1
|
Selemani MA, Martin RS. Use of 3D printing to integrate microchip electrophoresis with amperometric detection. Anal Bioanal Chem 2024; 416:4749-4758. [PMID: 38581532 DOI: 10.1007/s00216-024-05260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
This paper describes the use of PolyJet 3D printing to fabricate microchip electrophoresis devices with integrated microwire electrodes for amperometric detection. The fabrication process involves 3D printing of two separate pieces, a channel layer and an electrode layer. The channel layer is created by 3D printing on a pre-fabricated mold with a T-intersection. For the electrode layer, a stencil design is printed directly on the printing tray and covered with a piece of transparent glass. Microwire electrodes are adhered over the glass piece (guided by underlaying stencil) and a CAD design of the electrode layer is then printed on top of the microwire electrode. After delamination from the glass after printing, the microwire is embedded in the printed piece, with the stencil design ensuring that alignment and positioning of the electrode is reproducible for each print. After a thermal bonding step between the channel layer and electrode layer, a complete electrophoresis device with integrated microelectrodes for amperometric detection results. It is shown that this approach enables different microwire electrodes (gold or platinum) and sizes (100 or 50 µm) to be integrated in an end-channel configuration with no gap between the electrode and the separation channel. These devices were used to separate a mixture of catecholamines and the effect of separation voltage on the potential voltage applied on the working electrode was also investigated. In addition, the effect of electrode size on the number of theoretical plates and limit of detection was studied. Finally, a device that contains different channel heights and a detection electrode was 3D-printed to integrate continuous flow sampling with microchip electrophoresis and amperometric detection.
Collapse
Affiliation(s)
- Major A Selemani
- Department of Chemistry, Saint Louis University, Saint Louis, MO, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, Saint Louis, MO, USA.
- Center for Additive Manufacturing, Saint Louis University, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Warren CG, Dasgupta PK. Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Anal Chim Acta 2024; 1305:342507. [PMID: 38677834 DOI: 10.1016/j.aca.2024.342507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.
Collapse
Affiliation(s)
- Cable G Warren
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States.
| |
Collapse
|
3
|
Roychoudhury A, Francis KA, Patel J, Jha SK, Basu S. A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin. RSC Adv 2020; 10:25487-25495. [PMID: 35518591 PMCID: PMC9055240 DOI: 10.1039/d0ra03526b] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022] Open
Abstract
This paper demonstrates a new and simplified configuration for capillary electrophoresis-amperometric detection (CE-AD) using a paper microfluidic chip incorporating inexpensive wax printing and screen printing based methods and then used for electrophoretic separation and simultaneous in-channel amperometric detection of three clinically relevant neurochemicals in a single run without using any decouplers. Detection of neurochemicals e.g., dopamine, epinephrine and serotonin is crucial for early prediction of neurological disorders including Parkinson's, Alzheimer's, dementia, as well as progressive neuro-psychiatric conditions such as depression, anxiety, as well as certain cardiovascular diseases. The plasma concentrations of such neurochemicals are as important as those present in cerebrospinal fluid (CSF) and can be useful for rapid and convenient biosensing. However, simultaneous detection of such neurochemicals in a complex mixture such as human serum requires their separation prior to detection. With the developed microchip, separation and detection of the neurochemicals were exhibited within 650 seconds without pre-treatment and the procedure was validated with spiked fetal bovine serum samples. Beside this, the developed paper microfluidic chip has potential to be integrated in point-of-care diagnosis with onsite detection ability. Moreover, the use of a straight channel capillary, a screen-printed carbon electrode without decoupler, in-channel amperometric detection and low sample volume requirements (2 μL) are shown as additional advantages. This paper demonstrates a simplified configuration for capillary electrophoresis-amperometric detection using paper microfluidic chip for separation and simultaneous detection of three clinically relevant neurochemicals without using any decouplers.![]()
Collapse
Affiliation(s)
- Appan Roychoudhury
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Department of Biomedical Engineering
| | - Kevin Antony Francis
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Department of Biomedical Engineering
| | - Jay Patel
- Department of Chemical Engineering
- Visvesvaraya National Institute of Technology
- Nagpur 440010
- India
| | - Sandeep Kumar Jha
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Department of Biomedical Engineering
| | - Suddhasatwa Basu
- Department of Chemical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| |
Collapse
|
4
|
Shimizu FM, Todão FR, Gobbi AL, Oliveira ON, Garcia CD, Lima RS. Functionalization-Free Microfluidic Electronic Tongue Based on a Single Response. ACS Sens 2017; 2:1027-1034. [PMID: 28750534 DOI: 10.1021/acssensors.7b00302] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electronic tongues (e-tongues) are promising analytical devices for a variety of applications to address the challenges of quality control in water monitoring and industries of foods, beverages, and pharmaceuticals. A crucial drawback in the current e-tongues is the need to recalibrate the device when one or more sensing units (usually with modified surface) are replaced. Another downside is the necessity to perform subsequent surface modifications and analyses to each of the diverse sensing units, undermining the simplicity and velocity of the method. These features have prevented widespread commercial use of the e-tongues. In this paper, we introduce a microfluidic e-tongue that overcomes all such limitations. The key principle of global selectivity of the e-tongue was achieved by recording only a single response, namely, the equivalent admittance spectrum of an association of resistors in parallel. Such resistors consisted of five nonfunctionalized stainless steel microwires (sensing units), which were short-circuited and coated with gold, platinum, nickel, iron, and aluminum oxide films. The microwires were inserted in a chip composed of a single piece of polydimethylsiloxane (PDMS). Using impedance spectroscopy, the e-tongue was successfully applied in classification of basic tastes at a concentration below the threshold for the human tongue. In addition, our chip allowed the distinction of various chemicals used in oil industry. Finally, our cleanroom-free prototyping allows the mass production of chips with easily replaceable and reproducible sensing units. Hence, one can now envisage the widespread dissemination of e-tongues with fast and reproducible data.
Collapse
Affiliation(s)
- Flavio M. Shimizu
- Instituto
de Física de São Carlos, Universidade de São Paulo, São
Carlos, São Paulo 13560-970, Brasil
| | - Fagner R. Todão
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Angelo L. Gobbi
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Osvaldo N. Oliveira
- Instituto
de Física de São Carlos, Universidade de São Paulo, São
Carlos, São Paulo 13560-970, Brasil
| | - Carlos D. Garcia
- Department
of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Renato S. Lima
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| |
Collapse
|
5
|
Teixeira CA, Giordano GF, Beltrame MB, Vieira LCS, Gobbi AL, Lima RS. Renewable Solid Electrodes in Microfluidics: Recovering the Electrochemical Activity without Treating the Surface. Anal Chem 2016; 88:11199-11206. [DOI: 10.1021/acs.analchem.6b03453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carlos A. Teixeira
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| | - Gabriela F. Giordano
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| | - Maisa B. Beltrame
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Luis C. S. Vieira
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Angelo L. Gobbi
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Renato S. Lima
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| |
Collapse
|
6
|
Caxico de Abreu F, Costa EEM. Electrochemical Detection Using an Engraved Microchip - Capillary Electrophoresis Platform. ELECTROANAL 2016. [DOI: 10.1002/elan.201600033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabiane Caxico de Abreu
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; Maceio, Alagoas Brazil
- Department of Chemistry; The University of Texas at San Antonio; UTSA Circle San Antonio TX 78249 USA
| | - Elton Elias M. Costa
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; Maceio, Alagoas Brazil
| |
Collapse
|
7
|
Johnson AS, Mehl BT, Martin RS. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:884-893. [PMID: 25663849 PMCID: PMC4318258 DOI: 10.1039/c4ay02569e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells.
Collapse
Affiliation(s)
- Alicia S Johnson
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Benjamin T Mehl
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
8
|
Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL, McNamara S, Martin RS, Spence DM. 3D printed microfluidic devices with integrated versatile and reusable electrodes. LAB ON A CHIP 2014; 14:2023-32. [PMID: 24763966 PMCID: PMC4436701 DOI: 10.1039/c4lc00171k] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report two 3D printed devices that can be used for electrochemical detection. In both cases, the electrode is housed in commercially available, polymer-based fittings so that the various electrode materials (platinum, platinum black, carbon, gold, silver) can be easily added to a threaded receiving port printed on the device; this enables a module-like approach to the experimental design, where the electrodes are removable and can be easily repolished for reuse after exposure to biological samples. The first printed device represents a microfluidic platform with a 500 × 500 μm channel and a threaded receiving port to allow integration of either polyetheretherketone (PEEK) nut-encased glassy carbon or platinum black (Pt-black) electrodes for dopamine and nitric oxide (NO) detection, respectively. The embedded 1 mm glassy carbon electrode had a limit of detection (LOD) of 500 nM for dopamine and a linear response (R(2) = 0.99) for concentrations between 25-500 μM. When the glassy carbon electrode was coated with 0.05% Nafion, significant exclusion of nitrite was observed when compared to signal obtained from equimolar injections of dopamine. When using flow injection analysis with a Pt/Pt-black electrode and standards derived from NO gas, a linear correlation (R(2) = 0.99) over a wide range of concentrations (7.6-190 μM) was obtained, with the LOD for NO being 1 μM. The second application showcases a 3D printed fluidic device that allows collection of the biologically relevant analyte adenosine triphosphate (ATP) while simultaneously measuring the release stimulus (reduced oxygen concentration). The hypoxic sample (4.8 ± 0.5 ppm oxygen) released 2.4 ± 0.4 times more ATP than the normoxic sample (8.4 ± 0.6 ppm oxygen). Importantly, the results reported here verify the reproducible and transferable nature of using 3D printing as a fabrication technique, as devices and electrodes were moved between labs multiple times during completion of the study.
Collapse
Affiliation(s)
- Jayda L Erkal
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li X, Chen Z, Pan J, Yang F, Li Y, Yao M. Differential pulsed amperometry coupled to microchip capillary electrophoresis. J Chromatogr A 2013; 1291:174-8. [DOI: 10.1016/j.chroma.2013.03.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022]
|
10
|
Johnson AS, Anderson KB, Halpin ST, Kirkpatrick DC, Spence DM, Martin RS. Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization. Analyst 2012; 138:129-36. [PMID: 23120747 DOI: 10.1039/c2an36168j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Part I of a two-part series, we describe a simple and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and pipets for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high-throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis.
Collapse
Affiliation(s)
- Alicia S Johnson
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA
| | | | | | | | | | | |
Collapse
|
11
|
Guan Q, Noblitt SD, Henry CS. Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants. Electrophoresis 2012; 33:2875-83. [PMID: 23019105 PMCID: PMC3804416 DOI: 10.1002/elps.201200255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X-100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X-100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X-100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K(+) was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples.
Collapse
Affiliation(s)
- Qian Guan
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | |
Collapse
|
12
|
Johnson AS, Selimovic A, Martin RS. Integration of microchip electrophoresis with electrochemical detection using an epoxy-based molding method to embed multiple electrode materials. Electrophoresis 2011; 32:3121-8. [PMID: 22038707 PMCID: PMC3314886 DOI: 10.1002/elps.201100433] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/08/2022]
Abstract
This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy-embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified as is done with electrochemical flow cells used in liquid chromatography.
Collapse
Affiliation(s)
- Alicia S. Johnson
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Asmira Selimovic
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
13
|
Filla LA, Kirkpatrick DC, Martin RS. Use of a corona discharge to selectively pattern a hydrophilic/hydrophobic interface for integrating segmented flow with microchip electrophoresis and electrochemical detection. Anal Chem 2011; 83:5996-6003. [PMID: 21718004 DOI: 10.1021/ac201007s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to "desegment" the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies in which off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection.
Collapse
Affiliation(s)
- Laura A Filla
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | | | | |
Collapse
|
14
|
Li X, Pan J, Yang F, Feng J, Mo J, Chen Z. Simple amperometric detector for microchip capillary electrophoresis, and its application to the analysis of dopamine and catechol. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0592-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Selimovic A, Johnson AS, Kiss IZ, Martin RS. Use of epoxy-embedded electrodes to integrate electrochemical detection with microchip-based analysis systems. Electrophoresis 2011; 32:822-31. [PMID: 21413031 PMCID: PMC3085833 DOI: 10.1002/elps.201000665] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/11/2011] [Accepted: 01/11/2011] [Indexed: 11/09/2022]
Abstract
A new method of fabricating electrodes for microchip devices that involves the use of Teflon molds and a commercially available epoxy to embed electrodes of various sizes and compositions is described. The resulting epoxy base can be polished to generate a fresh electrode and sealed against poly(dimethylsiloxane) (PDMS)-based fluidic structures. Microchip-based flow injection analysis was used to characterize the epoxy-embedded electrodes. It was shown that gold electrodes can be amalgamated with liquid mercury and the resulting mercury/gold electrode is used to selectively detect glutathione from lysed red blood cells. The ability to encapsulate multiple electrode materials of differing compositions enabled the integration of microchip electrophoresis with electrochemical detection. Finally, a unique feature of this approach is that the electrode connection is made from the bottom of the epoxy base. This enables the creation of three-dimensional gold pillar electrodes (65 μm in diameter and 27 μm in height) that can be integrated within a fluidic network. As compared with the use of a flat electrode of a similar diameter, the use of the pillar electrode led to improvements in both the sensitivity (72.1 pA/μM for the pillar versus 4.2 pA/μM for the flat electrode) and limit of detection (20 nM for the pillar versus 600 nM for the flat electrode), with catechol being the test analyte. These epoxy-embedded electrodes hold promise for the creation of inexpensive microfluidic devices that can be used to electrochemically detect biologically important analytes in a manner where the electrodes can be polished and a fresh electrode surface is generated as desired.
Collapse
Affiliation(s)
- Asmira Selimovic
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Alicia S. Johnson
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - István Z. Kiss
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
16
|
Mecker LC, Filla LA, Martin RS. Use of a Carbon-ink Microelectrode Array for Signal Enhancement in Microchip Electrophoresis with Electrochemical Detection. ELECTROANAL 2010; 22:2141-2146. [PMID: 21572540 PMCID: PMC3092702 DOI: 10.1002/elan.201000118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/11/2010] [Indexed: 11/09/2022]
Abstract
In this communication, we demonstrate that a carbon ink microelectrode array, where the electrodes are held at the same potential, affords significant signal enhancement in microchip electrophoresis with amperometric detection. The ability to fabricate an array of carbon ink microelectrodes with a palladium decoupler was demonstrated and the resulting electrodes were integrated with a valving microchip design. The use of an 8 electrode array led to a significant improvement in the limits of detection at the expense of separation resolution due to the increased detection zone size. It is also shown that microdialysis sampling can be integrated with the microchip device and a multi-analyte separation achieved.
Collapse
Affiliation(s)
- Laura C. Mecker
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Laura A. Filla
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
17
|
Felhofer JL, Blanes L, Garcia CD. Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 2010; 31:2469-86. [PMID: 20665910 PMCID: PMC2928674 DOI: 10.1002/elps.201000203] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the last years, there has been an explosion in the number of developments and applications of CE and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on the contributions published in the last 5 years, is intended to complement the articles presented in this special issue dedicated to instrumentation and to provide an overview of the general trends and some of the most remarkable developments published in the areas of high-voltage power supplies, detectors, auxiliary components, and compact systems. It also includes a few examples of alternative uses of and modifications to traditional CE instruments.
Collapse
Affiliation(s)
- Jessica L. Felhofer
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| | - Lucas Blanes
- Centre for Forensic Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Carlos D. Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| |
Collapse
|
18
|
Kirkpatrick DC, Antwi C, Martin RS. Use of Recordable Compact Discs to Fabricate Electrodes for Microchip-based Analysis Systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2010; 2:811-816. [PMID: 21031142 PMCID: PMC2963460 DOI: 10.1039/c0ay00294a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This work demonstrates that recordable compact discs (CDs) that contain gold as a reflective layer can be used as an electrode substrate for microchip-based analysis systems. A fabrication procedure that enables the reproducible patterning of multiple electrodes has been developed. It is shown that the microelectrodes can be integrated within a PDMS-based fluidic network and used for amperometric detection of electroactive analytes at both single and dual microelectrodes. A detailed comparison is made between the CD-based patterned electrodes and electrodes made by the traditional method of sputtering gold and titanium adhesion layers onto a glass substrate. It is also shown that mercury can be electrodeposited onto a CD-based microelectrode and the amalgam electrode used to selectively detect thiols. Finally, it is demonstrated that a decoupler for microchip-based electrophoresis can be made by electrodepositing palladium onto a gold electrode and a separate downstream gold working electrode can be used for amperometric detection. These CD-based patterned electrodes are attractive alternatives for situations where device cost is of a concern or sputtering facilities are unavailable.
Collapse
Affiliation(s)
- Douglas C. Kirkpatrick
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Christiana Antwi
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
19
|
Bowen AL, Martin RS. Integration of serpentine channels for microchip electrophoresis with a palladium decoupler and electrochemical detection. Electrophoresis 2010; 30:3347-54. [PMID: 19739137 DOI: 10.1002/elps.200900234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although it has been shown that microchip electrophoresis (MCE) with electrochemical detection can be used to separate and detect electroactive species, there is a need to increase the separation performance of these devices so that complex mixtures can be routinely analyzed. Previous work in the MCE has demonstrated that increasing the separation channel length leads to an increase in resolution between closely eluting analytes. This paper details the use of lengthened serpentine microchannels for MCE and electrochemical detection where a palladium decoupler is used to ground the separation voltage so that the working electrodes remain in the fluidic network. In this work, palladium electrodepositions were used to increase the decoupler surface area and more efficiently dissipate hydrogen produced at the decoupler. Dopamine and norepinephrine, which only differ in structure by a hydroxyl group, were used as model analytes. It was found that increasing the separation channel length led to improvements in both the resolution and the number of theoretical plates for these analytes. The use of a bilayer valving device, where PDMS-based valves are utilized for the injection process, along with serpentine microchannels and amperometric detection resulted in a multianalyte separation and an average of 28 700 theoretical plates. It was also shown that the increased channel length is beneficial when separating and detecting analytes from a high ionic strength matrix. This was demonstrated by monitoring the stimulated release of neurotransmitters from a confluent layer of PC 12 cells.
Collapse
Affiliation(s)
- Amanda L Bowen
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | | |
Collapse
|
20
|
Fischer DJ, Hulvey MK, Regel AR, Lunte SM. Amperometric detection in microchip electrophoresis devices: effect of electrode material and alignment on analytical performance. Electrophoresis 2010; 30:3324-33. [PMID: 19802847 DOI: 10.1002/elps.200900317] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and LOD were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine, and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest LOD (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for CAT in comparison to end-channel alignment.
Collapse
Affiliation(s)
- David J Fischer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | | | | |
Collapse
|
21
|
Wu RG, Yang CS, Lian CK, Cheing CC, Tseng FG. Dual-asymmetry electrokinetic flow focusing for pre-concentration and analysis of catecholamines in CE electrochemical nanochannels. Electrophoresis 2009; 30:2523-31. [PMID: 19639573 DOI: 10.1002/elps.200800809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this research, a technique incorporating dual-asymmetry electrokinetic flow (DAEKF) was applied to a nanoCE electrochemical device for the pre-concentration and detection of catecholamines. The DAEKF was constructed by first generating a zeta-potential difference between the top and bottom walls, which had been pre-treated with O2 and H2O surface plasma, respectively, yielding a 2-D gradient shear flow across the channel depth. The shear flow was then exposed to a varying zeta-potential along the downstream direction by control of the field-effect in order to cause downward rotational flow in the channel. By this mechanism, almost all of the samples were effectively brought down to the electrode surface for analysis. Simulations were carried out to reveal the mechanism of concentration caused by the DAEKF, and the results reasonably describe our experiment findings. This DAEKF technique was applied to a glass/glass CE electrochemical nanochip for the analysis of catecholamines. The optimum detection limit was determined to be 1.25 and 3.3 nM of dopamine and catechol, respectively. A detection limit at the zeptomole level for dopamine can be obtained in this device, which is close to the level released by a single neuron cell in vitro.
Collapse
Affiliation(s)
- Ren-Guei Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Guan Q, Henry CS. Improving MCE with electrochemical detection using a bubble cell and sample stacking techniques. Electrophoresis 2009; 30:3339-46. [PMID: 19802848 PMCID: PMC3005344 DOI: 10.1002/elps.200900316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Two efforts to improve the sensitivity and limits of detection for MCE with electrochemical detection are presented here. One is the implementation of a capillary expansion (bubble cell) at the detection zone to increase the exposed working electrode surface area. Bubble cell widths were varied from 1x to 10x the separation channel width (50 mum) to investigate the effects of electrode surface area on detection sensitivity, LOD, and separation efficiency. Improved detection sensitivity and decreased detection limits were obtained with increased bubble cell width, and LODs of dopamine and catechol detected in a 5x bubble cell were 25 and 50 nM, respectively. Meanwhile, fluorescent imaging results demonstrated approximately 8 and approximately 12% loss in separation efficiency in 4x and 5x bubble cell, respectively. Another effort at reducing the LOD involves using field amplified sample injection for gated injection and field amplified sample stacking for hydrodynamic injection. Stacking effects are shown for both methods using amperometric detection and pulsed amperometric detection. The LODs of dopamine in a 4x bubble cell were 8 and 20 nM using field amplified sample injection and field amplified sample stacking, respectively. However, improved LODs were not obtained for anionic analytes using either stacking technique.
Collapse
Affiliation(s)
- Qian Guan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
23
|
Analysis of oxidative stress biomarkers using a simultaneous competitive/non-competitive micromosaic immunoassay. Anal Chim Acta 2009; 640:1-6. [PMID: 19362613 DOI: 10.1016/j.aca.2009.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/23/2009] [Accepted: 03/02/2009] [Indexed: 11/22/2022]
Abstract
Immunoassays represent a core workhorse methodology for many applications ranging from clinical diagnostics to environmental monitoring. In traditional formats such as the enzyme linked immunosorbent assay (ELISA), analytes are measured singly or in small sets. As more biomarkers are identified for disease states, there is a need to develop methods that can measure multiple markers simultaneously. Immunoaffinity arrays are one such chemistry that can achieve multi-marker screening. Most arrays are performed in either competitive or non-competitive formats, where the former are used predominantly for small molecules and the later for macromolecules. To date, ELISA and immunoaffinity array methods have relied exclusively on one of these formats and not the other. Here an immunoaffinity array method capable of performing simultaneous competitive and non-competitive analysis generated using micromosaic immunoassay techniques is introduced for the analysis of metabolites and proteins. In this report, three markers of oxidative stress were used as a model system. The method described here demonstrates the simultaneous analysis of 3-nitrotyrosine, by indirect competitive immunoassay while the enzymes catalase and superoxide dismutase are analyzed by non-competitive sandwich immunoassay. The method requires less than 1 microL sample and 45 min for completion. Logistic curve fits and LOD (limits of detection) statistical analysis of the binding results are presented and show good agreement with published data for these antibody-antigen systems.
Collapse
|
24
|
Stephan K, Pittet P, Sigaud M, Renaud L, Vittori O, Morin P, Ouaini N, Ferrigno R. Amperometric quantification based on serial dilution microfluidic systems. Analyst 2009; 134:472-7. [DOI: 10.1039/b811629f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Holcomb RE, Kraly JR, Henry CS. Electrode array detector for microchip capillary electrophoresis. Analyst 2008; 134:486-92. [PMID: 19238284 DOI: 10.1039/b816289a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selectivity and resolution for analyses conducted using microfluidic devices can be improved by increasing the total number of individual detection elements in the device. Here, a poly(dimethylsiloxane) capillary electrophoresis microchip was fabricated with an integrated electrode array for selective detection of small molecules. Eight individually addressable gold electrodes were incorporated in series after a palladium current decoupler in the separation channel of an electrophoresis microchip. The electrode array device was characterized using a mixture of biologically relevant analytes and xenobiotics: norepinephrine, 4-aminophenol, acetaminophen, uric acid, and 3,4-dihydroxyphenylacetic acid. Separation efficiencies as high as 9000 +/- 1000 plates (n = 3) for 3,4-dihydroxyphenylacetic acid and limits of detection as low as 2.6 +/- 1.2 microM (n = 3) for norepinephrine were obtained using this device. After characterizing the performance of the device, potential step detection was conducted at the array electrodes and selective detection achieved based upon differences in redox potentials for individual analytes. Utilization of potential step detection was particularly advantageous for resolving co-migrating species; resolution of 3,4-dihydroxy-l-phenylalanine from acetaminophen using potential control was demonstrated. Finally, a human urine sample was analyzed using potential step detection to demonstrate the applicability of this device for complex sample analysis.
Collapse
Affiliation(s)
- Ryan E Holcomb
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | | | | |
Collapse
|
26
|
Mecker LC, Martin RS. Integration of microdialysis sampling and microchip electrophoresis with electrochemical detection. Anal Chem 2008; 80:9257-64. [PMID: 19551945 PMCID: PMC2771943 DOI: 10.1021/ac801614r] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we describe the fabrication, optimization, and application of a microfluidic device that integrates microdialysis (MD) sampling, microchip electrophoresis (ME), and electrochemical detection (EC). The manner in which the chip is produced is reproducible and enables the fixed alignment of the MD/ME and ME/EC interfaces. Poly(dimethylsiloxane) (PDMS)-based valves were used for the discrete injection of sample from the hydrodynamic MD dialysate stream into a separation channel for analysis with ME. To enable the integration of ME with EC detection, a palladium decoupler was used to isolate the high voltages associated with electrophoresis from micrometer-sized carbon ink detection electrodes. Optimization of the ME/EC interface was needed to allow the use of biologically appropriate perfusate buffers containing high salt content. This optimization included changes in the fabrication procedure, increases in the decoupler surface area, and a programmed voltage shutoff. The ability of the MD/ME/EC system to sample a biological system was demonstrated by using a linear probe to monitor the stimulated release of dopamine from a confluent layer of PC 12 cells. To our knowledge, this is the first report of a microchip-based system that couples microdialysis sampling with microchip electrophoresis and electrochemical detection.
Collapse
Affiliation(s)
- Laura C. Mecker
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
27
|
Lin KW, Huang YK, Su HL, Hsieh YZ. In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis. Anal Chim Acta 2008; 619:115-21. [DOI: 10.1016/j.aca.2008.02.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 11/28/2022]
|
28
|
Wang Y, Chen H, He Q, Soper SA. A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection. Electrophoresis 2008; 29:1881-8. [DOI: 10.1002/elps.200700377] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Ordeig O, Godino N, del Campo J, Muñoz FX, Nikolajeff F, Nyholm L. On-Chip Electric Field Driven Electrochemical Detection Using a Poly(dimethylsiloxane) Microchannel with Gold Microband Electrodes. Anal Chem 2008; 80:3622-32. [DOI: 10.1021/ac702570p] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga Ordeig
- Centro Nacional de Microelectrónica, IMB-CNM, CSIC, Campus de la Universidad, Autónoma de Barcelona, Esfera UAB, Bellaterra-08193, Spain, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden, and Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Neus Godino
- Centro Nacional de Microelectrónica, IMB-CNM, CSIC, Campus de la Universidad, Autónoma de Barcelona, Esfera UAB, Bellaterra-08193, Spain, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden, and Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Javier del Campo
- Centro Nacional de Microelectrónica, IMB-CNM, CSIC, Campus de la Universidad, Autónoma de Barcelona, Esfera UAB, Bellaterra-08193, Spain, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden, and Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Francesc Xavier Muñoz
- Centro Nacional de Microelectrónica, IMB-CNM, CSIC, Campus de la Universidad, Autónoma de Barcelona, Esfera UAB, Bellaterra-08193, Spain, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden, and Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Fredrik Nikolajeff
- Centro Nacional de Microelectrónica, IMB-CNM, CSIC, Campus de la Universidad, Autónoma de Barcelona, Esfera UAB, Bellaterra-08193, Spain, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden, and Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Leif Nyholm
- Centro Nacional de Microelectrónica, IMB-CNM, CSIC, Campus de la Universidad, Autónoma de Barcelona, Esfera UAB, Bellaterra-08193, Spain, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden, and Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| |
Collapse
|
30
|
Castaño-Alvarez M, Fernández-Abedul MT, Costa-García A. Electroactive intercalators for DNA analysis on microchip electrophoresis. Electrophoresis 2008; 28:4679-89. [PMID: 18004710 PMCID: PMC7163684 DOI: 10.1002/elps.200700160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Miniaturized analytical systems, especially microchip CE (MCE), are becoming a promising tool for analytical purposes including DNA analysis. These microdevices require a sensitive and miniaturizable detection system such as electrochemical detection (ED). Several electroactive DNA intercalators, including the organic dye methylene blue (MB), anthraquinone derivatives, and the metal complexes Fe(phen)3 2+ and Ru(phen)3 2+, have been tested for using in combination with thermoplastic olefin polymer of amorphous structure (Topas) CE-microchips and ED. Two end-channel approaches for integration of gold wire electrodes in CE-ED microchip were used. A 250 microm diameter gold wire was manually aligned at the outlet of the separation channel. A new approach based on a guide channel for integration of 100 and 50 microm diameter gold wire has been also developed in order to reduce the background current and the baseline noise level. Modification of gold wire electrodes has been also tested to improve the detector performance. Application of MCE-ED for ssDNA detection has been studied and demonstrated for the first time using the electroactive dye MB. Electrostatic interaction between cationic MB and anionic ssDNA was used for monitoring the DNA on microchips. Thus, reproducible calibration curves for ssDNA were obtained. This study advances the feasibility of direct DNA analysis using CE-microchip with ED.
Collapse
|
31
|
Murphy BM, He X, Dandy D, Henry CS. Competitive immunoassays for simultaneous detection of metabolites and proteins using micromosaic patterning. Anal Chem 2008; 80:444-50. [PMID: 18092765 PMCID: PMC2830658 DOI: 10.1021/ac7019046] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New high-throughput immunoassay methods for rapid point-of-care diagnostic applications represent an unmet need and current focus of numerous innovative methods. We report a new micromosaic competitive immunoassay developed for the analysis of the thyroid hormone thyroxine (T4), inflammation biomarker C-reactive protein (CRP), and the oxidative damage marker 3-nitrotyrosine (BSA-3NT) on a silicon nitride substrate. To demonstrate the versatility of the method, both direct and indirect format competitive immunoassays were developed and could be applied simultaneously for single samples. Signals from standard solutions were fit to a logistic equation, allowing simultaneous detection of T4 (7.7-257.2 nM), CRP (0.3-4.2 microg/mL), and BSA-3NT (0.03-22.3 microg/mL). Total assay time including sample introduction, washing, and fluorescence measurement was less than 45 min. Dissociation constants for affinity pairs in the system have been estimated using regression. This proof-of-concept experiment shows that both small and macromolecular biomarkers can be quantified from a single sample using the method and suggests that groups of clinically related analytes may be analyzed by competitive micromosaic immunoassay techniques.
Collapse
Affiliation(s)
- Brian M. Murphy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Xinya He
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - David Dandy
- Department of Chemical and Biochemical Engineering, Colorado State University, Fort Collins, Colorado 80523
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
- Department of Chemical and Biochemical Engineering, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
32
|
Poinsot V, Rodat A, Gavard P, Feurer B, Couderc F. Recent advances in amino acid analysis by CE. Electrophoresis 2008; 29:207-23. [DOI: 10.1002/elps.200700482] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Maeda E, Kataoka M, Hino M, Kajimoto K, Kaji N, Tokeshi M, Kido JI, Shinohara Y, Baba Y. Determination of human blood glucose levels using microchip electrophoresis. Electrophoresis 2007; 28:2927-33. [PMID: 17640093 DOI: 10.1002/elps.200600795] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A high-performance monitoring system for human blood glucose levels was developed using microchip electrophoresis with a plastic chip. The combination of reductive amination as glucose labeling with fluorescent 2-aminoacridone (AMAC) and glucose-borate complex formation realized the highly selective detection of glucose even in a complex matrix such as a blood sample. The migration time of a single peak, observed on an electropherogram of AMAC-labeled plasma, closely resembled that of glucose standard solution. The treatment of plasma with hexokinase or glucokinase for glucose phosphorylation resulted in a peak shift from approximately 145 to 70 s, corresponding to glucose and glucose-6-phosphate, respectively. A double-logarithm plot revealed a linear relationship between glucose concentration and fluorescence intensity in the range of 1-300 microM of glucose (r(2) = 0.9963; p <0.01), and the detection limit was 0.92 microM. Furthermore, blood glucose concentrations estimated from the standard curves of three subjects were compared with results obtained by conventional colorimetric analysis using glucose dehydrogenase. Good correlation was observed between methods according to simple linear regression analysis (p <0.05). The reproducibility of the assay was about 6.3-9.1% (RSD) and the within-days and between-days reproducibility were 1.6-8.4 and 5.2-7.2%, respectively. This system enables us to determine blood glucose with high sensitivity and accuracy, and will be applicable to clinical diagnosis.
Collapse
Affiliation(s)
- Eiki Maeda
- Department of Molecular and Pharmaceutical Biotechnology, Graduate School of Pharmaceutical Sciences, University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cheng J, Jandik P, Liu X, Pohl C. Pulsed amperometric detection waveform with disposable thin-film platinum working electrodes in high performance liquid chromatography. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2007.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Advances in amperometric and conductometric detection in capillary and chip-based electrophoresis. Mikrochim Acta 2007. [DOI: 10.1007/s00604-007-0802-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Vickers JA, Dressen BM, Weston MC, Boonsong K, Chailapakul O, Cropek DM, Henry CS. Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry. Electrophoresis 2007; 28:1123-9. [PMID: 17340646 DOI: 10.1002/elps.200600445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microchip CE coupled with electrochemical detection (MCE-EC) is a good method for the direct detection of many small molecule analytes because the technique is sensitive and readily miniaturized. Polymer materials are being increasingly used with MCE due to their affordability and ease of fabrication. While PDMS has become arguably the most widely used material in MCE-EC due to the simplicity of microelectrode incorporation, it suffers from a lack of separation efficiency, lower surface stability, and a tendency for analyte sorption. Other polymers, such as poly(methylmethacrylate) (PMMA) and poly(carbonate) (PC), have higher separation efficiencies but require more difficult fabrication techniques for electrode incorporation. In this report, thermoset polyester (TPE) was characterized as an alternative material for MCE-EC. TPE microchips were characterized in their native and plasma oxidized forms and after coating with polyelectrolyte multilayers (PEMs). TPE provides higher separation efficiencies when compared to PDMS microchips, while still using simple fabrication protocols. In this work, separation efficiencies as high as 295,000 N/m were seen when using TPE MCE-EC devices. Furthermore, the EOF was higher and more consistent as a function of pH for both native and plasma-treated TPE than PDMS. Finally, TPE is amenable to modification using simple PEM coatings as another way to control surface chemistry and surface charge.
Collapse
Affiliation(s)
- Jonathan A Vickers
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Vickers JA, Caulum MM, Henry CS. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Anal Chem 2007; 78:7446-52. [PMID: 17073411 DOI: 10.1021/ac0609632] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(dimethylsiloxane) (PDMS) has become one of the most widely used materials for microchip capillary electrophoresis and microfluidics. The popularity of this material is the result of its low cost, simple fabrication, and rugged elastomeric properties. The hydrophobic nature of PDMS, however, limits its applicability for microchip CE, microfluidic patterning, and other nonelectrophoresis applications. The surface of PDMS can be made hydrophilic using a simple air plasma treatment; however, this property is quickly lost through hydrophobic recovery caused by diffusion of unreacted oligomer to the surface. Here, a simple approach for the generation of hydrophilic PDMS with long-term stability in air is presented. PDMS is rendered hydrophilic through a simple two-step extraction/oxidation process. First, PDMS is extracted in a series of solvents designed to remove unreacted oligomers from the bulk phase. Second, the oligomer-free PDMS is oxidized in a simple air plasma, generating a stable layer of hydrophilic SiO2. The conversion of surface-bound siloxane to SiO2 was followed with X-ray photoelectron spectroscopy. SiO2 on extracted-oxidized PDMS was stable for 7 days in air as compared to less than 3 h for native PDMS. Furthermore, the contact angle for modified PDMS was reduced to <40 degrees and remained low throughout the experiments. As a result of the decreased contact angle, capillary channels self-wet through capillary action, making the microchannels much easier to fill. Finally, the modification significantly improved the performance of the devices for microchip electrophoresis. The electroosmotic flow increased from 4.1 x 10(-4) to 6.8 x 10(-4) cm(2)/V.s for native compared to oxidized PDMS. Separation efficiencies for electrochemical detection also increased from 50 000 to 400 000 N/m for a 1.1-nL injection volume. The result of this modification is a significant improvement in the performance of PDMS for microchip electrophoresis and microfluidic applications.
Collapse
Affiliation(s)
- Jonathan A Vickers
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | | | | |
Collapse
|
38
|
Mecker LC, Martin RS. Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis. Electrophoresis 2007; 27:5032-42. [PMID: 17096314 DOI: 10.1002/elps.200600401] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The fabrication and evaluation of micromolded dual carbon ink electrodes and their integration with a fabricated palladium decoupler for use in microchip electrophoresis is described. As opposed to previous work involving carbon-based dual electrodes with microchip electrophoresis, this approach results in electrodes that are amenable to mass production in a manner where the decoupler/electrode alignment is fixed and reproducible. In this work, electrode sizes and spacings were optimized to result in dual carbon electrodes that are 1 microm in height and separated by 100 microm. Fluorescence microscopy was used to investigate leakage around the electrode/channel interface as well as to investigate what effect the dual electrodes have on band broadening phenomena. The performance of the microelectrodes was demonstrated by the separation and selective dual electrode detection of neurotransmitters in the presence of ascorbic acid. It was also found that addition of SDS to the buffer system improved both the LODs and collection efficiencies. This approach, which is the first involving carbon-based dual electrodes with an on-chip palladium decoupler, will be useful for separating and detecting neurotransmitters that are either collected by in vivo sampling or released from cells on-chip.
Collapse
Affiliation(s)
- Laura C Mecker
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | | |
Collapse
|
39
|
Dawoud AA, Kawaguchi T, Jankowiak R. Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct. Anal Bioanal Chem 2007; 388:245-52. [PMID: 17345068 DOI: 10.1007/s00216-007-1203-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct is one of the most frequently used biomarkers reporting on the oxidative stress that leads to DNA damage. More sensitive and reliable microfluidic devices are needed for the detection of these biomarkers of interest. We have developed a capillary electrophoresis (CE)-based microfluidic device with an electroplated palladium decoupler that provides significantly improved detection limit, separation efficiency, and resolving power. The poly(dimethylsiloxane) (PDMS)/glass hybrid device has fully integrated gold microelectrodes covered in situ with palladium nanoparticles using an electroplating technique. The performance and coverage of the electrodes electroplated with palladium particles were evaluated electrochemically and via scanning electron microscope (SEM) imaging, respectively. The performance of the device was tested and evaluated with different buffer systems, pH values, and electric field strengths. The results showed that this device has significantly improved resolving power, even at separation electric field strengths as high as 600 V cm-1. The detection limit for the 8-OH-dG adduct is about 20 attomoles; the concentration limit is on the order of 100 nM (S/N=3). A linear response is reported for both 8-OH-dG and dG in the range from 100 nM to 150 microM (approximately 100 pA microM-1) with separation efficiencies of approximately 120,000-170,000 plates m-1.
Collapse
|
40
|
Zhang QL, Xu JJ, Lian HZ, Li XY, Chen HY. Polycation coating poly(dimethylsiloxane) capillary electrophoresis microchip for rapid separation of ascorbic acid and uric acid. Anal Bioanal Chem 2007; 387:2699-704. [PMID: 17318514 DOI: 10.1007/s00216-007-1173-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/27/2007] [Accepted: 01/31/2007] [Indexed: 11/26/2022]
Abstract
A novel method for rapid separation and determination of ascorbic acid and uric acid has been developed with a polycation-modified poly(dimethylsiloxane) (PDMS) microchip under a negative-separation electric field. Just by flushing the microchip with aqueous solutions of the polycations, poly(allylamine) hydrochloride, poly(diallyldimethylammonium chloride) or chitosan could be stably coated on the PDMS microchannel surface, which resulted in a reversed electroosmotic flow and thus the rapid and efficient separation of the two substrates. Factors influencing the separation, including polycation category, buffer solution, detection potential and separation voltage, were investigated and optimized. The cheapness, rapid analysis speed and the successful analysis of human urine make this microsystem attractive for application in clinics.
Collapse
Affiliation(s)
- Q L Zhang
- The Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Ding Y, Ayon A, García CD. Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis. Anal Chim Acta 2007; 584:244-51. [PMID: 17386611 DOI: 10.1016/j.aca.2006.11.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 11/30/2022]
Abstract
A simple method to fabricate cylindrical carbon electrodes for use in capillary electrophoresis (CE) microchips is described. The electrodes were fabricated using a metallic wire coated with carbon ink. Several experimental variables were studied in order to establish the best conditions to fabricate the electrode. Finally, the electrodes were integrated in a poly(dimethylsiloxane) microchip and used for the analysis of phenolic compounds. Using the optimum conditions, the analysis of a mixture of dopamine, epinephrine, catechol, and 4-aminophenol was achieved in less than 240 s, showing good linear responses (R(2)=0.999) in the 0.1-190 microM range, and limits of detection (without the use of stacking or a decoupler) of 140 and 105 nM for dopamine and epinephrine, respectively.
Collapse
Affiliation(s)
- Yongsheng Ding
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | | | | |
Collapse
|
43
|
Chapter 34 Miniaturised devices: electrochemical capillary electrophoresis microchips for clinical application. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0166-526x(06)49034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Crevillén AG, Blasco AJ, González MC, Escarpa A. A fast and reliable route integrating calibration and analysis protocols for water-soluble vitamin determination on microchip-electrochemistry platforms. Electrophoresis 2006; 27:5110-8. [PMID: 17161002 DOI: 10.1002/elps.200600213] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel analytical route to determine water-soluble vitamins (B group and C) using single channel microchip-electrochemistry platforms is presented. The electrochemical detection protocol was carefully optimized, and it was shown that it was crucial to use 1 M nitric acid in the detector compartment to detect folic acid. A phosphate buffer (pH 6, 10 mM) and a separation voltage of 2 kV gave the complete separation of vitamins in less than 130 s, with good reproducibility (RSDs less than 10%) and accuracy (error less than 9%). In addition, a methodological innovation integrating calibration and analysis of water-soluble vitamins on the chip is also proposed. The strategy consisted in sequentially using both reservoirs (named calibration and analysis reservoirs) as well as a calibration factor (defined as signal/concentration of analyte). The analytical route required 350 s in the overall protocol (employing 130 s in calibration plus 130 s in analysis), an improvement over the times used in both conventional and microchip protocols.
Collapse
|
45
|
Dittrich PS, Tachikawa K, Manz A. Micro Total Analysis Systems. Latest Advancements and Trends. Anal Chem 2006; 78:3887-908. [PMID: 16771530 DOI: 10.1021/ac0605602] [Citation(s) in RCA: 564] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petra S Dittrich
- Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| | | | | |
Collapse
|
46
|
Liu Y, MacDonald DA, Yu XY, Hering SV, Collett JL, Henry CS. Analysis of anions in ambient aerosols by microchip capillary electrophoresis. Analyst 2006; 131:1226-31. [PMID: 17066191 DOI: 10.1039/b608945c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass, with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 microM) and low limits-of-detection for sulfate and nitrate, with Au providing the lowest detection limits (1 microM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.
Collapse
Affiliation(s)
- Yan Liu
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | | | | | | | | | | |
Collapse
|