flow rate (~10 nL/min) sheathless CE/MS, the use of the sodium salt of HS-γ-CD as the BGE was compared with the same solution using PFT. The relative and absolute sensitivity of detection of cathinones were about the same, indicating that under low-flow sheathless CE/MS there was no significant suppression due to the existence of HS-γ-CD in the electrospray process. However, enhanced resolution of cathinone derivatives and their positional and optical isomers was observed when the solution of HS-γ-CD was used as the BGE. The enhanced resolution was because of the presence of the HS-γ-CD in the entire capillary during the analysis. The addition of 15 mM (+)-18-C-6-TCA to the BGE containing HS-γ-CD further enhanced the resolution resulting in separation of all cathinones and their positional and optical isomers. CONCLUSIONS A novel CE/MS technique has been introduced that combines low-flow sheathless CE/MS, with HS-γ-CD and 15 mM (+)-18-C-6-TCA as the BGE for separation of cathinone derivatives as well as their positional and optical isomers.
Collapse
Affiliation(s)
- Mehdi Moini
- Department of Forensic Sciences, George Washington University, Washington, DC, USA
| | | |
Collapse
|
10
|
Newmeyer MN, Concheiro M, Huestis MA. Rapid quantitative chiral amphetamines liquid chromatography-tandem mass spectrometry: method in plasma and oral fluid with a cost-effective chiral derivatizing reagent. J Chromatogr A 2014; 1358:68-74. [PMID: 25065924 DOI: 10.1016/j.chroma.2014.06.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/04/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
Methamphetamine is a widely abused psychostimulant containing a chiral center. Consumption of over-the-counter and prescription medications may yield positive amphetamines results, but chiral separation of l- and d-methamphetamine and its metabolite amphetamine can help determine whether the source was licit or illicit. We present the first LC-MS/MS method with precolumn derivatization for methamphetamine and amphetamine chiral resolution in plasma and oral fluid collected with the Oral-Eze(®) and Quantisal™ devices. To 0.5mL plasma, 0.75mL Oral-Eze, or 1mL Quantisal specimen racemic d11-methamphetamine and amphetamine internal standards were added, followed by protein precipitation. Samples were centrifuged and supernatants loaded onto pre-conditioned Phenomenex(®) Strata™-XC Polymeric Strong Cation solid phase extraction columns. After washing, analytes were eluted with 5% ammonium hydroxide in methanol. The eluate was evaporated to dryness and reconstituted in water. Derivatization was performed with 1-fluoro-2,4-dinitrophenyl-5-l-alanineamide (Marfey's reagent) and heating at 45°C for 1h. Derivatized enantiomer separations were performed under isocratic conditions (methanol:water, 60:40) with a Phenomenex(®) Kinetex(®) 2.6μm C18 column. Analytes were identified and quantified by two MRM transitions and their ratio on a 3200 QTrap (AB Sciex) mass spectrometer in ESI negative mode. In all three matrices, the method was linear for all enantiomers from 1 to 500μg/L, with imprecision and accuracy of ≤11.3% and 85.3-108%, respectively. Extraction efficiencies ranged from 67.4 to 117% and matrix effects from -17.0 to 468%, with variation always ≤19.1%. Authentic plasma and OF specimens were collected from an IRB-approved study that included controlled Vicks(®) VapoInhaler™ administration. The present method is sensitive, selective, economic and rapid (separations accomplished in <10min), and improves methamphetamine result interpretation.
Collapse
Affiliation(s)
- Matthew N Newmeyer
- Chemistry and Drug Metabolism Section, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Marta Concheiro
- Chemistry and Drug Metabolism Section, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism Section, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
11
|
Zhang YJ, Huang MX, Zhang YP, Armstrong DW, Breitbach ZS, Ryoo JJ. Use of Sulfated Cyclofructan 6 and Sulfated Cyclodextrins for the Chiral Separation of Four Basic Pharmaceuticals by Capillary Electrophoresis. Chirality 2013; 25:735-42. [DOI: 10.1002/chir.22206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/24/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Yi Jun Zhang
- College of Chemistry and Chemical Engineering; Henan Institute of Science and Technology; Xinxiang P. R. China
- Department of Chemistry, Graduate School; Kyungpook National University; Daegu Korea
| | - Ming Xian Huang
- College of Chemistry and Chemical Engineering; Henan Institute of Science and Technology; Xinxiang P. R. China
| | - Yu Ping Zhang
- College of Chemistry and Chemical Engineering; Henan Institute of Science and Technology; Xinxiang P. R. China
| | | | | | - Jae Jeong Ryoo
- Department of Chemistry, Graduate School; Kyungpook National University; Daegu Korea
- Department of Chemistry Education and Green-Nano Materials Research Center; Kyungpook National University; Daegu Korea
| |
Collapse
|
12
|
Glatz Z. Application of short-end injection procedure in CE. Electrophoresis 2013; 34:631-42. [DOI: 10.1002/elps.201200506] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/12/2012] [Accepted: 10/20/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Zdeněk Glatz
- Department of Biochemistry; Faculty of Science and CEITEC; Masaryk University; Brno; Czech Republic
| |
Collapse
|
13
|
Abstract
Capillary electrophoresis (CE) has matured to one of the major liquid phase enantiodifferentiation techniques since the first report in 1985. This can be primarily attributed to the flexibility as well as the various modes available including electrokinetic chromatography (EKC), micellar electrokinetic chromatography (MEKC), and microemulsion electrokinetic chromatography (MEEKC). In contrast to chromatographic techniques, the chiral selector is mobile in the background electrolyte. Furthermore, a large variety of chiral selectors are available that can be easily combined in the same separation system. In addition, the migration order of the enantiomers can be adjusted by a number of approaches. In CE enantiodifferentiations the separation principle is comparable to chromatography while the principle of the movement of the analytes in the capillary is based on electrophoretic phenomena. The present chapter will focus on mechanistic aspects of CE enantioseparations including enantiomer migration order and the current understanding of selector-selectand structures. Selected examples of the basic enantioseparation modes EKC, MEKC, and MEEKC will be discussed.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany,
| |
Collapse
|
14
|
Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal Bioanal Chem 2012; 404:2363-8. [PMID: 22960871 DOI: 10.1007/s00216-012-6384-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Chiral capillary electrophoresis method has been developed to separate aspartate and glutamate enantiomers to investigate the putative neuromodulator function of D-Asp in the central nervous system. To achieve appropriate detection sensitivity fluorescent derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and laser-induced fluorescence detection was applied. Although, simultaneous baseline separation of the two enantiomer pairs could be achieved by using 3 mM 6-monodeoxy-6-mono(3-hydroxy)propylamino-β-cyclodextrin (HPA-β-CD), further improvement of the chemical selectivity was required because of the high excess of L-enantiomers in real samples to be analyzed. The system selectivity was fine-tuned by combination of 8 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin and 5 mM HPA-β-CD in order to increase the resolution between aspartate and glutamate enantiomers. The method was validated for biological application. The limits of detection for D-Asp and D-Glu were 17 and 9 nM, respectively, while the limit of quantification for both analytes was 50 nM. This is the lowest quantification limit reported so far for NBD-tagged D-Asp and D-Glu obtained by validated capillary electrophoresis laser-induced fluorescence method. The applicability of the method was demonstrated by analyzing brain samples of 1-day-old chickens. In all the studied brain areas, the D-enantiomer contributed 1-2 % of the total aspartate content, corresponding to 17-45 nmol/g wet tissue.
Collapse
|
15
|
Lee H, Jhang CS, Liu JT, Lin CH. Rapid screening and determination of designer drugs in saliva by a nib-assisted paper spray-mass spectrometry and separation technique. J Sep Sci 2012; 35:2822-5. [PMID: 22949336 DOI: 10.1002/jssc.201200480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/08/2023]
Abstract
A method for the rapid screening and determination of amphetamine-type designer drugs in saliva by a novel nib-assisted paper spray-mass spectrometry procedure is described. Under optimized conditions, the limit of detections for amphetamine derivatives (model samples: o-, m-, p-chloroamphetamine and o-, m-, p-fluoroamphetamine, respectively) were determined to 0.1 μg/mL by the nib-assisted paper spray-mass spectrometry method. This method is easier and has a higher sensitivity than similar methodologies, including atmospheric pressure/matrix-assisted laser desorption ionization mass spectrometry and electrospray-assisted laser desorption ionization/mass spectrometry. Data obtained using more classical separation methods, including liquid chromatography and capillary electrophoresis, are also reported.
Collapse
Affiliation(s)
- Hsun Lee
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | |
Collapse
|
16
|
Hung SH, Cheng WS, Huang JL, Wang CW, Her GR. Chiral electrokinetic chromatography-electrospray ionization-mass spectrometry using a double junction interface. Electrophoresis 2012; 33:546-51. [DOI: 10.1002/elps.201100384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Płotka JM, Biziuk M, Morrison C. Common methods for the chiral determination of amphetamine and related compounds II. Capillary electrophoresis and nuclear magnetic resonance. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Han Y, Bai Y, Xiao Y, Du F, Liang Y, Tan Z, Zhao M, Liu H. Simultaneous discrimination of jasmonic acid stereoisomers by CE-QTOF-MS employing the partial filling technique. Electrophoresis 2011; 32:2693-9. [PMID: 21910130 DOI: 10.1002/elps.201100043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/22/2011] [Accepted: 03/31/2011] [Indexed: 11/10/2022]
Abstract
Jasmonic acid (JA), an essential plant hormone controlling the plant defense signaling system and developmental processes, has stereospecific bioactivities that have not been well understood mainly due to the limitation in separation and detection methodologies. In this work, a fast CE-UV method based on short-end injection technique and a sensitive CE-QTOF-MS method based on partial filling technique were successfully developed for the enantioseparation of racemic JA. The successive coating technique was also involved by modifying the capillary with multiple ionic polymer layers of polybrene-dextran sulfate-polybrene. This was the first report on the direct resolution of both pairs of JA enantiomers, including two naturally occurring JA stereoisomers. Although no pure JA stereoisomers were commercially available, all the separated JA stereoisomers were identified indirectly by comparing the difference between the racemic standard and plant samples based on the presence and the ratio of each stereoisomer. Satisfactory results were obtained in terms of sensitivity (LOD, 24 ng/mL or 0.7 fmol for single JA stereoisomer) using 45 mmol/L ammonium acetate at pH 4.5 containing 70 mmol/L α-CD as the buffer system. This established CE-QTOF-MS method was later successfully applied for the study of the naturally occurring JA stereoisomers in wounded tobacco leaves.
Collapse
Affiliation(s)
- Yehua Han
- Beijing National Laboratory for Molecular Sciences, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mandrioli R, Mercolini L, Raggi MA. Chiral analysis of amphetamines, methadone and metabolites in biological samples by electrodriven methods. Electrophoresis 2011; 32:2629-39. [DOI: 10.1002/elps.201000687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/14/2011] [Accepted: 03/20/2011] [Indexed: 11/07/2022]
|
20
|
Caslavska J, Thormann W. Stereoselective determination of drugs and metabolites in body fluids, tissues and microsomal preparations by capillary electrophoresis (2000–2010). J Chromatogr A 2011; 1218:588-601. [DOI: 10.1016/j.chroma.2010.08.072] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/20/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
21
|
Wongwan S, Scriba GKE. Impurity profiling of dexamphetamine sulfate by cyclodextrin-modified microemulsion electrokinetic chromatography. Electrophoresis 2010; 31:3006-11. [DOI: 10.1002/elps.201000277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Abstract
This review article addresses the developments and applications of capillary electromigration methods coupled on-line with MS for chiral analysis. The multiple enantiomeric applications of this hyphenated technology are covered including chiral analysis of drugs, food compounds, pesticides, natural metabolites, etc. in different matrices such as plasma, urine, medicines, foods, etc. This work intends to provide an updated overview (including works published till September 2009) on the principal chiral applications carried out by CZE-MS, CEC-MS and MEKC-MS, discussing their main advantages and drawbacks in all their different areas of application as well as their foreseeable development in the not too distant future.
Collapse
Affiliation(s)
- Carolina Simó
- Department of Food Analysis, Institute of Industrial Fermentations (CSIC), Madrid, Spain
| | | | | |
Collapse
|
23
|
Wongwan S, Sungthong B, Scriba GKE. CE assay for simultaneous determination of charged and neutral impurities in dexamphetamine sulfate using a dual CD system. Electrophoresis 2010; 31:1475-81. [PMID: 20358547 DOI: 10.1002/elps.200900724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A CE assay for the simultaneous determination of charged and uncharged potential impurities (1S,2S-(+)-norpseudoephedrine, 1R,2S-(-)-norephedrine, phenylacetone and phenylacetone oxime) of dexamphetamine sulfate including the stereoisomer levoamphetamine was developed and validated. The optimized background electrolyte consisted of a 50 mM sodium phosphate buffer, pH 3.0, containing 80 mg/mL sulfobutylether-beta-CD and 25 mg/mL sulfated beta-CD. Separations were performed in 40.2/35 cm, 50 mum id fused-silica capillaries at a temperature of 20 degrees C and an applied voltage of -10 kV. 1R,2S-(-)-ephedrine was used as internal standard. The assay was validated in the range of 0.05-1.0% for the related substances and in the range of 0.05-5.0% for levoamphetamine. The LOD was 0.01-0.02% depending on the analyte. The assay also allowed the separation of the E,Z-stereoisomers of phenylacetone oxime. The effect of the degree of substitution of sulfobutylether-beta-CD was investigated. In commercial samples of dexamphetamine sulfate between 3.2 and 3.7% of levoamphetamine were found. Furthermore, phenylacetone and phenylacetone oxime could be observed at the LOD, indicating the synthetic origin of the investigated samples.
Collapse
Affiliation(s)
- Sudaporn Wongwan
- Department of Medicinal/Pharmaceutical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | | | | |
Collapse
|
24
|
Mikus P, Maráková K. Advanced CE for chiral analysis of drugs, metabolites, and biomarkers in biological samples. Electrophoresis 2010; 30:2773-802. [PMID: 19653234 DOI: 10.1002/elps.200900173] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An analysis of recent trends indicates that CE can show real advantages over chromatographic methods in ultratrace enantioselective determination of biologically active compounds in complex biological matrices. It is due to high separation efficiency and many applicable in-capillary electromigration effects in CE (countercurrent migration, stacking effects) enhancing significantly (enantio)separability and enabling effective sample preparation (preconcentration, purification, analyte derivatization). Other possible on-line combinations of CE, such as column coupled CE-CE techniques and implementation of nonelectrophoretic techniques (extraction, membrane filtration, flow injection) into CE, offer additional approaches for highly effective sample preparation and separation. CE matured to a highly flexible and compatible technique enabling its hyphenation with powerful detection systems allowing extremely sensitive detection (e.g. LIF) and/or structural characterization of analytes (e.g. MS). Within the last decade, more as well as less conventional analytical on-line approaches have been effectively utilized in this field and their practical potentialities are demonstrated on many new application examples in this article. Here, three basic areas of (enantioselective) drug bioanalysis are highlighted and supported by a brief theoretical description of each individual approach in a compact review structure (to create integrated view on the topic), including (i) progressive enantioseparation approaches and new enantioselective agents, (ii) in-capillary sample preparation (preconcentration, purification, derivatization), and (iii) detection possibilities related to enhanced sensitivity and structural characterization.
Collapse
Affiliation(s)
- Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.
| | | |
Collapse
|
25
|
Nehmé R, Perrin C, Guerlavais V, Fehrentz JA, Cottet H, Martinez J, Fabre H. Use of coated capillaries for the electrophoretic separation of stereoisomers of a growth hormone secretagogue. Electrophoresis 2009; 30:3772-9. [DOI: 10.1002/elps.200900093] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
da Costa JL, Tonin FG, Zanolli LA, da Matta Chasin AA, Tavares MFM. Simple method for determination of cocaine and main metabolites in urine by CE coupled to MS. Electrophoresis 2009; 30:2238-44. [DOI: 10.1002/elps.200900032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Giuffrida A, León C, García-Cañas V, Cucinotta V, Cifuentes A. Modified cyclodextrins for fast and sensitive chiral-capillary electrophoresis-mass spectrometry. Electrophoresis 2009; 30:1734-42. [DOI: 10.1002/elps.200800333] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Juvancz Z, Kendrovics RB, Iványi R, Szente L. The role of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 2008; 29:1701-12. [PMID: 18421743 DOI: 10.1002/elps.200700657] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The members of the enantiomeric pairs frequently show rather different biological effects, so their chiral selective synthesis, pharmacological studies and analysis are necessary. CE has unique advantages in chiral analysis. The most frequently used chiral selectors are CDs in this field. This paper gives a short view on the advantages on CE in direct chiral separations, emphasizing the role of CDs. The reason for the broad selectivity spectra of CDs is discussed in detail. The physical background of chiral selective separations is briefly shown in CE. Their interaction mechanisms are shortly defined. The general trend of their use is statistically evaluated. Most frequently used CDs and CD derivatives are characterized. Advantages of ionizable CDs and single-isomer derivatives are shown. The general trend of their use is established.
Collapse
Affiliation(s)
- Zoltán Juvancz
- Department of Environmental Engineering, Budapest Tech. Polytechnical Institution, Budapest, Hungary.
| | | | | | | |
Collapse
|
29
|
Tagliaro F, Bortolotti F. Recent advances in the applications of CE to forensic sciences (2005–2007). Electrophoresis 2008; 29:260-8. [DOI: 10.1002/elps.200700708] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
18 Coupling CE and microchip-based devices with mass spectrometry. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0149-6395(07)00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Sánchez-Hernández L, Crego AL, Marina ML, García-Ruiz C. Sensitive chiral analysis by CE: An update. Electrophoresis 2008; 29:237-51. [DOI: 10.1002/elps.200700531] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Moliner-Martínez Y, Cárdenas S, Valcárcel M. Evaluation of carbon nanostructures as chiral selectors for direct enantiomeric separation of ephedrines by EKC. Electrophoresis 2007; 28:2573-9. [PMID: 17607803 DOI: 10.1002/elps.200600773] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Single-walled nanotubes and multi-walled nanotubes (MWNTs) have been evaluated as chiral selectors for the enantiomeric separation of ephedrines by using EKC with surfactant-coated carbon nanotubes. The analysed compounds were (+/-)-ephedrine, (+/-)-norephedrine and (+/-)-N-methylephedrine. The potential of those carbon nanostructures as chiral selectors has been evaluated by changing different experimental variables such as pH, addition of organic modifiers, potential and injection time. The capability of MWNTs to resolve enantiomeric mixtures was demonstrated by using partial filling of the capillary with concentrated surfactant-coated MWNTs. Differences in the enantioselectivity were discussed.
Collapse
|
33
|
Kahle KA, Foley JP. Review of aqueous chiral electrokinetic chromatography (EKC) with an emphasis on chiral microemulsion EKC. Electrophoresis 2007; 28:2503-26. [PMID: 17657766 DOI: 10.1002/elps.200600808] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The separation of enantiomers using electrokinetic chromatography (EKC) with chiral microemulsions is comprehensively reviewed through December 1, 2006. Aqueous chiral EKC separations based on other pseudostationary phases such as micelles and vesicles or on other chiral selectors such as CDs, crown ethers, glycopeptides, ligand exchange moeities are also reviewed from both mechanistic and applications perspective for the period of January 2005 to December 1, 2006.
Collapse
Affiliation(s)
- Kimberly A Kahle
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
34
|
Smith ML, Vorce SP, Holler JM, Shimomura E, Magluilo J, Jacobs AJ, Huestis MA. Modern instrumental methods in forensic toxicology. J Anal Toxicol 2007; 31:237-53, 8A-9A. [PMID: 17579968 PMCID: PMC2745311 DOI: 10.1093/jat/31.5.237] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This article reviews modern analytical instrumentation in forensic toxicology for identification and quantification of drugs and toxins in biological fluids and tissues. A brief description of the theory and inherent strengths and limitations of each methodology is included. The focus is on new technologies that address current analytical limitations. A goal of this review is to encourage innovations to improve our technological capabilities and to encourage use of these analytical techniques in forensic toxicology practice.
Collapse
Affiliation(s)
- Michael L. Smith
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Shawn P. Vorce
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Justin M. Holler
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Eric Shimomura
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Joe Magluilo
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Aaron J. Jacobs
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
- Army Medical Department Board, Fort Sam Houston, Texas 78234
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, Maryland 21224
| |
Collapse
|
35
|
Kraemer T, Paul LD. Bioanalytical procedures for determination of drugs of abuse in blood. Anal Bioanal Chem 2007; 388:1415-35. [PMID: 17468860 DOI: 10.1007/s00216-007-1271-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 11/24/2022]
Abstract
Determination of drugs of abuse in blood is of great importance in clinical and forensic toxicology. This review describes procedures for detection of the following drugs of abuse and their metabolites in whole blood, plasma or serum: Delta9-tetrahydrocannabinol, 11-hydroxy-Delta9-tetrahydrocannabinol, 11-nor-9-carboxy-Delta9-tetrahydrocannabinol, 11-nor-9-carboxy-Delta9-tetrahydrocannabinol glucuronide, heroin, 6-monoacetylmorphine, morphine, morphine-6-glucuronide, morphine-3-glucuronide, codeine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine, N-ethyl-3,4-methylenedioxyamphetamine, 3,4-methylenedioxyamphetamine, cocaine, benzoylecgonine, ecgonine methyl ester, cocaethylene, other cocaine metabolites or pyrolysis products (norcocaine, norcocaethylene, norbenzoylecgonine, m-hydroxycocaine, p-hydroxycocaine, m-hydroxybenzoylecgonine, p-hydroxybenzoylecgonine, ethyl ecgonine, ecgonine, anhydroecgonine methyl ester, anhydroecgonine ethyl ester, anhydroecgonine, noranhydroecgonine, N-hydroxynorcocaine, cocaine N-oxide, anhydroecgonine methyl ester N-oxide). Metabolites and degradation products which are recommended to be monitored for assessment in clinical or forensic toxicology are mentioned. Papers written in English between 2002 and the beginning of 2007 are reviewed. Analytical methods are assessed for their suitability in forensic toxicology, where special requirements have to be met. For many of the analytes sensitive immunological methods for screening are available. Screening and confirmation is mostly done by gas chromatography (GC)-mass spectrometry (MS) or liquid chromatography (LC)-MS(/MS) procedures. Basic information about the biosample assayed, internal standard, workup, GC or LC column and mobile phase, detection mode, and validation data for each procedure is summarized in two tables to facilitate the selection of a method suitable for a specific analytic problem.
Collapse
Affiliation(s)
- Thomas Kraemer
- Institute of Legal Medicine, Saarland University, 66421 Homburg (Saar), Germany.
| | | |
Collapse
|
36
|
Schappler J, Guillarme D, Prat J, Veuthey JL, Rudaz S. Enhanced method performances for conventional and chiral CE-ESI/MS analyses in plasma. Electrophoresis 2006; 27:1537-46. [PMID: 16532520 DOI: 10.1002/elps.200500805] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Due to its high efficiency, selectivity, and sensitivity, CE-ESI/MS has evolved as an efficient technique for the drugs and metabolites analysis in biological matrices. However, a sample preparation is mandatory prior to CE-ESI/MS analysis. To achieve fast and simplified sample preparation of plasma samples, protein precipitation (PP) and liquid-liquid extraction (LLE) were used with two injection techniques: hydrodynamic (HD) and electrokinetic (EK) injection. CE-ESI/MS analyses of pharmaceutical compounds and amphetamine derivatives were developed. Detection limits of 1 ppm were reached with PP and HD injection whereas 1 ppb was detected when samples were prepared with LLE and injected by EK. Same experiments were performed for stereoselective determinations in partial-filling mode and detection limits achieved were equivalent to conventional analysis (0.5 ppb per enantiomer). When complex matrices are analyzed, MS signal suppression or enhancement effects are generally not reproducible and could compromise results with ESI. Therefore, matrix effect was investigated in CE-ESI/MS with a commercially available coaxial sheath-liquid ESI interface used as postcapillary infusion system to determine MS signal alterations. Matrix effects were differentially evidenced according to the selected sample preparation. With PP, signal suppression was observed out of the analyses migration window, while for LLE no relevant matrix effect occurred in all experiments.
Collapse
Affiliation(s)
- Julie Schappler
- Laboratory of Pharmaceutical Analytical Chemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne,Geneva, Switzerland
| | | | | | | | | |
Collapse
|