1
|
Fähnrich A, Stephan I, Hirose M, Haarich F, Awadelkareem MA, Ibrahim S, Busch H, Wohlers I. North and East African mitochondrial genetic variation needs further characterization towards precision medicine. J Adv Res 2023; 54:59-76. [PMID: 36736695 PMCID: PMC10703728 DOI: 10.1016/j.jare.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Mitochondria are maternally inherited cell organelles with their own genome, and perform various functions in eukaryotic cells such as energy production and cellular homeostasis. Due to their inheritance and manifold biological roles in health and disease, mitochondrial genetics serves a dual purpose of tracing the history as well as disease susceptibility of human populations across the globe. This work requires a comprehensive catalogue of commonly observed genetic variations in the mitochondrial DNAs for all regions throughout the world. So far, however, certain regions, such as North and East Africa have been understudied. OBJECTIVES To address this shortcoming, we have created the most comprehensive quality-controlled North and East African mitochondrial data set to date and use it for characterizing mitochondrial genetic variation in this region. METHODS We compiled 11 published cohorts with novel data for mitochondrial genomes from 159 Sudanese individuals. We combined these 641 mitochondrial sequences with sequences from the 1000 Genomes (n = 2504) and the Human Genome Diversity Project (n = 828) and used the tool haplocheck for extensive quality control and detection of in-sample contamination, as well as Nanopore long read sequencing for haplogroup validation of 18 samples. RESULTS Using a subset of high-coverage mitochondrial sequences, we predict 15 potentially novel haplogroups in North and East African subjects and observe likely phylogenetic deviations from the established PhyloTree reference for haplogroups L0a1 and L2a1. CONCLUSION Our findings demonstrate common hitherto unexplored variants in mitochondrial genomes of North and East Africa that lead to novel phylogenetic relationships between haplogroups present in these regions. These observations call for further in-depth population genetic studies in that region to enable the prospective use of mitochondrial genetic variation for precision medicine.
Collapse
Affiliation(s)
- Anke Fähnrich
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Isabel Stephan
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Misa Hirose
- Genetics Division, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Franziska Haarich
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, and University Heart Center, Lübeck, Lübeck, Germany
| | - Mosab Ali Awadelkareem
- Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Saleh Ibrahim
- Genetics Division, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hauke Busch
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Inken Wohlers
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Biomedical Data Science, Research Center Borstel, 23845 Borstel, Germany.
| |
Collapse
|
2
|
Aquilano E, de la Fuente C, Rodríguez Golpe D, Motti JMB, Bravi CM. Sequencing errors in Native American mitogenomes: impact on clade definitions, haplogroup assignation, and beyond. Mitochondrion 2023; 70:54-58. [PMID: 37003527 DOI: 10.1016/j.mito.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Available evidence allows the interpretation that some cases of absence of otherwise expected variation, based on phylogenetic expectations in mitogenomes of Native American origin, are due to artificial recombination rather than to homoplasy, while other more complex scenarios involving combination of original Cambridge Reference Sequence mistakes plus incomplete or incorrect scoring of variation are also showed. Several instances of mismatched control and coding regions as well as partially duplicated HV2 are observed in Peruvians, while intra-haplogroup chimaeras of different D1 subhaplogroups are referred to in Mexican Native Americans. A revised definition for haplogroup B2h is proposed, and preventive quality control measures are suggested.
Collapse
Affiliation(s)
- Eliana Aquilano
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET-CICPBA-Universidad Nacional de La Plata, Calle 526 e/ 10 y 11, 1900 La Plata, Argentina
| | | | - Daniela Rodríguez Golpe
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET-CICPBA-Universidad Nacional de La Plata, Calle 526 e/ 10 y 11, 1900 La Plata, Argentina
| | - Josefina M B Motti
- Laboratorio de Ecología Evolutiva Humana (LEEH), Facultad de Ciencias Sociales (FACSO), Universidad Nacional del Centro de la Provincia de Buenos Aires-CONICET, Calle 508 #881, 7631 Quequén, Argentina
| | - Claudio M Bravi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET-CICPBA-Universidad Nacional de La Plata, Calle 526 e/ 10 y 11, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Mitochondrial Control Region Variants Related to Breast Cancer. Genes (Basel) 2022; 13:genes13111962. [DOI: 10.3390/genes13111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has an important incidence in the worldwide female population. Although alterations in the mitochondrial genome probably play an important role in carcinogenesis, the actual evidence is ambiguous and inconclusive. Our purpose was to explore differences in mitochondrial sequences of cases with breast cancer compared with control samples from different origins. We identified 124 mtDNA sequences associated with breast cancer cases, of which 86 were complete and 38 were partial sequences. Of these 86 complete sequences, 52 belonged to patients with a confirmed diagnosis of breast cancer, and 34 sequences were obtained from healthy mammary tissue of the same patients used as controls. From the mtDNA analysis, two polymorphisms with significant statistical differences were found: m.310del (rs869289246) in 34.6% (27/78) of breast cancer cases and 61.7% (21/34) in the controls; and m.315dup (rs369786048) in 60.2% (47/78) of breast cancer cases and 38.2% (13/34) in the controls. In addition, the variant m.16519T>C (rs3937033) was found in 59% of the control sequences and 52% of the breast cancer sequences with a significant statistical difference. Polymorphic changes are evolutionarily related to the haplogroup H of Indo-European and Euro-Asiatic origins; however, they were found in all non-European breast cancers.
Collapse
|
4
|
Mitochondrial Haplogroup Classification of Ancient DNA Samples Using Haplotracker. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5344418. [PMID: 35342764 PMCID: PMC8956381 DOI: 10.1155/2022/5344418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Mitochondrial DNA haplogroup classification is used to study maternal lineage of ancient human populations. The haplogrouping of ancient DNA is not easy because the DNA is usually found in small pieces in limited quantities. We have developed Haplotracker, a straightforward and efficient high-resolution haplogroup classification tool optimized specifically for ancient DNA samples. Haplotracker offers a user-friendly input interface for multiple mitochondrial DNA sequence fragments in a sample. It provides accurate haplogroup classification with full-length mitochondrial genome sequences and provides high-resolution haplogroup predictions for some fragmented control region sequences using a novel algorithm built on Phylotree mtDNA Build 17 (Phylotree) and our haplotype database (n = 118,869). Its performance for accuracy was demonstrated to be high through haplogroup classification using 8,216 Phylotree full-length and control region mitochondrial DNA sequences compared with HaploGrep 2, one of the most accurate current haplogroup classifiers. Haplotracker provides a novel haplogroup tracking solution for fragmented sequences to track subhaplogroups or verify the haplogroups efficiently. Using Haplotracker, we classified mitochondrial haplogroups to the final subhaplogroup level in nine ancient DNA samples extracted from human skeletal remains found in 2,000-year-old elite Xiongnu cemetery in Northeast Mongolia. Haplotracker can be freely accessed at https://haplotracker.cau.ac.kr.
Collapse
|
5
|
Ramazzotti D, Angaroni F, Maspero D, Gambacorti-Passerini C, Antoniotti M, Graudenzi A, Piazza R. VERSO: A comprehensive framework for the inference of robust phylogenies and the quantification of intra-host genomic diversity of viral samples. PATTERNS (NEW YORK, N.Y.) 2021; 2:100212. [PMID: 33728416 PMCID: PMC7953447 DOI: 10.1016/j.patter.2021.100212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
We introduce VERSO, a two-step framework for the characterization of viral evolution from sequencing data of viral genomes, which is an improvement on phylogenomic approaches for consensus sequences. VERSO exploits an efficient algorithmic strategy to return robust phylogenies from clonal variant profiles, also in conditions of sampling limitations. It then leverages variant frequency patterns to characterize the intra-host genomic diversity of samples, revealing undetected infection chains and pinpointing variants likely involved in homoplasies. On simulations, VERSO outperforms state-of-the-art tools for phylogenetic inference. Notably, the application to 6,726 amplicon and RNA sequencing samples refines the estimation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution, while co-occurrence patterns of minor variants unveil undetected infection paths, which are validated with contact tracing data. Finally, the analysis of SARS-CoV-2 mutational landscape uncovers a temporal increase of overall genomic diversity and highlights variants transiting from minor to clonal state and homoplastic variants, some of which fall on the spike gene. Available at: https://github.com/BIMIB-DISCo/VERSO.
Collapse
Affiliation(s)
- Daniele Ramazzotti
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Fabrizio Angaroni
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Davide Maspero
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- Inst. of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
| | | | - Marco Antoniotti
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre – B4, Milan, Italy
| | - Alex Graudenzi
- Inst. of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre – B4, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| |
Collapse
|
6
|
Fazzini F, Fendt L, Schönherr S, Forer L, Schöpf B, Streiter G, Losso JL, Kloss-Brandstätter A, Kronenberg F, Weissensteiner H. Analyzing Low-Level mtDNA Heteroplasmy-Pitfalls and Challenges from Bench to Benchmarking. Int J Mol Sci 2021; 22:ijms22020935. [PMID: 33477827 PMCID: PMC7832847 DOI: 10.3390/ijms22020935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
Massive parallel sequencing technologies are promising a highly sensitive detection of low-level mutations, especially in mitochondrial DNA (mtDNA) studies. However, processes from DNA extraction and library construction to bioinformatic analysis include several varying tasks. Further, there is no validated recommendation for the comprehensive procedure. In this study, we examined potential pitfalls on the sequencing results based on two-person mtDNA mixtures. Therefore, we compared three DNA polymerases, six different variant callers in five mixtures between 50% and 0.5% variant allele frequencies generated with two different amplification protocols. In total, 48 samples were sequenced on Illumina MiSeq. Low-level variant calling at the 1% variant level and below was performed by comparing trimming and PCR duplicate removal as well as six different variant callers. The results indicate that sensitivity, specificity, and precision highly depend on the investigated polymerase but also vary based on the analysis tools. Our data highlight the advantage of prior standardization and validation of the individual laboratory setup with a DNA mixture model. Finally, we provide an artificial heteroplasmy benchmark dataset that can help improve somatic variant callers or pipelines, which may be of great interest for research related to cancer and aging.
Collapse
Affiliation(s)
- Federica Fazzini
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Liane Fendt
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Sebastian Schönherr
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Lukas Forer
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Bernd Schöpf
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Gertraud Streiter
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Jamie Lee Losso
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Anita Kloss-Brandstätter
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
- Carinthia University of Applied Sciences, A-9524 Villach, Austria
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Hansi Weissensteiner
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
- Correspondence: ; Tel.: +43-512-9003-70564
| |
Collapse
|
7
|
Huber N, Parson W, Dür A. Next generation database search algorithm for forensic mitogenome analyses. Forensic Sci Int Genet 2018; 37:204-214. [PMID: 30241075 DOI: 10.1016/j.fsigen.2018.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA) variation is being reported relative to the corrected version of the first sequenced human mitochondrial genome. A review of the existing literature across disciplines that employ mtDNA demonstrates that insertions and deletions are not reported in a standardized way. This may lead to false exclusions of identical sequences, unidentified matches in missing persons mtDNA databases, biased mtDNA database frequency estimates and overestimation of the genetic evidence. Seven years ago we introduced alignment-free database search software (SAM) and implemented it into the mtDNA database EMPOP (https://empop.online) to produce reliable and conservative frequency estimates that are required in the forensic context. However, ambiguity remained in how laboratories have been reporting mitotypes, as often more than one single alignment of a given mtDNA sequence was feasible. In order to overcome this limitation we here describe a concept and provide software for producing stable, harmonized phylogenetic alignment of mtDNA sequences for database searches. The new software SAM 2 will be made available via EMPOP and provide the user with the already established conservative frequency estimates. In addition, SAM 2 offers the rCRS-coded haplotype of a given mtDNA sequence following the established and widely accepted phylogenetic alignment. This provides the user with feedback on how mitotypes are stored in EMPOP and how they should be reported in order to harmonize nomenclature. Finally, this approach does not only permit reliable mtDNA nomenclature in forensics but invites related disciplines to take advantage of a standardized way of reporting mtDNA variation, thus closing the ranks between different genetic fields and supporting dialogue and collaboration between mtDNA scholars from various disciplines.
Collapse
Affiliation(s)
- Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| | - Arne Dür
- Institute of Mathematics, University of Innsbruck, Austria
| |
Collapse
|
8
|
Sturk-Andreaggi K, Peck MA, Boysen C, Dekker P, McMahon TP, Marshall CK. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data. Forensic Sci Int Genet 2017; 31:189-197. [DOI: 10.1016/j.fsigen.2017.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/21/2017] [Accepted: 09/16/2017] [Indexed: 12/20/2022]
|
9
|
Morales-Arce AY, Snow MH, Kelley JH, Anne Katzenberg M. Ancient mitochondrial DNA and ancestry of Paquimé inhabitants, Casas Grandes (A.D. 1200-1450). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:616-626. [PMID: 28382719 DOI: 10.1002/ajpa.23223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/05/2017] [Accepted: 03/18/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The Casas Grandes (Paquimé) culture, located in the Northwest of Chihuahua, Mexico reached its apogee during the Medio Period (A.D. 1200-1450). Paquimé was abandoned by the end of the Medio Period (A.D. 1450), and the ancestry of its inhabitants remains unsolved. Some authors suggest that waves of Mesoamerican immigrants, possibly merchants, stimulated Paquimé's development during the Medio Period. Archaeological evidence suggests possible ties to groups that inhabited the Southwestern US cultures. This study uses ancient DNA analysis from fourteen samples to estimate genetic affinities of ancient Paquimé inhabitants. MATERIALS AND METHODS DNA was extracted from 14 dental ancient samples from Paquimé. PCR and Sanger sequencing were used to obtain mitochondrial control region sequences. Networks, PCoA, and Nei genetic distances were estimated to compare Paquimé haplotypes against available past haplotypes data from Southwestern and Mesoamerican groups. RESULTS Haplogroups were characterized for 11 of the samples, and the results revealed the presence of four distinct Amerindian mitochondrial lineages: B (n = 5; 45%), A (n = 3; 27%), C (n = 2; 18%) and D (n = 1; 10%). Statistical analysis of the haplotypes, haplogroup frequencies, and Nei genetic distances showed close affinity of Paquimé with Mimbres. DISCUSSION Although our results provide strong evidence of genetic affinities between Paquimé and Mimbres, with the majority of haplotypes shared or derived from ancient Southwest populations, the causes of cultural development at Paquimé still remain a question. These preliminary results provide evidence in support of other bioarchaeological studies, which have shown close biological affinities between Paquimé and Mimbres, a Puebloan culture, in the Southwestern US.
Collapse
Affiliation(s)
- Ana Y Morales-Arce
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Meradeth H Snow
- Anthropology, College of Humanities and Sciences, University of Montana, Missoula, Montana, 59812
| | - Jane H Kelley
- Department of Archaeology, University of Calgary (deceased), Calgary, Alberta, Canada, T2N 1N4
| | - M Anne Katzenberg
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
10
|
Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt HJ, Kronenberg F, Salas A, Schönherr S. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 2016; 44:W58-63. [PMID: 27084951 PMCID: PMC4987869 DOI: 10.1093/nar/gkw233] [Citation(s) in RCA: 595] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial DNA (mtDNA) profiles can be classified into phylogenetic clusters (haplogroups), which is of great relevance for evolutionary, forensic and medical genetics. With the extensive growth of the underlying phylogenetic tree summarizing the published mtDNA sequences, the manual process of haplogroup classification would be too time-consuming. The previously published classification tool HaploGrep provided an automatic way to address this issue. Here, we present the completely updated version HaploGrep 2 offering several advanced features, including a generic rule-based system for immediate quality control (QC). This allows detecting artificial recombinants and missing variants as well as annotating rare and phantom mutations. Furthermore, the handling of high-throughput data in form of VCF files is now directly supported. For data output, several graphical reports are generated in real time, such as a multiple sequence alignment format, a VCF format and extended haplogroup QC reports, all viewable directly within the application. In addition, HaploGrep 2 generates a publication-ready phylogenetic tree of all input samples encoded relative to the revised Cambridge Reference Sequence. Finally, new distance measures and optimizations of the algorithm increase accuracy and speed-up the application. HaploGrep 2 can be accessed freely and without any registration at http://haplogrep.uibk.ac.at.
Collapse
Affiliation(s)
- Hansi Weissensteiner
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck 6020, Austria
| | - Dominic Pacher
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Anita Kloss-Brandstätter
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Günther Specht
- Department of Database and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Grupo de Medicina Xenómica (GMX), Facultade de Medicina, Universidade de Santiago de Compostela, Calle San Francisco s/n, C.P. 15872, Galicia, Spain
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
11
|
Kloss-Brandstätter A, Weissensteiner H, Erhart G, Schäfer G, Forer L, Schönherr S, Pacher D, Seifarth C, Stöckl A, Fendt L, Sottsas I, Klocker H, Huck CW, Rasse M, Kronenberg F, Kloss FR. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma. PLoS One 2015; 10:e0135643. [PMID: 26262956 PMCID: PMC4532422 DOI: 10.1371/journal.pone.0135643] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases. METHODS We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base). RESULTS We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases. CONCLUSIONS We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.
Collapse
Affiliation(s)
| | - Hansi Weissensteiner
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Gertraud Erhart
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Dominic Pacher
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Stöckl
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Liane Fendt
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irma Sottsas
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Michael Rasse
- Department for Cranio-, Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank R. Kloss
- Department for Cranio-, Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Identifying Highly Penetrant Disease Causal Mutations Using Next Generation Sequencing: Guide to Whole Process. BIOMED RESEARCH INTERNATIONAL 2015; 2015:923491. [PMID: 26106619 PMCID: PMC4461748 DOI: 10.1155/2015/923491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/17/2015] [Indexed: 01/10/2023]
Abstract
Recent technological advances have created challenges for geneticists and a need to adapt to a wide range of new bioinformatics tools and an expanding wealth of publicly available data (e.g., mutation databases, and software). This wide range of methods and a diversity of file formats used in sequence analysis is a significant issue, with a considerable amount of time spent before anyone can even attempt to analyse the genetic basis of human disorders. Another point to consider that is although many possess “just enough” knowledge to analyse their data, they do not make full use of the tools and databases that are available and also do not fully understand how their data was created. The primary aim of this review is to document some of the key approaches and provide an analysis schema to make the analysis process more efficient and reliable in the context of discovering highly penetrant causal mutations/genes. This review will also compare the methods used to identify highly penetrant variants when data is obtained from consanguineous individuals as opposed to nonconsanguineous; and when Mendelian disorders are analysed as opposed to common-complex disorders.
Collapse
|
13
|
DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 2014; 13:134-42. [DOI: 10.1016/j.fsigen.2014.07.010] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/19/2014] [Indexed: 11/21/2022]
|
14
|
Zimmermann B, Rock AW, Dur A, Parson W. Improved visibility of character conflicts in quasi-median networks with the EMPOP NETWORK software. Croat Med J 2014; 55:115-20. [PMID: 24778097 PMCID: PMC4020147 DOI: 10.3325/cmj.2014.55.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim To provide a valuable tool for graphical representation of mitochondrial DNA (mtDNA) data that enables visual emphasis on complex substructures within the network to highlight possible ambiguities and errors. Method We applied the new NETWORK graphical user interface, available via EMPOP (European DNA Profiling Group Mitochondrial DNA Population Database; www.empop.org) by means of two mtDNA data sets that were submitted for quality control. Results The quasi-median network torsi of the two data sets resulted in complex reticulations, suggesting ambiguous data. To check the corresponding raw data, accountable nodes and connecting branches of the network could be identified by highlighting induced subgraphs with concurrent dimming of their complements. This is achieved by accentuating the relevant substructures in the network: mouse clicking on a node displays a list of all mtDNA haplotypes included in that node; the selection of a branch specifies the mutation(s) connecting two nodes. It is indicated to evaluate these mutations by means of the raw data. Conclusion Inspection of the raw data confirmed the presence of phantom mutations due to suboptimal electrophoresis conditions and data misinterpretation. The network software proved to be a powerful tool to highlight problematic data and guide quality control of mtDNA data tables.
Collapse
Affiliation(s)
| | | | | | - Walther Parson
- Walther Parson, Institute of Legal Medicine, Medical University, Mullerstrasse 44, A-6020 Innsbruck, Austria,
| |
Collapse
|
15
|
Mitochondrial DNA haplogroups and susceptibility to prostate cancer in a colombian population. ISRN ONCOLOGY 2014; 2014:530675. [PMID: 24616820 PMCID: PMC3927756 DOI: 10.1155/2014/530675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/28/2013] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PC) is one of the most common cancers and the second leading cause of mortality from cancer in Colombian men. Mitochondrial DNA (mtDNA) haplogroups have been associated with the risk of PC. Several studies have demonstrated dramatic differences regarding the risk of PC among men from different ethnic backgrounds. The present study was aimed at assessing the relationship between mtDNA haplogroups and PC. The mitochondrial DNA hypervariable segment I (HSV-1) was sequenced in a population-based study covering 168 cases (CA) and 140 unrelated healthy individuals as a control group (CG). A total of 92 different mtDNA sequences were found in CA and 59 were found in the CG. According to the geographical origin attributed to each mtDNA haplogroup, 82% of the mtDNA sequences found in both groups were Native Americans (A, B, C, and D). The most frequent was A (41.1%CA–42.1%CG), followed by B (22.0%CA–21.4%CG), C (12.0%CA–11.4%CG), and D (6%CA–10.0%CG). A lower percentage of European haplogroups (U, H, K, J, M, T, and HV) were also found (13.1%CA–12.9%CG), likewise African haplogroups (L0, L1, L2, and L3) (6.5%CA–2.1%CG). There were no statistically significant differences between the distribution of mtDNA haplogroups in CA and the CG in this study.
Collapse
|
16
|
Podgorná E, Soares P, Pereira L, Černý V. The Genetic Impact of the Lake Chad Basin Population in North Africa as Documented by Mitochondrial Diversity and Internal Variation of the L3e5 Haplogroup. Ann Hum Genet 2013; 77:513-23. [DOI: 10.1111/ahg.12040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 08/02/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Eliška Podgorná
- Department of Anthropology and Human Genetics; Faculty of Science; Charles University; Prague Czech Republic
| | - Pedro Soares
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto); Porto Portugal
| | - Luísa Pereira
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto); Porto Portugal
- Faculdade de Medicina, da Universidade do Porto; Portugal
| | - Viktor Černý
- Archaeogenetics Laboratory; Institute of Archaeology of the Academy of Sciences of the Czech Republic; Prague Czech Republic
- Institute for Advanced Study; Paris France
| |
Collapse
|
17
|
Vianello D, Sevini F, Castellani G, Lomartire L, Capri M, Franceschi C. HAPLOFIND: a new method for high-throughput mtDNA haplogroup assignment. Hum Mutat 2013; 34:1189-94. [PMID: 23696374 DOI: 10.1002/humu.22356] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/03/2013] [Indexed: 11/06/2022]
Abstract
Deep sequencing technologies are completely revolutionizing the approach to DNA analysis. Mitochondrial DNA (mtDNA) studies entered in the "postgenomic era": the burst in sequenced samples observed in nuclear genomics is expected also in mitochondria, a trend that can already be detected checking complete mtDNA sequences database submission rate. Tools for the analysis of these data are available, but they fail in throughput or in easiness of use. We present here a new pipeline based on previous algorithms, inherited from the "nuclear genomic toolbox," combined with a newly developed algorithm capable of efficiently and easily classify new mtDNA sequences according to PhyloTree nomenclature. Detected mutations are also annotated using data collected from publicly available databases. Thanks to the analysis of all freely available sequences with known haplogroup obtained from GenBank, we were able to produce a PhyloTree-based weighted tree, taking into account each haplogroup pattern conservation. The combination of a highly efficient aligner, coupled with our algorithm and massive usage of asynchronous parallel processing, allowed us to build a high-throughput pipeline for the analysis of mtDNA sequences that can be quickly updated to follow the ever-changing nomenclature. HaploFind is freely accessible at the following Web address: https://haplofind.unibo.it.
Collapse
Affiliation(s)
- Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Yang IS, Lee HY, Yang WI, Shin KJ. mtDNAprofiler: A Web Application for the Nomenclature and Comparison of Human Mitochondrial DNA Sequences,. J Forensic Sci 2013; 58:972-80. [DOI: 10.1111/1556-4029.12139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 03/06/2012] [Accepted: 06/02/2012] [Indexed: 12/01/2022]
Affiliation(s)
- In Seok Yang
- Department of Forensic Medicine; Yonsei University College of Medicine; 50 Yonsei-ro, Seodaemun-gu; Seoul; 120-752; Korea
| | | | - Woo Ick Yang
- Department of Forensic Medicine; Yonsei University College of Medicine; 50 Yonsei-ro, Seodaemun-gu; Seoul; 120-752; Korea
| | | |
Collapse
|
19
|
MitoLSDB: a comprehensive resource to study genotype to phenotype correlations in human mitochondrial DNA variations. PLoS One 2013; 8:e60066. [PMID: 23585830 PMCID: PMC3621970 DOI: 10.1371/journal.pone.0060066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/20/2013] [Indexed: 01/16/2023] Open
Abstract
Human mitochondrial DNA (mtDNA) encodes a set of 37 genes which are essential structural and functional components of the electron transport chain. Variations in these genes have been implicated in a broad spectrum of diseases and are extensively reported in literature and various databases. In this study, we describe MitoLSDB, an integrated platform to catalogue disease association studies on mtDNA (http://mitolsdb.igib.res.in). The main goal of MitoLSDB is to provide a central platform for direct submissions of novel variants that can be curated by the Mitochondrial Research Community. MitoLSDB provides access to standardized and annotated data from literature and databases encompassing information from 5231 individuals, 675 populations and 27 phenotypes. This platform is developed using the Leiden Open (source) Variation Database (LOVD) software. MitoLSDB houses information on all 37 genes in each population amounting to 132397 variants, 5147 unique variants. For each variant its genomic location as per the Revised Cambridge Reference Sequence, codon and amino acid change for variations in protein-coding regions, frequency, disease/phenotype, population, reference and remarks are also listed. MitoLSDB curators have also reported errors documented in literature which includes 94 phantom mutations, 10 NUMTs, six documentation errors and one artefactual recombination. MitoLSDB is the largest repository of mtDNA variants systematically standardized and presented using the LOVD platform. We believe that this is a good starting resource to curate mtDNA variants and will facilitate direct submissions enhancing data coverage, annotation in context of pathogenesis and quality control by ensuring non-redundancy in reporting novel disease associated variants.
Collapse
|
20
|
Calatayud M, Ramos A, Santos C, Aluja MP. Primer effect in the detection of mitochondrial DNA point heteroplasmy by automated sequencing. ACTA ACUST UNITED AC 2013; 24:303-11. [PMID: 23350969 DOI: 10.3109/19401736.2012.760072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The correct detection of mitochondrial DNA (mtDNA) heteroplasmy by automated sequencing presents methodological constraints. The main goals of this study are to investigate the effect of sense and distance of primers in heteroplasmy detection and to test if there are differences in the accurate determination of heteroplasmy involving transitions or transversions. A gradient of the heteroplasmy levels was generated for mtDNA positions 9477 (transition G/A) and 15,452 (transversion C/A). Amplification and subsequent sequencing with forward and reverse primers, situated at 550 and 150 bp from the heteroplasmic positions, were performed. Our data provide evidence that there is a significant difference between the use of forward and reverse primers. The forward primer is the primer that seems to give a better approximation to the real proportion of the variants. No significant differences were found concerning the distance at which the sequencing primers were placed neither between the analysis of transitions and transversions. The data collected in this study are a starting point that allows to glimpse the importance of the sequencing primers in the accurate detection of point heteroplasmy, providing additional insight into the overall automated sequencing strategy.
Collapse
Affiliation(s)
- Marta Calatayud
- Unitat d'Antropologia Biològica, Departament BABVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
21
|
Mueller EE, Brunner SM, Mayr JA, Stanger O, Sperl W, Kofler B. Functional differences between mitochondrial haplogroup T and haplogroup H in HEK293 cybrid cells. PLoS One 2012; 7:e52367. [PMID: 23300652 PMCID: PMC3530588 DOI: 10.1371/journal.pone.0052367] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022] Open
Abstract
Background Epidemiological case-control studies have revealed associations between mitochondrial haplogroups and the onset and/or progression of various multifactorial diseases. For instance, mitochondrial haplogroup T was previously shown to be associated with vascular diseases, including coronary artery disease and diabetic retinopathy. In contrast, haplogroup H, the most frequent haplogroup in Europe, is often found to be more prevalent in healthy control subjects than in patient study groups. However, justifications for the assumption that haplogroups are functionally distinct are rare. Therefore, we attempted to compare differences in mitochondrial function between haplogroup H and T cybrids. Methodology/Principal Findings Mitochondrial haplogroup H and T cybrids were generated by fusion of HEK293 cells devoid of mitochondrial DNA with isolated thrombocytes of individuals with the respective haplogroups. These cybrid cells were analyzed for oxidative phosphorylation (OXPHOS) enzyme activities, mitochondrial DNA (mtDNA) copy number, growth rate and susceptibility to reactive oxygen species (ROS). We observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress. Conclusions/Significance The results of this study show that functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background.
Collapse
Affiliation(s)
- Edith E. Mueller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Susanne M. Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Johannes A. Mayr
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Olaf Stanger
- Department of Cardiac Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| |
Collapse
|
22
|
Haplogrouping mitochondrial DNA sequences in Legal Medicine/Forensic Genetics. Int J Legal Med 2012; 126:901-16. [PMID: 22940763 DOI: 10.1007/s00414-012-0762-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 08/06/2012] [Indexed: 12/11/2022]
Abstract
Haplogrouping refers to the classification of (partial) mitochondrial DNA (mtDNA) sequences into haplogroups using the current knowledge of the worldwide mtDNA phylogeny. Haplogroup assignment of mtDNA control-region sequences assists in the focused comparison with closely related complete mtDNA sequences and thus serves two main goals in forensic genetics: first is the a posteriori quality analysis of sequencing results and second is the prediction of relevant coding-region sites for confirmation or further refinement of haplogroup status. The latter may be important in forensic casework where discrimination power needs to be as high as possible. However, most articles published in forensic genetics perform haplogrouping only in a rudimentary or incorrect way. The present study features PhyloTree as the key tool for assigning control-region sequences to haplogroups and elaborates on additional Web-based searches for finding near-matches with complete mtDNA genomes in the databases. In contrast, none of the automated haplogrouping tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets. We review and classify the various attempts at haplogrouping by using a multiplex approach or relying on automated haplogrouping. Furthermore, we re-examine a few articles in forensic journals providing mtDNA population data where appropriate haplogrouping following PhyloTree immediately highlights several kinds of sequence errors.
Collapse
|
23
|
Montesino M, Prieto L. Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains. Methods Mol Biol 2012; 830:267-281. [PMID: 22139667 DOI: 10.1007/978-1-61779-461-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.
Collapse
Affiliation(s)
- Marta Montesino
- Comisaría General de Policía Científica, Servicio de Analítica, Laboratorio de ADN, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Madrid, Spain.
| | | |
Collapse
|
24
|
Molak M, Ho SYW. Evaluating the impact of post-mortem damage in ancient DNA: a theoretical approach. J Mol Evol 2011; 73:244-55. [PMID: 22101653 DOI: 10.1007/s00239-011-9474-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023]
Abstract
The growth of ancient DNA research has offered exceptional opportunities and raised great expectations, but has also presented some considerable challenges. One of the ongoing issues is the impact of post-mortem damage in DNA molecules. Nucleotide alterations and DNA strand breakages lead to a significant decrease in the quantity of DNA molecules of useful length in a sample and to errors in the final DNA sequences obtained. We present a model of age-dependent DNA damage and quantify the influence of that damage on subsequent steps in the sequencing process, including the polymerase chain reaction and cloning. Calculations using our model show that deposition conditions, rather than the age of a sample, have the greatest influence on the level of DNA damage. In turn, this affects the probability of interpreting an erroneous (possessing damage-derived mutations) sequence as being authentic. We also evaluated the effect of post-mortem damage on real data sets using a Bayesian phylogenetic approach. According to our study, damage-derived sequence alterations appear to have little impact on the final DNA sequences. This indicates the effectiveness of current methods for sequence authentication and validation.
Collapse
Affiliation(s)
- Martyna Molak
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
25
|
Lace B, Kempa I, Piekuse L, Grinfelde I, Klovins J, Pliss L, Krumina A, Vieira AR. Association studies of candidate genes and cleft lip and palate taking into consideration geographical origin. Eur J Oral Sci 2011; 119:413-7. [DOI: 10.1111/j.1600-0722.2011.00877.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Scheible M, Alenizi M, Sturk-Andreaggi K, Coble MD, Ismael S, Irwin JA. Mitochondrial DNA control region variation in a Kuwaiti population sample. Forensic Sci Int Genet 2011; 5:e112-3. [DOI: 10.1016/j.fsigen.2011.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/02/2011] [Indexed: 11/26/2022]
|
27
|
Czarnecka AM, Bartnik E. The role of the mitochondrial genome in ageing and carcinogenesis. J Aging Res 2011; 2011:136435. [PMID: 21403887 PMCID: PMC3042732 DOI: 10.4061/2011/136435] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/03/2011] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial DNA mutations and polymorphisms have been the focus of intensive investigations for well over a decade in an attempt to understand how they affect fundamental processes such as cancer and aging. Initial interest in mutations occurring in mitochondrial DNA of cancer cells diminished when most were found to be the same mutations which occurred during the evolution of human mitochondrial haplogroups. However, increasingly correlations are being found between various mitochondrial haplogroups and susceptibility to cancer or diseases in some cases and successful aging in others.
Collapse
Affiliation(s)
- Anna M. Czarnecka
- Laboratory of Molecular Oncology, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 01-141 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
28
|
Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing. Int J Legal Med 2011; 125:427-36. [PMID: 21249378 DOI: 10.1007/s00414-011-0549-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA analysis plays an important role in forensic science as well as in the diagnosis of mitochondrial diseases. The occurrence of two different nucleotides at the same sequence position can be caused either by heteroplasmy or by a mix of samples. The detection of superimposed positions in forensic samples and their quantification can provide additional information and might also be useful to identify a mixed sample. Therefore, the detection and visualization of heteroplasmy has to be robust and sensitive at the same time to allow for reliable interpretation of results and to avoid a loss of information. In this study, different factors influencing the analysis of mitochondrial heteroplasmy (DNA polymerases, PCR and sequencing primers, nucleotide incorporation, and sequence context) were examined. BigDye Sanger sequencing and the SNaPshot minisequencing were compared as to the accuracy of detection using artificially created mitochondrial DNA mixtures. Both sequencing strategies showed to be robust, and the parameters tested showed to have a variable impact on the display of nucleotide ratios. However, experiments revealed a high correlation between the expected and the measured nucleotide ratios in cell mixtures. Compared to the SNaPshot minisequencing, Sanger sequencing proved to be the more robust and reliable method for quantification of nucleotide ratios but showed a lower detection sensitivity of minor cytosine components.
Collapse
|
29
|
Kloss-Brandstätter A, Pacher D, Schönherr S, Weissensteiner H, Binna R, Specht G, Kronenberg F. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat 2010; 32:25-32. [PMID: 20960467 DOI: 10.1002/humu.21382] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/16/2010] [Indexed: 01/02/2023]
Abstract
An ongoing source of controversy in mitochondrial DNA (mtDNA) research is based on the detection of numerous errors in mtDNA profiles that led to erroneous conclusions and false disease associations. Most of these controversies could be avoided if the samples' haplogroup status would be taken into consideration. Knowing the mtDNA haplogroup affiliation is a critical prerequisite for studying mechanisms of human evolution and discovering genes involved in complex diseases, and validating phylogenetic consistency using haplogroup classification is an important step in quality control. However, despite the availability of Phylotree, a regularly updated classification tree of global mtDNA variation, the process of haplogroup classification is still time-consuming and error-prone, as researchers have to manually compare the polymorphisms found in a population sample to those summarized in Phylotree, polymorphism by polymorphism, sample by sample. We present HaploGrep, a fast, reliable and straight-forward algorithm implemented in a Web application to determine the haplogroup affiliation of thousands of mtDNA profiles genotyped for the entire mtDNA or any part of it. HaploGrep uses the latest version of Phylotree and offers an all-in-one solution for quality assessment of mtDNA profiles in clinical genetics, population genetics and forensics. HaploGrep can be accessed freely at http://haplogrep.uibk.ac.at.
Collapse
Affiliation(s)
- Anita Kloss-Brandstätter
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | |
Collapse
|
30
|
Prieto L, Zimmermann B, Goios A, Rodriguez-Monge A, Paneto GG, Alves C, Alonso A, Fridman C, Cardoso S, Lima G, Anjos MJ, Whittle MR, Montesino M, Cicarelli RMB, Rocha AM, Albarrán C, de Pancorbo MM, Pinheiro MF, Carvalho M, Sumita DR, Parson W. The GHEP-EMPOP collaboration on mtDNA population data--A new resource for forensic casework. Forensic Sci Int Genet 2010; 5:146-51. [PMID: 21075696 PMCID: PMC3065011 DOI: 10.1016/j.fsigen.2010.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial DNA (mtDNA) population data for forensic purposes are still scarce for some populations, which may limit the evaluation of forensic evidence especially when the rarity of a haplotype needs to be determined in a database search. In order to improve the collection of mtDNA lineages from the Iberian and South American subcontinents, we here report the results of a collaborative study involving nine laboratories from the Spanish and Portuguese Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) and EMPOP. The individual laboratories contributed population data that were generated throughout the past 10 years, but in the majority of cases have not been made available to the scientific community. A total of 1019 haplotypes from Iberia (Basque Country, 2 general Spanish populations, 2 North and 1 Central Portugal populations), and Latin America (3 populations from São Paulo) were collected, reviewed and harmonized according to defined EMPOP criteria. The majority of data ambiguities that were found during the reviewing process (41 in total) were transcription errors confirming that the documentation process is still the most error-prone stage in reporting mtDNA population data, especially when performed manually. This GHEP–EMPOP collaboration has significantly improved the quality of the individual mtDNA datasets and adds mtDNA population data as valuable resource to the EMPOP database (www.empop.org).
Collapse
Affiliation(s)
- L Prieto
- Comisaría General de Policía Científica, University Institute of Research in Forensic Sciences (IUICP), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zimmermann B, Röck A, Huber G, Krämer T, Schneider PM, Parson W. Application of a west Eurasian-specific filter for quasi-median network analysis: Sharpening the blade for mtDNA error detection. Forensic Sci Int Genet 2010; 5:133-7. [PMID: 21067984 PMCID: PMC3065003 DOI: 10.1016/j.fsigen.2010.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The application of quasi-median networks provides an effective tool to check the quality of mtDNA data. Filtering of highly recurrent mutations prior to network analysis is required to simplify the data set and reduce the complexity of the network. The phylogenetic background determines those mutations that need to be filtered. While the traditional EMPOPspeedy filter was based on the worldwide mtDNA phylogeny, haplogroup-specific filters can more effectively highlight potential errors in data of the respective (sub)-continental region. In this study we demonstrate the performance of a new, west Eurasian filter EMPOPspeedyWE for the fine-tuned examination of data sets belonging to macrohaplogroup N that constitutes the main portion of mtDNA lineages in Europe. The effects on the resulting network of different database sizes, high-quality and flawed data, as well as the examination of a phylogenetically distant data set, are presented by examples. The analyses are based on a west Eurasian etalon data set that was carefully compiled from more than 3500 control region sequences for network purposes. Both, etalon data and the new filter file, are provided through the EMPOP database (www.empop.org).
Collapse
|
32
|
Molecular oncology focus - is carcinogenesis a 'mitochondriopathy'? J Biomed Sci 2010; 17:31. [PMID: 20416110 PMCID: PMC2876137 DOI: 10.1186/1423-0127-17-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 04/25/2010] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are sub-cellular organelles that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). As suggested over 70 years ago by Otto Warburg and recently confirmed with molecular techniques, alterations in respiratory activity and in mitochondrial DNA (mtDNA) appear to be common features of malignant cells. Somatic mtDNA mutations have been reported in many types of cancer cells, and some reports document the prevalence of inherited mitochondrial DNA polymorphisms in cancer patients. Nevertheless, a careful reanalysis of methodological criteria and methodology applied in those reports has shown that numerous papers can't be used as relevant sources of data for systematic review, meta-analysis, or finally for establishment of clinically applicable markers. In this review technical and conceptual errors commonly occurring in the literature are summarized. In the first place we discuss, why many of the published papers cannot be used as a valid and clinically useful sources of evidence in the biomedical and healthcare contexts. The reasons for introduction of noise in data and in consequence - bias for the interpretation of the role of mitochondrial DNA in the complex process of tumorigenesis are listed. In the second part of the text practical aspects of mtDNA research and requirements necessary to fulfill in order to use mtDNA analysis in clinics are shown. Stringent methodological criteria of a case-controlled experiment in molecular medicine are indicated. In the third part we suggest, what lessons can be learned for the future and propose guidelines for mtDNA analysis in oncology. Finally we conclude that, although several conceptual and methodological difficulties hinder the research on mitochondrial patho-physiology in cancer cells, this area of molecular medicine should be considered of high importance for future clinical practice.
Collapse
|
33
|
Weissensteiner H, Schönherr S, Specht G, Kronenberg F, Brandstätter A. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies. BMC Bioinformatics 2010; 11:122. [PMID: 20214782 PMCID: PMC2841209 DOI: 10.1186/1471-2105-11-122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/09/2010] [Indexed: 11/30/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. Description eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. Conclusions The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.
Collapse
Affiliation(s)
- Hansi Weissensteiner
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
34
|
Yao YG, Salas A, Logan I, Bandelt HJ. mtDNA data mining in GenBank needs surveying. Am J Hum Genet 2009; 85:929-33; author reply 933. [PMID: 20004768 DOI: 10.1016/j.ajhg.2009.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/06/2009] [Accepted: 10/24/2009] [Indexed: 11/26/2022] Open
|
35
|
Cerezo M, Bandelt HJ, Martín-Guerrero I, Ardanaz M, Vega A, Carracedo Á, García-Orad Á, Salas A. High mitochondrial DNA stability in B-cell chronic lymphocytic leukemia. PLoS One 2009; 4:e7902. [PMID: 19924307 PMCID: PMC2775629 DOI: 10.1371/journal.pone.0007902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/20/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. METHODOLOGY/PRINCIPAL FINDINGS The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. CONCLUSIONS/SIGNIFICANCE Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis.
Collapse
MESH Headings
- Base Sequence
- DNA Primers/genetics
- DNA, Mitochondrial/genetics
- Databases, Genetic
- Granulocytes/cytology
- Haplotypes
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphocytes/cytology
- Models, Statistical
- Molecular Sequence Data
- Mutation
- Phylogeny
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- María Cerezo
- Unidade de Xenética, Instituto de Medicina Legal, and Departamento de Anatomía Patolóxica y Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | | | - Idoia Martín-Guerrero
- Laboratorio Interdepartamental de Medicina Molecular, Departamento de Genética Antropología Física y Fisiología Animal, Facultad de Medicina, Universidad del País Vasco- Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Maite Ardanaz
- Servicio de Hematología, Hospital Txagorritxu, Vitoria, Spain
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Hospital Clínico Universitario, Universidad de Santiago de Compostela, Galicia, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Instituto de Medicina Legal, and Departamento de Anatomía Patolóxica y Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - África García-Orad
- Laboratorio Interdepartamental de Medicina Molecular, Departamento de Genética Antropología Física y Fisiología Animal, Facultad de Medicina, Universidad del País Vasco- Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Medicina Legal, and Departamento de Anatomía Patolóxica y Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
36
|
Mitochondrial DNA control region variation in a population sample from Hong Kong, China. Forensic Sci Int Genet 2009; 3:e119-25. [DOI: 10.1016/j.fsigen.2008.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/27/2008] [Indexed: 11/20/2022]
|
37
|
Ramos A, Santos C, Alvarez L, Nogués R, Aluja MP. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis 2009; 30:1587-93. [PMID: 19350543 DOI: 10.1002/elps.200800601] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To date, there are no published primers to amplify the entire mitochondrial DNA (mtDNA) that completely prevent the amplification of nuclear DNA (nDNA) sequences of mitochondrial origin. The main goal of this work was to design, validate and describe a set of primers, to specifically amplify and sequence the complete human mtDNA, allowing the correct interpretation of mtDNA heteroplasmy in healthy and pathological samples. Validation was performed using two different approaches: (i) Basic Local Alignment Search Tool and (ii) amplification using isolated nDNA obtained from sperm cells by differential lyses. During the validation process, two mtDNA regions, with high similarity with nDNA, represent the major problematic areas for primer design. One of these could represent a non-published nuclear DNA sequence of mitochondrial origin. For two of the initially designed fragments, the amplification results reveal PCR artifacts that can be attributed to the poor quality of the DNA. After the validation, nine overlapping primer pairs to perform mtDNA amplification and 22 additional internal primers for mtDNA sequencing were obtained. These primers could be a useful tool in future projects that deal with mtDNA complete sequencing and heteroplasmy detection, since they represent a set of primers that have been tested for the non-amplification of nDNA.
Collapse
Affiliation(s)
- Amanda Ramos
- Departament BABVE, Unitat d'Antropologia Biològica, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
38
|
Saunier JL, Irwin JA, Strouss KM, Ragab H, Sturk KA, Parsons TJ. Mitochondrial control region sequences from an Egyptian population sample. Forensic Sci Int Genet 2009; 3:e97-103. [DOI: 10.1016/j.fsigen.2008.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
39
|
Koutroumpa FA, Lieutier F, Roux-Morabito G. Incorporation of mitochondrial fragments in the nuclear genome (Numts) of the longhorned beetleMonochamus galloprovincialis(Coleoptera, Cerambycidae). J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2008.00492.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Bandelt HJ, Salas A. Contamination and sample mix-up can best explain some patterns of mtDNA instabilities in buccal cells and oral squamous cell carcinoma. BMC Cancer 2009; 9:113. [PMID: 19371404 PMCID: PMC2678148 DOI: 10.1186/1471-2407-9-113] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 04/16/2009] [Indexed: 11/10/2022] Open
Abstract
The study of somatic DNA instabilities constitutes a debatable topic because different causes can lead to seeming DNA alteration patterns between different cells or tissues from the same individual. Carcinogenesis or the action of a particular toxic could generate such patterns, and this is in fact the leitmotif of a number of studies on mitochondrial DNA (mtDNA) instability. Patterns of seeming instabilities could also arise from technical errors at any stage of the analysis (DNA extraction, amplification, mutation screening/sequencing, and documentation). Specifically, inadvertent DNA contamination or sample mixing would yield mosaic variation that could be erroneously interpreted as real mutation differences (instabilities) between tissues from the same individual. From the very beginning, mtDNA studies comparing cancerous to non-cancerous tissues have suffered from such mosaic results. We demonstrate here that the phylogenetic linkage of whole arrays of mtDNA mutations provides strong evidence of artificial recombination in previous studies on buccal cells and oral squamous cell carcinoma.
Collapse
|
41
|
Bandelt HJ, Salas A, Taylor RW, Yao YG. Exaggerated status of "novel" and "pathogenic" mtDNA sequence variants due to inadequate database searches. Hum Mutat 2009; 30:191-6. [PMID: 18800376 DOI: 10.1002/humu.20846] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given its relative ease, screening the entire mitochondrial DNA (mtDNA) for heteroplasmic or novel homoplasmic mutations has become part of the routine diagnostic workup for the molecular geneticist confronted with a disease case exhibiting clinical and biochemical features of mitochondrial dysfunction. "Novelty" of a given mtDNA variant is most often equated with nonregistration in the extensive MITOMAP database (www.mitomap.org). This practice has led to a number of spurious findings and wrong conclusions concerning the pathogenic status of specific mtDNA mutations, especially in the absence of proper evaluation and pathogenicity scoring. We demonstrate by way of real cases targeting the mt-tRNA(Cys) (MT-TC) gene and a stretch within the MT-ND3 gene, that a straightforward Google search can identify twice as many previously observed mutations than any MITOMAP query could achieve. Further, we reassess the recent rediscovery of m.15287T>C by listing all known occurrences and, where possible, providing the haplogroup context, shedding new light on the potential pathogenicity status of m.15287T>C.
Collapse
|
42
|
Bandelt HJ, Yao YG, Bravi CM, Salas A, Kivisild T. Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies. J Hum Genet 2009; 54:174-81. [PMID: 19322152 DOI: 10.1038/jhg.2009.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation.
Collapse
|
43
|
Kong QP, Salas A, Sun C, Fuku N, Tanaka M, Zhong L, Wang CY, Yao YG, Bandelt HJ. Distilling artificial recombinants from large sets of complete mtDNA genomes. PLoS One 2008; 3:e3016. [PMID: 18714389 PMCID: PMC2515346 DOI: 10.1371/journal.pone.0003016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/21/2008] [Indexed: 11/19/2022] Open
Abstract
Background Large-scale genome sequencing poses enormous problems to the logistics of laboratory work and data handling. When numerous fragments of different genomes are PCR amplified and sequenced in a laboratory, there is a high immanent risk of sample confusion. For genetic markers, such as mitochondrial DNA (mtDNA), which are free of natural recombination, single instances of sample mix-up involving different branches of the mtDNA phylogeny would give rise to reticulate patterns and should therefore be detectable. Methodology/Principal Findings We have developed a strategy for comparing new complete mtDNA genomes, one by one, to a current skeleton of the worldwide mtDNA phylogeny. The mutations distinguishing the reference sequence from a putative recombinant sequence can then be allocated to two or more different branches of this phylogenetic skeleton. Thus, one would search for two (or three) near-matches in the total mtDNA database that together best explain the variation seen in the recombinants. The evolutionary pathway from the mtDNA tree connecting this pair together with the recombinant then generate a grid-like median network, from which one can read off the exchanged segments. Conclusions We have applied this procedure to a large collection of complete human mtDNA sequences, where several recombinants could be distilled by our method. All these recombinant sequences were subsequently corrected by de novo experiments – fully concordant with the predictions from our data-analytical approach.
Collapse
Affiliation(s)
- Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
| | - Antonio Salas
- Unidade de Xenética, Instituto de Medicina Legal, Facultad de Medicina, Universidad de Santiago de Compostela, Galicia, Spain
| | - Chang Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Noriyuki Fuku
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Li Zhong
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
| | - Cheng-Ye Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Gang Yao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | |
Collapse
|
44
|
Barbosa ABG, da Silva LAF, Azevedo DA, Balbino VQ, Mauricio-da-Silva L. Mitochondrial DNA control region polymorphism in the population of Alagoas state, north-eastern Brazil. J Forensic Sci 2008; 53:142-6. [PMID: 18279250 DOI: 10.1111/j.1556-4029.2007.00619.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sequences of the two hypervariable (HV) segments of the mitochondrial DNA (mtDNA) control region were determined in 167 randomly selected, unrelated individuals living in the state of Alagoas, north-eastern Brazil. One hundred and forty-five different haplotypes, associated with 139 variable positions, were determined. More than 95% of the mtDNA sequences could be allocated to specific mtDNA haplogroups according to the mutational motifs. Length heteroplasmy in the C-stretch HV1 and HV2 regions was observed in 22 and 11%, respectively, of the population sample. The genetic diversity was estimated to be 0.9975 and the probability of two random individuals presenting identical mtDNA haplotypes was 0.0084. The most frequent haplotype was shared by six individuals. All sequences showed high-quality values and phantom mutations were not detected. The diversity revealed in the mitochondrial control region indicates the importance of this locus for forensic casework and population studies within Alagoas, Brazil.
Collapse
Affiliation(s)
- Adriana B G Barbosa
- Laboratório de DNA Forense, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Av. Aristeu de Andrade 452, Farol, CEP 57021-090, Maceió, AL, Brazil
| | | | | | | | | |
Collapse
|
45
|
Saunier JL, Irwin JA, Just RS, O'Callaghan J, Parsons TJ. Mitochondrial control region sequences from a U.S. "Hispanic" population sample. Forensic Sci Int Genet 2008; 2:e19-23. [PMID: 19083798 DOI: 10.1016/j.fsigen.2007.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/17/2007] [Accepted: 11/06/2007] [Indexed: 11/28/2022]
Abstract
Entire mitochondrial control region data was generated for 128 "Hispanics" from the United States. These samples have been previously typed for 15 autosomal STRs [J.M. Butler, R. Schoske, P.M. Vallone, J.W. Redman, M.C. Kline, Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations, J. Forensic Sci. 48 (2003) 908-911]. High-throughput robotics, a redundant sequencing approach, and several quality control checks were implemented to generate a high-quality database. The data presented here will augment Hispanic reference data available for forensic mtDNA comparisons.
Collapse
Affiliation(s)
- Jessica L Saunier
- Armed Forces DNA Identification Laboratory, Rockville, MD 20850, United States
| | | | | | | | | |
Collapse
|
46
|
Melton PE, Briceño I, Gómez A, Devor EJ, Bernal JE, Crawford MH. Biological relationship between Central and South American Chibchan speaking populations: evidence from mtDNA. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 133:753-70. [PMID: 17340631 DOI: 10.1002/ajpa.20581] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We examined mitochondrial DNA (mtDNA) haplogroup and haplotype diversity in 188 individuals from three Chibchan (Kogi, Arsario, and Ijka) populations and one Arawak (Wayuú) group from northeast Colombia to determine the biological relationship between lower Central American and northern South American Chibchan speakers. mtDNA haplogroups were obtained for all individuals and mtDNA HVS-I sequence data were obtained for 110 samples. Resulting sequence data were compared to 16 other Caribbean, South, and Central American populations using diversity measures, neutrality test statistics, sudden and spatial mismatch models, intermatch distributions, phylogenetic networks, and a multidimensional scaling plot. Our results demonstrate the existence of a shared maternal genetic structure between Central American Chibchan, Mayan populations and northern South American Chibchan-speakers. Additionally, these results suggest an expansion of Chibchan-speakers into South America associated with a shift in subsistence strategies because of changing ecological conditions that occurred in the region between 10,000-14,000 years before present.
Collapse
Affiliation(s)
- Phillip E Melton
- Department of Anthropology, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Influence of the electrophoresis-resequencing method on the forensic mtDNA profiling quality. Forensic Sci Int Genet 2007; 1:199-200. [DOI: 10.1016/j.fsigen.2007.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 02/03/2007] [Indexed: 11/22/2022]
|
48
|
Affiliation(s)
- T A Brettell
- Department of Chemical and Physical Sciences, Cedar Crest College, 100 College Drive, Allentown, Pennsylvania 18104-6196, USA
| | | | | |
Collapse
|
49
|
Parson W, Dür A. EMPOP--a forensic mtDNA database. Forensic Sci Int Genet 2007; 1:88-92. [PMID: 19083735 DOI: 10.1016/j.fsigen.2007.01.018] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/27/2007] [Indexed: 10/23/2022]
Abstract
Mitochondrial DNA databases stand as the basis for frequency estimations of mtDNA sequences that became relevant in a case. The establishment of mtDNA databases sounds trivial; however, it has been shown in the past that this undertaking is prone to error for several reasons, particularly human error. We have established a concept for mtDNA data generation, analysis, transfer and quality control that meets forensic standards. Due to the complexity of mtDNA population data tables it is often difficult if not impossible to detect errors, especially for the untrained eye. We developed software based on quasi-median network analysis that visualizes mtDNA data tables and thus signposts sequencing, interpretation and transcription errors. The mtDNA data (N=5173; release 1) are stored and made publicly available via the Internet in the form of the EDNAP mtDNA Population Database, short EMPOP. This website also facilitates quasi-median network analysis and provides results that can be used to check the quality of mtDNA sequence data. EMPOP has been launched on 16 October 2006 and is since then available at http://www.empop.org.
Collapse
Affiliation(s)
- Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University Müllerstreet 44, 6020 Innsbruck, Austria.
| | | |
Collapse
|
50
|
Bandelt HJ, Olivieri A, Bravi C, Yao YG, Torroni A, Salas A. 'Distorted' mitochondrial DNA sequences in schizophrenic patients. Eur J Hum Genet 2007; 15:400-2; author reply 402-4. [PMID: 17264866 DOI: 10.1038/sj.ejhg.5201781] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|