1
|
Cavalcanti P, Nogueira TLS, Carvalho EFDE, Silva DADA. Forensic use of human mitochondrial DNA: A review. AN ACAD BRAS CIENC 2024; 96:e20231179. [PMID: 39570164 DOI: 10.1590/0001-3765202420231179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/03/2024] [Indexed: 11/22/2024] Open
Abstract
In forensics, genetic human identification is generally achieved by nuclear STR DNA typing. However, forensic samples often yield DNA in exiguous quantity and low quality, impairing the generation of conclusive DNA profiles by STR typing. In such cases, mitochondrial DNA (mtDNA) can be used as an alternative solution in forensic human identification. The high copy number, small circular DNA, high mutation rate, maternal inheritance, and absence of recombination are mtDNA's key features in forensics. In this work, we review mtDNA characteristics, forensic applications, sequencing methodologies and present some relevant examples in the forensic science literature.
Collapse
Affiliation(s)
- Pablo Cavalcanti
- State University of Rio de Janeiro (UERJ), DNA Diagnostic Laboratory (LDD), São Francisco Xavier St., 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- State University of Rio de Janeiro (UERJ), Postgraduate Program in Biosciences, 28 de Setembro Ave., 87, 4th Floor, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Tatiana Lúcia S Nogueira
- Brazilian Army Institute of Biology, Francisco Manuel St., 102, Triagem, 20911-270 Rio de Janeiro, RJ, Brazil
| | - Elizeu F DE Carvalho
- State University of Rio de Janeiro (UERJ), DNA Diagnostic Laboratory (LDD), São Francisco Xavier St., 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- State University of Rio de Janeiro (UERJ), Postgraduate Program in Biosciences, 28 de Setembro Ave., 87, 4th Floor, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Dayse A DA Silva
- State University of Rio de Janeiro (UERJ), DNA Diagnostic Laboratory (LDD), São Francisco Xavier St., 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- State University of Rio de Janeiro (UERJ), Postgraduate Program in Biosciences, 28 de Setembro Ave., 87, 4th Floor, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Tsai NC, Liou CW, Cheng YH, Lien HT, Lin TL, Lin TK, Lan MY, Hung PL, Wang TJ, Lee CH, Liang YC, Lan KC. The establishment of a molecular diagnostic platform for mitochondrial diseases: From conventional to next-generation sequencing. Biomed J 2024; 48:100770. [PMID: 39048080 PMCID: PMC12002865 DOI: 10.1016/j.bj.2024.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The aim of this study was to create a molecular diagnostic platform and establish a diagnostic pipeline for patients highly suspected of mitochondrial disorders. The effectiveness of three methods, namely, traditional restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR), Sanger sequencing for hotspot detection and whole mitochondrial DNA (mtDNA), and third-generation (Nanopore) whole mtDNA sequencing, will be compared in diagnosing patients with suspected primary mitochondrial diseases (PMDs). The strengths and limitations of different methods are also discussed. MATERIAL AND METHODS A single-center prospective cohort study was conducted to validate the diagnostic pipeline for suspected mitochondrial diseases. In the first stage, a PCR-based method with five sets of primers was used to screen for eight hotspots (m.3243A > G, m.3460G > A, m.8344A > G, m.8993T > G, m.9185T > C, m.11778G > A, m.13513G > A, and m.4977deletion) using either RFLP or direct Sanger sequencing. Sanger sequencing was also used to confirm the RFLP-positive samples. In the second stage, for samples with negative screening results for the eight hotspots, mitochondrial whole-genome sequencing was performed using Sanger sequencing or third-generation nanopore sequencing. RESULTS Between June 2020 and May 2023, 30 patients from ages 0 to 63 with clinically suspected mitochondrial disease were enrolled. The positive yield for the diagnosis of PMDs was 8/30 = 26.7%, and the sensitivity of the heteroplasmy level for the RFLP-based method was approximately 5%. The remaining 22 patients who tested negative at the first stage were tested using Sanger sequencing or the third-generation sequencing Nanopore, and all tested negative for pathological mtDNA mutations. Compared to the Sanger sequencing method, the results of RFLP-PCR were compromised by the limitations of incomplete RFLP enzyme digestion. For whole-genome sequencing of mtDNA, Sanger sequencing, instead of nanopore sequencing, is preferred at our institution because of its cost-effectiveness. CONCLUSIONS In our highly selective cohort, most tested positive in the first stage of the 8 hot spots screen. Sanger sequencing is a conventional and accurate method for mitochondrial disease screening, at least for the most common hot spots in the region. The results revealed that Sanger sequencing is an accurate method with the benefit of being more cost-effective. This integral platform of molecular diagnosis bears the advantages of being relatively low cost and having a shorter reporting time, facilitating crucial identification of patients with clinical evidence of such disorders. This diagnostic flowchart has also been translated into routine clinical use in the tertiary hospital.
Collapse
Affiliation(s)
- Ni-Chin Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chai-Wai Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yin-Hua Cheng
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hao-Ting Lien
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ling Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pi-Lien Hung
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Jou Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chih Liang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Chung Lan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, 412, Taiwan.
| |
Collapse
|
3
|
Dobner J, Nguyen T, Pavez-Giani MG, Cyganek L, Distelmaier F, Krutmann J, Prigione A, Rossi A. mtDNA analysis using Mitopore. Mol Ther Methods Clin Dev 2024; 32:101231. [PMID: 38572068 PMCID: PMC10988129 DOI: 10.1016/j.omtm.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Mitochondrial DNA (mtDNA) analysis is crucial for the diagnosis of mitochondrial disorders, forensic investigations, and basic research. Existing pipelines are complex, expensive, and require specialized personnel. In many cases, including the diagnosis of detrimental single nucleotide variants (SNVs), mtDNA analysis is still carried out using Sanger sequencing. Here, we developed a simple workflow and a publicly available webserver named Mitopore that allows the detection of mtDNA SNVs, indels, and haplogroups. To simplify mtDNA analysis, we tailored our workflow to process noisy long-read sequencing data for mtDNA analysis, focusing on sequence alignment and parameter optimization. We implemented Mitopore with eliBQ (eliminate bad quality reads), an innovative quality enhancement that permits the increase of per-base quality of over 20% for low-quality data. The whole Mitopore workflow and webserver were validated using patient-derived and induced pluripotent stem cells harboring mtDNA mutations. Mitopore streamlines mtDNA analysis as an easy-to-use fast, reliable, and cost-effective analysis method for both long- and short-read sequencing data. This significantly enhances the accessibility of mtDNA analysis and reduces the cost per sample, contributing to the progress of mtDNA-related research and diagnosis.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Thach Nguyen
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Mario Gustavo Pavez-Giani
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jean Krutmann
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andrea Rossi
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Tang-Siegel GG, Maughan DW, Frownfelter MB, Light AR. Mitochondrial DNA Missense Mutations ChrMT: 8981A > G and ChrMT: 6268C > T Identified in a Caucasian Female with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Triggered by the Epstein-Barr Virus. Case Rep Genet 2024; 2024:6475425. [PMID: 38756740 PMCID: PMC11098598 DOI: 10.1155/2024/6475425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein-Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.
Collapse
Affiliation(s)
- Gaoyan G. Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, USA
| | - David W. Maughan
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Alan R. Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Dobner J, Nguyen T, Dunkel A, Prigione A, Krutmann J, Rossi A. Mitochondrial DNA integrity and metabolome profile are preserved in the human induced pluripotent stem cell reference line KOLF2.1J. Stem Cell Reports 2024; 19:343-350. [PMID: 38402620 PMCID: PMC10937150 DOI: 10.1016/j.stemcr.2024.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Quality control of human induced pluripotent stem cells (iPSCs) is critical to ensure reproducibility of research. Recently, KOLF2.1J was characterized and published as a male iPSC reference line to study neurological disorders. Emerging evidence suggests potential negative effects of mtDNA mutations, but its integrity was not analyzed in the original publication. To assess mtDNA integrity, we conducted a targeted mtDNA analysis followed by untargeted metabolomics analysis. We found that KOLF2.1J mtDNA integrity was intact at the time of publication and is still preserved in the commercially distributed cell line. In addition, the basal KOLF2.1J metabolome profile was similar to that of the two commercially available iPSC lines IMR90 and iPSC12, but clearly distinct from an in-house-generated ERCC6R683X/R683X iPSC line modeling Cockayne syndrome. Conclusively, we validate KOLF2.1J as a reference iPSC line, and encourage scientists to conduct mtDNA analysis and unbiased metabolomics whenever feasible.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Thach Nguyen
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jean Krutmann
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Andrea Rossi
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
6
|
Smith G, Manzano-Marín A, Reyes-Prieto M, Antunes CSR, Ashworth V, Goselle ON, Jan AAA, Moya A, Latorre A, Perotti MA, Braig HR. Human follicular mites: Ectoparasites becoming symbionts. Mol Biol Evol 2022; 39:msac125. [PMID: 35724423 PMCID: PMC9218549 DOI: 10.1093/molbev/msac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Most humans carry mites in the hair follicles of their skin for their entire lives. Follicular mites are the only metazoans tha continuously live on humans. We propose that Demodex folliculorum (Acari) represents a transitional stage from a host-injuring obligate parasite to an obligate symbiont. Here, we describe the profound impact of this transition on the genome and physiology of the mite. Genome sequencing revealed that the permanent host association of D. folliculorum led to an extensive genome reduction through relaxed selection and genetic drift, resulting in the smallest number of protein-coding genes yet identified among panarthropods. Confocal microscopy revealed that this gene loss coincided with an extreme reduction in the number of cells. Single uninucleate muscle cells are sufficient to operate each of the three segments that form each walking leg. While it has been assumed that the reduction of the cell number in parasites starts early in development, we identified a greater total number of cells in the last developmental stage (nymph) than in the terminal adult stage, suggesting that reduction starts at the adult or ultimate stage of development. This is the first evolutionary step in an arthropod species adopting a reductive, parasitic or endosymbiotic lifestyle. Somatic nuclei show underreplication at the diploid stage. Novel eye structures or photoreceptors as well as a unique human host melatonin-guided day/night rhythm are proposed for the first time. The loss of DNA repair genes coupled with extreme endogamy might have set this mite species on an evolutionary dead-end trajectory.
Collapse
Affiliation(s)
- Gilbert Smith
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria
| | - Mariana Reyes-Prieto
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
| | | | - Victoria Ashworth
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Obed Nanjul Goselle
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | | | - Andrés Moya
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Amparo Latorre
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - M Alejandra Perotti
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Henk R Braig
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
- Institute and Museum of Natural Sciences, National University of San Juan, San Juan, Argentina
| |
Collapse
|
7
|
McElhoe JA, Wilton PR, Parson W, Holland MM. Exploring statistical weight estimates for mitochondrial DNA matches involving heteroplasmy. Int J Legal Med 2022; 136:671-685. [PMID: 35243529 DOI: 10.1007/s00414-022-02774-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
Massively parallel sequencing (MPS) of mitochondrial (mt) DNA allows forensic laboratories to report heteroplasmy on a routine basis. Statistical approaches will be needed to determine the relative frequency of observing an mtDNA haplotype when including the presence of a heteroplasmic site. Here, we examined 1301 control region (CR) sequences, collected from individuals in four major population groups (European, African, Asian, and Latino), and covering 24 geographically distributed haplogroups, to assess the rates of point heteroplasmy (PHP) on an individual and nucleotide position (np) basis. With a minor allele frequency (MAF) threshold of 2%, the data was similar across population groups, with an overall PHP rate of 37.7%, and the majority of heteroplasmic individuals (77.3%) having only one site of heteroplasmy. The majority (75.2%) of identified PHPs had an MAF of 2-10%, and were observed at 12.6% of the nps across the CR. Both the broad and phylogenetic testing suggested that in many cases the low number of observations of heteroplasmy at any one np results in a lack of statistical association. The posterior frequency estimates, which skew conservative to a degree depending on the sample size in a given haplogroup, had a mean of 0.152 (SD 0.134) and ranged from 0.031 to 0.83. As expected, posterior frequency estimates decreased in accordance with 1/n as the sample size (n) increased. This provides a proposed conservative statistical framework for assessing haplotype/heteroplasmy matches when applying an MPS technique in forensic cases and will allow for continual refinement as more data is generated, both within the CR and across the mitochondrial genome.
Collapse
Affiliation(s)
- Jennifer A McElhoe
- Department of Biochemistry & Molecular Biology, Forensic Science Program, The Pennsylvania State University, University Park, 014 Thomas Building, State College, PA, 16802, USA.
| | - Peter R Wilton
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- 23andMe Inc, Sunnyvale, CA, 94086, USA
| | - Walther Parson
- Department of Biochemistry & Molecular Biology, Forensic Science Program, The Pennsylvania State University, University Park, 014 Thomas Building, State College, PA, 16802, USA
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - Mitchell M Holland
- Department of Biochemistry & Molecular Biology, Forensic Science Program, The Pennsylvania State University, University Park, 014 Thomas Building, State College, PA, 16802, USA
| |
Collapse
|
8
|
Morshneva A, Kozyulina P, Vashukova E, Tarasenko O, Dvoynova N, Chentsova A, Talantova O, Koroteev A, Ivanov D, Serebryakova E, Ivashchenko T, Sukhomyasova A, Maksimova N, Bespalova O, Kogan I, Baranov V, Glotov A. Pilot Screening of Cell-Free mtDNA in NIPT: Quality Control, Variant Calling, and Haplogroup Determination. Genes (Basel) 2021; 12:743. [PMID: 34069212 PMCID: PMC8156457 DOI: 10.3390/genes12050743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Clinical tests based on whole-genome sequencing are generally focused on a single task approach, testing one or several parameters, although whole-genome sequencing (WGS) provides us with large data sets that can be used for many supportive analyses. In spite of low genome coverage, data of WGS-based non-invasive prenatal testing (NIPT) contain fully sequenced mitochondrial DNA (mtDNA). This mtDNA can be used for variant calling, ancestry analysis, population studies and other approaches that extend NIPT functionality. In this study, we analyse mtDNA pool from 645 cell-free DNA (cfDNA) samples of pregnant women from different regions of Russia, explore the effects of transportation and storing conditions on mtDNA content, analyse effects, frequency and location of mitochondrial variants called from samples and perform haplogroup analysis, revealing the most common mitochondrial superclades. We have shown that, despite the relatively low sequencing depth of unamplified mtDNA from cfDNA samples, the mtDNA analysis in these samples is still an informative instrument suitable for research and screening purposes.
Collapse
Affiliation(s)
- Alisa Morshneva
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
- Ltd NIPT, Bolshoi V.O. 90, Building 2 lit. 3, 199106 St. Petersburg, Russia; (N.D.); (A.C.)
| | - Polina Kozyulina
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
- Ltd NIPT, Bolshoi V.O. 90, Building 2 lit. 3, 199106 St. Petersburg, Russia; (N.D.); (A.C.)
| | - Elena Vashukova
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
- Ltd NIPT, Bolshoi V.O. 90, Building 2 lit. 3, 199106 St. Petersburg, Russia; (N.D.); (A.C.)
| | - Olga Tarasenko
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
- Ltd NIPT, Bolshoi V.O. 90, Building 2 lit. 3, 199106 St. Petersburg, Russia; (N.D.); (A.C.)
| | - Natalia Dvoynova
- Ltd NIPT, Bolshoi V.O. 90, Building 2 lit. 3, 199106 St. Petersburg, Russia; (N.D.); (A.C.)
| | - Anastasia Chentsova
- Ltd NIPT, Bolshoi V.O. 90, Building 2 lit. 3, 199106 St. Petersburg, Russia; (N.D.); (A.C.)
| | - Olga Talantova
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
| | - Alexander Koroteev
- St. Petersburg State Pediatric Medical University, 2 Litovskaya Street, 194100 St. Petersburg, Russia; (A.K.); (D.I.)
- Center for Medical Genetics, Tobolskaya ul. 5, 194044 St. Petersburg, Russia
| | - Dmitrii Ivanov
- St. Petersburg State Pediatric Medical University, 2 Litovskaya Street, 194100 St. Petersburg, Russia; (A.K.); (D.I.)
| | - Elena Serebryakova
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
| | - Tatyana Ivashchenko
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
| | - Aitalina Sukhomyasova
- Molecular Medicine and Human Genetics, Research Laboratory, Medical Institute, M.K. Ammosov North-Eastern Federal University, 677007 Yakutsk, Russia;
- Republican Hospital No. 1, National Medical Centre, Ministry of Public Health of the Sakha Republic, 677008 Yakutsk, Russia;
| | - Nadezhda Maksimova
- Republican Hospital No. 1, National Medical Centre, Ministry of Public Health of the Sakha Republic, 677008 Yakutsk, Russia;
| | - Olesya Bespalova
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
| | - Igor Kogan
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
| | - Vladislav Baranov
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
| | - Andrey Glotov
- D.O. Ott Research Institute for Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (P.K.); (E.V.); (O.T.); (O.T.); (E.S.); (T.I.); (O.B.); (I.K.); (V.B.); (A.G.)
- Ltd NIPT, Bolshoi V.O. 90, Building 2 lit. 3, 199106 St. Petersburg, Russia; (N.D.); (A.C.)
| |
Collapse
|
9
|
Wei R, Fei Z, Liu Y, Fu B, Chen L, Wang L, Xiao P. A digital coding combination analysis for mutational genotyping using pyrosequencing. Electrophoresis 2021; 42:1262-1269. [PMID: 33641189 DOI: 10.1002/elps.202000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 11/07/2022]
Abstract
In the present study, we developed a novel digital coding combination analysis (DCCA) to analyze the gene mutation based on the sample combination principle. The principle is that any numerically named sample is divided into two groups, any two samples are not grouped in the same two groups, and any sample can be tested within the detection limit. Therefore, we proposed a specific combination that N samples were divided into M groups. Then N samples were analyzed, which could obtain the mutation results of M mixed groups. If only two groups showed positive (mutant type) signals, the same sample number from two positive signal groups would be the positive sample, and the remaining samples were negative (wild type). If three groups or more exhibited positive results, the same sample number from three positive signal groups would be the positive sample. If some samples remained uncertain, individual samples could be analyzed on a small scale. In the present study, we used the two genotypes of a mutation site (A5301G) to verify whether it was a useful and promising method. The results showed that we could quantitatively detect mutations and demonstrate 100% consistent results against a panel of defined mixtures with the detection limit using pyrosequencing. This method was suitable, sensitive, and reproducible for screening and analyzing low-frequency mutation samples, which could reduce reagent consumption and cost by approximately 70-80% compared with conventional clinical methods.
Collapse
Affiliation(s)
- Rongbin Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Yanrong Liu
- Heze Center for Disease Control and Prevention, Heze, P. R. China
| | - Bangwen Fu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Ling Chen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Liu Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| |
Collapse
|
10
|
Martinez N, Rosales J, Medina N, Perez-Maturo J, Salinas V, Zavala L, Vega P, Rodríguez-Quiroga S, Morón DG, Kauffman MA. Molecular Diagnosis in an Argentinean Mitochondrial Disorders Cohort. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nerina Martinez
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Universidad Austral, Argentina
| | - Julieta Rosales
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina
| | - Nancy Medina
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina
| | - Josefina Perez-Maturo
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Universidad Austral, Argentina
| | - Valeria Salinas
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Universidad Austral, Argentina
| | - Lucia Zavala
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina
| | - Patricia Vega
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina
| | - Sergio Rodríguez-Quiroga
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Centro Universitario de Neurologia “Jose Maria Ramos Mejia”, Argentina
| | | | - Marcelo A. Kauffman
- Centro Universitario de Neurología “José María Ramos Mejía”, Argentina; Universidad Austral, Argentina
| |
Collapse
|
11
|
Middle eastern genetic legacy in the paternal and maternal gene pools of Chuetas. Sci Rep 2020; 10:21428. [PMID: 33293675 PMCID: PMC7722846 DOI: 10.1038/s41598-020-78487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
Chuetas are a group of descendants of Majorcan Crypto-Jews (Balearic Islands, Spain) who were socially stigmatized and segregated by their Majorcan neighbours until recently; generating a community that, although after the seventeenth century no longer contained Judaic religious elements, maintained strong group cohesion, Jewishness consciousness, and endogamy. Collective memory fixed 15 surnames as a most important defining element of Chueta families. Previous studies demonstrated Chuetas were a differentiated population, with a considerable proportion of their original genetic make-up. Genetic data of Y-chromosome polymorphism and mtDNA control region showed, in Chuetas’ paternal lineages, high prevalence of haplogroups J2-M172 (33%) and J1-M267 (18%). In maternal lineages, the Chuetas hallmark is the presence of a new sub-branching of the rare haplogroup R0a2m as their modal haplogroup (21%). Genetic diversity in both Y-chromosome and mtDNA indicates the Chueta community has managed to avoid the expected heterogeneity decrease in their gene pool after centuries of isolation and inbreeding. Moreover, the composition of their uniparentally transmitted lineages demonstrates a remarkable signature of Middle Eastern ancestry—despite some degree of host admixture—confirming Chuetas have retained over the centuries a considerable degree of ancestral genetic signature along with the cultural memory of their Jewish origin.
Collapse
|
12
|
Doxorubicin-Induced Translocation of mtDNA into the Nuclear Genome of Human Lymphocytes Detected Using a Molecular-Cytogenetic Approach. Int J Mol Sci 2020; 21:ijms21207690. [PMID: 33080837 PMCID: PMC7589397 DOI: 10.3390/ijms21207690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Translocation of mtDNA in the nuclear genome is an ongoing process that contributes to the development of pathological conditions in humans. However, the causal factors of this biological phenomenon in human cells are poorly studied. Here we analyzed mtDNA insertions in the nuclear genome of human lymphocytes after in vitro treatment with doxorubicin (DOX) using a fluorescence in situ hybridization (FISH) technique. The number of mtDNA insertions positively correlated with the number of DOX-induced micronuclei, suggesting that DOX-induced chromosome breaks contribute to insertion events. Analysis of the odds ratios (OR) revealed that DOX at concentrations of 0.025 and 0.035 µg/mL significantly increases the rate of mtDNA insertions (OR: 3.53 (95% CI: 1.42–8.76, p < 0.05) and 3.02 (95% CI: 1.19–7.62, p < 0.05), respectively). Analysis of the distribution of mtDNA insertions in the genome revealed that DOX-induced mtDNA insertions are more frequent in larger chromosomes, which are more prone to the damaging action of DOX. Overall, our data suggest that DOX-induced chromosome damage can be a causal factor for insertions of mtDNA in the nuclear genome of human lymphocytes. It can be assumed that the impact of a large number of external and internal mutagenic factors contributes significantly to the origin and amount of mtDNA in nuclear genomes.
Collapse
|
13
|
Zascavage RR, Hall CL, Thorson K, Mahmoud M, Sedlazeck FJ, Planz JV. Approaches to Whole Mitochondrial Genome Sequencing on the Oxford Nanopore MinION. ACTA ACUST UNITED AC 2020; 104:e94. [PMID: 31743587 DOI: 10.1002/cphg.94] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Traditional approaches for interrogating the mitochondrial genome often involve laborious extraction and enrichment protocols followed by Sanger sequencing. Although preparation techniques are still demanding, the advent of next-generation or massively parallel sequencing has made it possible to routinely obtain nucleotide-level data with relative ease. These short-read sequencing platforms offer deep coverage with unparalleled read accuracy in high-complexity genomic regions but encounter numerous difficulties in the low-complexity homopolymeric sequences characteristic of the mitochondrial genome. The inability to discern identical units within monomeric repeats and resolve copy-number variations for heteroplasmy detection results in suboptimal genome assemblies that ultimately complicate downstream data analysis and interpretation of biological significance. Oxford Nanopore Technologies offers the ability to generate long-read sequencing data on a pocket-sized device known as the MinION. Nanopore-based sequencing is scalable, portable, and theoretically capable of sequencing the entire mitochondrial genome in a single contig. Furthermore, the recent development of a nanopore protein with dual reader heads allows for clear identification of nucleotides within homopolymeric stretches, significantly increasing resolution throughout these regions. The unrestricted read lengths, superior homopolymeric resolution, and affordability of the MinION device make it an attractive alternative to the labor-intensive, time-consuming, and costly mainstay deep-sequencing platforms. This article describes three approaches to extract, prepare, and sequence mitochondrial DNA on the Oxford Nanopore MinION device. Two of the workflows include enrichment of mitochondrial DNA prior to sequencing, whereas the other relies on direct sequencing of native genomic DNA to allow for simultaneous assessment of the nuclear and mitochondrial genomes. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Enrichment-free mitochondrial DNA sequencing Alternate Protocol 1: Mitochondrial DNA sequencing following enrichment with polymerase chain reaction (PCR) Alternate Protocol 2: Mitochondrial DNA sequencing following enrichment with PCR-free hybridization capture Support Protocol 1: DNA quantification and quality assessment using the Agilent 4200 TapeStation System Support Protocol 2: AMPure XP bead clean-up Support Protocol 3: Suggested data analysis pipeline.
Collapse
Affiliation(s)
- Roxanne R Zascavage
- Department of Criminology and Criminal Justice, University of Texas at Arlington, Arlington, Texas.,Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Courtney L Hall
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - John V Planz
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
14
|
Sensitivity of mitochondrial DNA heteroplasmy detection using Next Generation Sequencing. Mitochondrion 2020; 50:88-93. [DOI: 10.1016/j.mito.2019.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023]
|
15
|
Németh K, Darvasi O, Likó I, Szücs N, Czirják S, Reiniger L, Szabó B, Kurucz PA, Krokker L, Igaz P, Patócs A, Butz H. Next-generation sequencing identifies novel mitochondrial variants in pituitary adenomas. J Endocrinol Invest 2019; 42:931-940. [PMID: 30684245 PMCID: PMC6647476 DOI: 10.1007/s40618-019-1005-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/08/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Disrupted mitochondrial functions and genetic variants of mitochondrial DNA (mtDNA) have been observed in different human neoplasms. Next-generation sequencing (NGS) can be used to detect even low heteroplasmy-level mtDNA variants. We aimed to investigate the mitochondrial genome in pituitary adenomas by NGS. METHODS We analysed 11 growth hormone producing and 33 non-functioning [22 gonadotroph and 11 hormone immunonegative] pituitary adenomas using VariantPro™ Mitochondrion Panel on Illumina MiSeq instrument. Revised Cambridge Reference Sequence (rCRS) of the mtDNA was used as reference. Heteroplasmy was determined using a 3% cutoff. RESULTS 496 variants were identified in pituitary adenomas with overall low level of heteroplasmy (7.22%). On average, 35 variants were detected per sample. Samples harbouring the highest number of variants had the highest Ki-67 indices independently of histological subtypes. We identified eight variants (A11251G, T4216C, T16126C, C15452A, T14798C, A188G, G185A, and T16093C) with different prevalences among different histological groups. T16189C was found in 40% of non-recurrent adenomas, while it was not present in the recurrent ones. T14798C and T4216C were confirmed by Sanger sequencing in all 44 samples. 100% concordance was found between NGS and Sanger method. CONCLUSIONS NGS is a reliable method for investigating mitochondrial genome and heteroplasmy in pituitary adenomas. Out of the 496 detected variants, 414 have not been previously reported in pituitary adenoma. The high number of mtDNA variants may contribute to adenoma genesis, and some variants (i.e., T16189C) might associate with benign behaviour.
Collapse
Affiliation(s)
- K Németh
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - O Darvasi
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
| | - I Likó
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
| | - N Szücs
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - S Czirják
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - L Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - B Szabó
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - P A Kurucz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - L Krokker
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - P Igaz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - A Patócs
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - H Butz
- "Lendulet" Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkiralyi Street, Budapest, H-1088, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
16
|
Zascavage RR, Thorson K, Planz JV. Nanopore sequencing: An enrichment-free alternative to mitochondrial DNA sequencing. Electrophoresis 2019; 40:272-280. [PMID: 30511783 PMCID: PMC6590251 DOI: 10.1002/elps.201800083] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/25/2018] [Accepted: 11/03/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial DNA sequence data are often utilized in disease studies, conservation genetics and forensic identification. The current approaches for sequencing the full mtGenome typically require several rounds of PCR enrichment during Sanger or MPS protocols followed by fairly tedious assembly and analysis. Here we describe an efficient approach to sequencing directly from genomic DNA samples without prior enrichment or extensive library preparation steps. A comparison is made between libraries sequenced directly from native DNA and the same samples sequenced from libraries generated with nine overlapping mtDNA amplicons on the Oxford Nanopore MinION™ device. The native and amplicon library preparation methods and alternative base calling strategies were assessed to establish error rates and identify trends of discordance between the two library preparation approaches. For the complete mtGenome, 16 569 nucleotides, an overall error rate of approximately 1.00% was observed. As expected with mtDNA, the majority of error was detected in homopolymeric regions. The use of a modified basecaller that corrects for ambiguous signal in homopolymeric stretches reduced the error rate for both library preparation methods to approximately 0.30%. Our study indicates that direct mtDNA sequencing from native DNA on the MinION™ device provides comparable results to those obtained from common mtDNA sequencing methods and is a reliable alternative to approaches using PCR-enriched libraries.
Collapse
Affiliation(s)
- Roxanne R. Zascavage
- Department of MicrobiologyImmunology and GeneticsUniversity of North Texas Health Science CenterFort WorthTXUSA
- Department of Criminology and Criminal JusticeUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Kelcie Thorson
- Department of MicrobiologyImmunology and GeneticsUniversity of North Texas Health Science CenterFort WorthTXUSA
- Zoetis Inc.ParsippanyNJUSA
| | - John V. Planz
- Department of MicrobiologyImmunology and GeneticsUniversity of North Texas Health Science CenterFort WorthTXUSA
| |
Collapse
|
17
|
Development of the MitoQ assay as a real-time quantification of mitochondrial DNA in degraded samples. Int J Legal Med 2018; 133:411-417. [PMID: 30357456 DOI: 10.1007/s00414-018-1956-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Mitochondrial DNA is a reliable genetic material for estimating maternally related haplogroups and ancestries. Exploring maternal DNA inheritance is particularly useful when nuclear DNA is degraded or limited, as the copy number of mitochondrial DNA is far greater than the copy number of nuclear DNA. Normal mitochondrial DNA copy number has been estimated to 100 copies per buccal epithelial cell, 4000 copies in skeletal cells and 7000 copies in myocardial cells. This estimation is usually performed via extrapolation from the nuclear DNA quantitation. It is essential to reduce this variability and accurately quantify the exact number of copies of mitochondrial DNA, especially in compromised samples of a forensic or ancient nature. While useful, the testing of mitochondrial DNA is often long and costly and comes with limited success. The accurate quantification of mitochondrial DNA using specific quantitative PCR assays can be used to make better decisions on the downstream testing and success of amplification. As a result, this study develops a real-time assay for the quantification of mitochondrial DNA copy number and assesses its performance on a set of degraded DNA samples. The developed MitoQ assay has been shown to be highly specific to the human mitochondrial genome with no amplification of nuclear pseudogenes being observed and outperformed a previously published concordant assay. Additionally, a high sensitivity was measured to 280 copies of mitochondrial DNA. Minimal variation was observed between each replication cycle, indicating the assay to be robust and repeatable. Overall, this study presents a real-time assay that is sensitive and robust to quantifying mitochondrial DNA copy number in degraded samples. Furthermore, there is potential to incorporate the assay as an additional target in current qPCR assays which use a six-dye chemistry and provide a complete overview of a sample's quality and quantity.
Collapse
|
18
|
Ring JD, Sturk-Andreaggi K, Alyse Peck M, Marshall C. Bioinformatic removal of NUMT-associated variants in mitotiling next-generation sequencing data from whole blood samples. Electrophoresis 2018; 39:2785-2797. [DOI: 10.1002/elps.201800135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/16/2018] [Accepted: 08/16/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Joseph David Ring
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL); DE United States
- ARP Sciences, LLC; Rockville MD United States
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL); DE United States
- ARP Sciences, LLC; Rockville MD United States
| | - Michelle Alyse Peck
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL); DE United States
- ARP Sciences, LLC; Rockville MD United States
| | - Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL); DE United States
- ARP Sciences, LLC; Rockville MD United States
| |
Collapse
|
19
|
Four-Generation Pedigree of Monozygotic Female Twins Reveals Genetic Factors in Twinning Process by Whole-Genome Sequencing. Twin Res Hum Genet 2018; 21:361-368. [DOI: 10.1017/thg.2018.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Familial monozygotic (MZ) twinning reports are rare around the world, and we report a four-generation pedigree with seven recorded pairs of female MZ twins. Whole-genome sequencing of seven family members was performed to explore the featured genetic factors in MZ twins. For variations specific to MZ twins, five novel variants were observed in the X chromosome. These candidates were used to explain the seemingly X-linked dominant inheritance pattern, and only one variant was exonic, located at the 5′UTR region of ZCCHC12 (chrX: 117958597, G > A). Besides, consistent mitochondrial DNA composition in the maternal linage precluded roles of mitochondria for this trait. In this pedigree, autosomes also contain diverse variations specific to MZ twins. Pathway analysis revealed a significant enrichment of genes carrying novel SNVs in the epithelial adherens junction-signaling pathway (p = .011), contributed by FGFR1, TUBB6, and MYH7B. Meanwhile, TBC1D22A, TRIOBP, and TUBB6, also carrying similar SNVs, were involved in the GTPase family-mediated signal pathway. Furthermore, gene-set enrichment analysis for 533 genes covered by copy number variations specific to MZ twins illustrated that the tight junction-signaling pathway was significantly enriched (p < .001). Therefore, the novel changes in the X chromosome and the provided candidate variants across autosomes may be responsible for MZ twinning, giving clues to increase our understanding about the underlying mechanism.
Collapse
|
20
|
Yao L, Xu Z, Zhao H, Tu Z, Liu Z, Li W, Hu L, Wan L. Concordance of mitochondrial DNA sequencing methods on bloodstains using Ion PGM™. Leg Med (Tokyo) 2018; 32:27-30. [PMID: 29499472 DOI: 10.1016/j.legalmed.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 12/03/2017] [Accepted: 02/23/2018] [Indexed: 11/28/2022]
Abstract
In this study, the complete mitochondrial genome (mtGenome) of six samples from three forensic cases was sequenced using the Ion Torrent Personal Genome Machine (PGM). The analyzed samples from forensic cases included bloodstains from several materials, such as gauze, Flinder's Technology Associates (FTA) cards and swabs. The age of the samples ranged from two months to twelve years. The complete mtGenomes were amplified using the tiling sequencing strategy which divided the whole mtGenome into 162 amplicons. All amplicons were successfully recovered. A phylogenetic analysis was performed to determine the accuracy of the PGM data, and which were compared to partial Sanger-based sequencing data. The average coverage of the PGM data were above 4000× in all case samples, and 99.86% concordance was observed using both sequencing methods. In conclusion, we demonstrate the ability to recover the complete mtGenome from bloodstains with relatively poor DNA quality by PGM. Moreover, the results are concordant with Sanger sequencing data. This new method has potential use in forensic practice.
Collapse
Affiliation(s)
- Lan Yao
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhen Xu
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Hemiao Zhao
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Zheng Tu
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Zhifang Liu
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Wanshui Li
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Lan Hu
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Lihua Wan
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
21
|
Weerts MJA, Timmermans EC, Vossen RHAM, van Strijp D, Van den Hout-van Vroonhoven MCGN, van IJcken WFJ, van der Zaag PJ, Anvar SY, Sleijfer S, Martens JWM. Sensitive detection of mitochondrial DNA variants for analysis of mitochondrial DNA-enriched extracts from frozen tumor tissue. Sci Rep 2018; 8:2261. [PMID: 29396409 PMCID: PMC5797170 DOI: 10.1038/s41598-018-20623-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/25/2022] Open
Abstract
Large variation exists in mitochondrial DNA (mtDNA) not only between but also within individuals. Also in human cancer, tumor-specific mtDNA variation exists. In this work, we describe the comparison of four methods to extract mtDNA as pure as possible from frozen tumor tissue. Also, three state-of-the-art methods for sensitive detection of mtDNA variants were evaluated. The main aim was to develop a procedure to detect low-frequent single-nucleotide mtDNA-specific variants in frozen tumor tissue. We show that of the methods evaluated, DNA extracted from cytosol fractions following exonuclease treatment results in highest mtDNA yield and purity from frozen tumor tissue (270-fold mtDNA enrichment). Next, we demonstrate the sensitivity of detection of low-frequent single-nucleotide mtDNA variants (≤1% allele frequency) in breast cancer cell lines MDA-MB-231 and MCF-7 by single-molecule real-time (SMRT) sequencing, UltraSEEK chemistry based mass spectrometry, and digital PCR. We also show de novo detection and allelic phasing of variants by SMRT sequencing. We conclude that our sensitive procedure to detect low-frequent single-nucleotide mtDNA variants from frozen tumor tissue is based on extraction of DNA from cytosol fractions followed by exonuclease treatment to obtain high mtDNA purity, and subsequent SMRT sequencing for (de novo) detection and allelic phasing of variants.
Collapse
Affiliation(s)
- M J A Weerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - E C Timmermans
- Philips Research Laboratories, High Tech Campus 11, 5656 AE, Eindhoven, The Netherlands
| | - R H A M Vossen
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - D van Strijp
- Philips Research Laboratories, High Tech Campus 11, 5656 AE, Eindhoven, The Netherlands
| | | | | | - P J van der Zaag
- Philips Research Laboratories, High Tech Campus 11, 5656 AE, Eindhoven, The Netherlands
| | - S Y Anvar
- Leiden Genome Technology Center (LGTC), Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - S Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Wai KT, Barash M, Gunn P. Performance of the Early Access AmpliSeq™ Mitochondrial Panel with degraded DNA samples using the Ion Torrent™ platform. Electrophoresis 2018; 39:2776-2784. [PMID: 29330875 DOI: 10.1002/elps.201700371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 11/12/2022]
Abstract
The Early Access AmpliSeq™ Mitochondrial Panel amplifies whole mitochondrial genomes for phylogenetic and kinship identifications, using Ion Torrent™ technology. There is currently limited information on its performance with degraded DNA, a common occurrence in forensic samples. This study evaluated the performance of the Panel with DNA samples degraded in vitro, to mimic conditions commonly found in forensic investigations. Purified DNA from five individuals was heat-treated at five time points each (125°C for 0, 30, 60, 120, and 240 min; total n = 25). The quality of DNA was assessed via a real-time DNA assay of genomic DNA and prepared for massively parallel sequencing on the Ion Torrent™ platform. Mitochondrial sequences were obtained for all samples and had an amplicon coverage averaging between 66X to 2803X. Most amplicons (157/162) displayed high coverages (452 ± 333X), while reads with less than 100X coverage were recorded in five amplicons only (90 ± 5X). Amplicon coverage was decreased with prolonged heating. At 72% strand balance, reads were well balanced between forward and reverse strands. Using a coverage threshold of ten reads per SNP, complete sequences were recovered in all samples and resolved kinship and, haplogroup relations. Additionally, the HV1 and HV2 regions of the reference and 240-min heat-treated samples (n = 10) were Sanger-sequenced for concordance. Overall, this study demonstrates the efficacy of a novel forensic Panel that recovers high quality mitochondrial sequences from degraded DNA samples.
Collapse
Affiliation(s)
- Ka Tak Wai
- University of Technology Sydney, Centre for Forensic Science, Sydney, NSW, Australia
| | - Mark Barash
- University of Technology Sydney, Centre for Forensic Science, Sydney, NSW, Australia
| | - Peter Gunn
- University of Technology Sydney, Centre for Forensic Science, Sydney, NSW, Australia
| |
Collapse
|
23
|
Mitochondrial Mutations in Cholestatic Liver Disease with Biliary Atresia. Sci Rep 2018; 8:905. [PMID: 29343773 PMCID: PMC5772057 DOI: 10.1038/s41598-017-18958-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Biliary atresia (BA) results in severe bile blockage and is caused by the absence of extrahepatic ducts. Even after successful hepatic portoenterostomy, a considerable number of patients are likely to show progressive deterioration in liver function. Recent studies show that mutations in protein-coding mitochondrial DNA (mtDNA) genes and/or mitochondrial genes in nuclear DNA (nDNA) are associated with hepatocellular dysfunction. This observation led us to investigate whether hepatic dysfunctions in BA is genetically associated with mtDNA mutations. We sequenced the mtDNA protein-coding genes in 14 liver specimens from 14 patients with BA and 5 liver specimens from 5 patients with choledochal cyst using next-generation sequencing. We found 34 common non-synonymous variations in mtDNA protein-coding genes in all patients examined. A systematic 3D structural analysis revealed the presence of several single nucleotide polymorphism-like mutations in critical regions of complexes I to V, that are involved in subunit assembly, proton-pumping activity, and/or supercomplex formation. The parameters of chronic hepatic injury and liver dysfunction in BA patients were also significantly correlated with the extent of hepatic failure, suggesting that the mtDNA mutations may aggravate hepatopathy. Therefore, mitochondrial mutations may underlie the pathological mechanisms associated with BA.
Collapse
|
24
|
Lee EJ, Hwang I, Lee JY, Park JN, Kim KC, Kim GH, Kang CM, Kim I, Lee SY, Kim HS. Hepatocyte Growth Factor Improves the Therapeutic Efficacy of Human Bone Marrow Mesenchymal Stem Cells via RAD51. Mol Ther 2017; 26:845-859. [PMID: 29398486 DOI: 10.1016/j.ymthe.2017.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023] Open
Abstract
Human embryonic stem cell-derived mesenchymal stem cells (hE-MSCs) have greater proliferative capacity than other human mesenchymal stem cells (hMSCs), suggesting that they may have wider applications in regenerative cellular therapy. In this study, to uncover the anti-senescence mechanism in hE-MSCs, we compared hE-MSCs with adult bone marrow (hBM-MSCs) and found that hepatocyte growth factor (HGF) was more abundantly expressed in hE-MSCs than in hBM-MSCs and that it induced the transcription of RAD51 and facilitated its SUMOylation at K70. RAD51 induction/modification by HGF not only increased telomere length but also increased mtDNA replication, leading to increased ATP generation. Moreover, HGF-treated hBM-MSCs showed significantly better therapeutic efficacy than naive hBM-MSCs. Together, the data suggest that the RAD51-mediated effects of HGF prevent hMSC senescence by promoting telomere lengthening and inducing mtDNA replication and function, which opens the prospect of developing novel therapies for liver disease.
Collapse
Affiliation(s)
- Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Injoo Hwang
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Yeon Lee
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong Nam Park
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Keun Cheon Kim
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gi-Hwan Kim
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Mo Kang
- Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Irene Kim
- Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seo-Yeon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Mishra A, Devi S, Saxena R, Gupta N, Kabra M, Chowdhury MR. Frequency of primary mutations of Leber's hereditary optic neuropathy patients in North Indian population. Indian J Ophthalmol 2017; 65:1156-1160. [PMID: 29133642 PMCID: PMC5700584 DOI: 10.4103/ijo.ijo_380_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose: Leber's hereditary optic neuropathy (LHON) is an inherited optic neuropathy characterized by subacute painless vision loss. The majority of LHON is caused due to one of the three primary mutations in the mitochondrial DNA (m.G3460A, m.G11778A, and m.T14484C). The frequency of these mutations differs in different populations. The purpose of this study is to observe the frequency of three common primary mutations in the North Indian population. Methods: Forty LHON patients within the age group of 10–50 years underwent molecular testing for primary mutations. For two patients, testing for mother and other siblings was also carried out, using bidirectional sequencing. Results: A total of 11 out of 40 (27.5%) patients were found to be carrying m.G11778A mutation. Siblings of two probands were also positive for the same mutation. In one family, two primary mutations (m.G11778A and m.T14484C) were found in the proband and in the mother as well. Conclusion: In this study, 27.5% mutation was detected in North Indian LHON families. These results suggest that m.G11778A mutation is more frequent in this population. The results of the present study are compatible with studies of an Asian population and Northern European population.
Collapse
Affiliation(s)
- Anushree Mishra
- Department of Paediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Saranya Devi
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All Indian Institute of Medical Sciences, New Delhi, India
| | - Rohit Saxena
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All Indian Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Department of Paediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Department of Paediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhumita Roy Chowdhury
- Department of Paediatrics, Division of Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Pelnena D, Burnyte B, Jankevics E, Lace B, Dagyte E, Grigalioniene K, Utkus A, Krumina Z, Rozentale J, Adomaitiene I, Stavusis J, Pliss L, Inashkina I. Complete mtDNA sequencing reveals mutations m.9185T>C and m.13513G>A in three patients with Leigh syndrome. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:1115-1120. [PMID: 29228836 DOI: 10.1080/24701394.2017.1413365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.
Collapse
Affiliation(s)
- Dita Pelnena
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Birute Burnyte
- b Department of Human and Medical Genetics, Faculty of Medicine , Vilnius University , Vilnius , Lithuania
| | - Eriks Jankevics
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Baiba Lace
- a Latvian Biomedical Research and Study Centre , Riga , Latvia.,c Centre Hospitalier Universitaire de Québec , Ville de Québec , Canada
| | - Evelina Dagyte
- b Department of Human and Medical Genetics, Faculty of Medicine , Vilnius University , Vilnius , Lithuania
| | - Kristina Grigalioniene
- b Department of Human and Medical Genetics, Faculty of Medicine , Vilnius University , Vilnius , Lithuania
| | - Algirdas Utkus
- b Department of Human and Medical Genetics, Faculty of Medicine , Vilnius University , Vilnius , Lithuania
| | - Zita Krumina
- d Children's Clinical University Hospital , Riga , Latvia
| | | | - Irina Adomaitiene
- f Department of Radiology , Children's Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos , Vilnius , Lithuania
| | - Janis Stavusis
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Liana Pliss
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Inna Inashkina
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| |
Collapse
|
27
|
Mitochondrial ND5 mutation mediated elevated ROS regulates apoptotic pathway epigenetically in a P53 dependent manner for generating pro-cancerous phenotypes. Mitochondrion 2017; 35:35-43. [PMID: 28502718 DOI: 10.1016/j.mito.2017.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
We have previously observed concomitant events of mutations in mitochondrial and nuclear genes, along with elevated reactive oxygen species (ROS) and differential methylation within the promoters of nuclear genes in tumors and in vitro experiments of tumorigenesis. These observations have made it pertinent to replicate and understand the role of acquired mitochondrial condition in tuning a cell to accomplish a pro-cancerous state. Using a codon optimized vector system for exogenous over-expression and mitochondrial localization; we have characterized here the role of over-expressed wild type mtND5 and one of its non-synonymous somatic mutation, ND5:P265H. The ectopically over-expressed ND5:P265H in mitochondria resulted in a reduced Complex I activity, generation of higher ADP/ATP ratio, reactive oxygen species (ROS) and carbonylation of proteins as compared to mock-transfected cells. Cells over-expressing mtND5 variant produced both peroxide as well as super-oxide ROS; the generation of which was dependent on the functional status of P53; modulating epigenetically the expression of key apoptosis pathway genes. The pro-cancerous phenotypes, of anchorage dependent and independent growth; increased glucose uptake and lactate production, were selectively observed only in P53 non-functional cells over-expressing mutant ND5:P265H. We propose that somatic mutation in mtND5 resulting in down-regulated complex I enzyme activity, elevated ROS and up-regulation of a set of nuclear anti-apoptotic genes epigenetically in the P53 dysfunctional cellular background, has provided a unique understanding of the molecular mechanism of mitochondrial mutation; and the concomitant existence of somatically acquired mitochondrial and nuclear p53 mutations, in cancer progression and promotion.
Collapse
|
28
|
Coutinho E, Batista C, Sousa F, Queiroz J, Costa D. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria. Mol Pharm 2017; 14:626-638. [PMID: 28199112 DOI: 10.1021/acs.molpharmaceut.6b00823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.
Collapse
Affiliation(s)
- Eduarda Coutinho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cátia Batista
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João Queiroz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
29
|
Arstad C, Refinetti P, Warren D, Giercksky KE, Ekstrøm PO. Scanning the mitochondrial genome for mutations by cycling temperature capillary electrophoresis. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:19-30. [PMID: 27728990 DOI: 10.1080/24701394.2016.1233532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To bypass possible nuclear contamination and to exclusively amplify DNA from the mitochondrion, a set of 23 primers was selected. On the mitochondrial DNA selection fragments, a second set of fragments was used to amplify and identify mutant fractions with a detection limit of 1% . This mutation scanning method analyzed 76% of the mitochondrial genome and was used to examine 94 tumours from different tissues of origin. In all, 87 tumours had one or more mutations, leaving seven samples without observed mutations. Sanger sequencing verified samples carrying mutations with a mutant fraction exceeding 30%. The generated data validate that several regions of the mitochondrial DNA have more mutations than others.
Collapse
Affiliation(s)
- Christian Arstad
- a Department of Tumor Biology , Institute for Cancer Research, The Norwegian Radium Hospital , Oslo , Norway
| | - Paulo Refinetti
- b Chaire de Statistique Appliques , Section de Mathematiques, EPFL , Lausanne , Switzerland
| | - David Warren
- c Department Medical Biochemistry , Institute for Cancer Research, The Norwegian Radium Hospital , Oslo , Norway
| | - Karl-Erik Giercksky
- a Department of Tumor Biology , Institute for Cancer Research, The Norwegian Radium Hospital , Oslo , Norway
| | - Per Olaf Ekstrøm
- a Department of Tumor Biology , Institute for Cancer Research, The Norwegian Radium Hospital , Oslo , Norway
| |
Collapse
|
30
|
Refinetti P, Morgenthaler S, Ekstrøm PO. Cycling temperature capillary electrophoresis: A quantitative, fast and inexpensive method to detect mutations in mixed populations of human mitochondrial DNA. Mitochondrion 2016; 29:65-74. [PMID: 27166160 DOI: 10.1016/j.mito.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/30/2016] [Accepted: 04/29/2016] [Indexed: 11/26/2022]
Abstract
Cycling temperature capillary electrophoresis has been optimised for mutation detection in 76% of the mitochondrial genome. The method was tested on a mixed sample and compared to mutation detection by next generation sequencing. Out of 152 fragments 90 were concordant, 51 discordant and in 11 were semi-concordant. Dilution experiments show that cycling capillary electrophoresis has a detection limit of 1-3%. The detection limit of routine next generation sequencing was in the ranges of 15 to 30%. Cycling temperature capillary electrophoresis detect and accurate quantify mutations at a fraction of the cost and time required to perform a next generation sequencing analysis.
Collapse
Affiliation(s)
- Paulo Refinetti
- École Polytechnique Fédérale de Lausanne, EPFL - FSB - STAP, Station 8, Lausanne, Switzerland.
| | - Stephan Morgenthaler
- École Polytechnique Fédérale de Lausanne, EPFL - FSB - STAP, Station 8, Lausanne, Switzerland
| | - Per O Ekstrøm
- Department of Tumor Biology, Norwegian Radiumhospital, Oslo, Norway
| |
Collapse
|
31
|
Nogueiro I, Neto C, Marques SL, Alves C, Cohen-Addad N, Amorim A, Gusmão L, Alvarez L. Exploring Sephardic lineages in São Tomé e Príncipe. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Chaitanya L, Ralf A, van Oven M, Kupiec T, Chang J, Lagacé R, Kayser M. Simultaneous Whole Mitochondrial Genome Sequencing with Short Overlapping Amplicons Suitable for Degraded DNA Using the Ion Torrent Personal Genome Machine. Hum Mutat 2015; 36:1236-47. [PMID: 26387877 PMCID: PMC5057296 DOI: 10.1002/humu.22905] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/01/2015] [Indexed: 11/13/2022]
Abstract
Whole mitochondrial (mt) genome analysis enables a considerable increase in analysis throughput, and improves the discriminatory power to the maximum possible phylogenetic resolution. Most established protocols on the different massively parallel sequencing (MPS) platforms, however, invariably involve the PCR amplification of large fragments, typically several kilobases in size, which may fail due to mtDNA fragmentation in the available degraded materials. We introduce a MPS tiling approach for simultaneous whole human mt genome sequencing using 161 short overlapping amplicons (average 200 bp) with the Ion Torrent Personal Genome Machine. We illustrate the performance of this new method by sequencing 20 DNA samples belonging to different worldwide mtDNA haplogroups. Additional quality control, particularly regarding the potential detection of nuclear insertions of mtDNA (NUMTs), was performed by comparative MPS analysis using the conventional long-range amplification method. Preliminary sensitivity testing revealed that detailed haplogroup inference was feasible with 100 pg genomic input DNA. Complete mt genome coverage was achieved from DNA samples experimentally degraded down to genomic fragment sizes of about 220 bp, and up to 90% coverage from naturally degraded samples. Overall, we introduce a new approach for whole mt genome MPS analysis from degraded and nondegraded materials relevant to resolve and infer maternal genetic ancestry at complete resolution in anthropological, evolutionary, medical, and forensic applications.
Collapse
Affiliation(s)
- Lakshmi Chaitanya
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Arwin Ralf
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mannis van Oven
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Tomasz Kupiec
- Institute of Forensic ResearchSection of Forensic GeneticsKrakówPoland
| | - Joseph Chang
- Thermo Fisher ScientificSouth San FranciscoCalifornia, USA
| | - Robert Lagacé
- Thermo Fisher ScientificSouth San FranciscoCalifornia, USA
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
33
|
Cabana GS, Lewis CM, Tito RY, Covey RA, Cáceres AM, Cruz AFDL, Durand D, Housman G, Hulsey BI, Iannacone GC, López PW, Martínez R, Medina Á, Dávila OO, Pinto KPO, Santillán SIP, Domínguez PR, Rubel M, Smith HF, Smith SE, Massa VRDC, Lizárraga B, Stone AC. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history. Hum Biol 2015; 86:147-65. [PMID: 25836744 DOI: 10.13110/humanbiology.86.3.0147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.
Collapse
Affiliation(s)
- Graciela S Cabana
- 1 Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhen X, Wu B, Wang J, Lu C, Gao H, Qiao J. Increased Incidence of Mitochondrial Cytochrome C Oxidase 1 Gene Mutations in Patients with Primary Ovarian Insufficiency. PLoS One 2015. [PMID: 26225554 PMCID: PMC4520565 DOI: 10.1371/journal.pone.0132610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Primary ovarian insufficiency (POI), also known as premature ovarian failure (POF), is defined as more than six months of cessation of menses before the age of 40 years, with two serum follicle stimulating hormone (FSH) levels (at least 1 month apart) falling in the menopause range. The cause of POI remains undetermined in the majority of cases, although some studies have reported increased levels of reactive oxygen species (ROS) in idiopathic POF. The role of mitochondrial DNA in the pathogenesis of POI has not been studied extensively. This aim of this study was to uncover underlying mitochondrial genetic defects in patients with POI. The entire region of the mitochondrial genome was amplified in subjects with idiopathic POI (n=63) and age-matched healthy female controls (n=63) using nine pair sets of primers, followed by screening of the mitochondrial genome using an Illumina MiSeq. We identified a total of 96 non-synonymous mitochondrial variations in POI patients and 93 non-synonymous variations in control subjects. Of these, 21 (9 in POI and 12 in control) non-synonymous variations had not been reported previously. Eight mitochondrial cytochrome coxidase 1 (MT-CO1) missense variants were identified in POI patients, whereas only four missense mutations were observed in controls. A high incidence of MT-CO1 missense variants were identified in POI patients compared with controls, and the difference between the groups was statistically significant (13/63 vs. 5/63, p=0.042). Our results show that patients with primary ovarian insufficiency exhibit an increased incidence of mitochondrial cytochrome c oxidase 1 gene mutations, suggesting that MT-CO1 gene mutation may be causal in POI.
Collapse
Affiliation(s)
- Xiumei Zhen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Genetic Diagnosis Lab Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States of America
| | - Bailin Wu
- Genetic Diagnosis Lab Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States of America
| | - Jian Wang
- Genetic Diagnosis Lab Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States of America
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Cuiling Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Huafang Gao
- Genetic Diagnosis Lab Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States of America
- Human Genetic Resource Center, National Research Institute for Health and Family Planning, Beijing, 100081, China
- * E-mail: (HG); (JQ)
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- * E-mail: (HG); (JQ)
| |
Collapse
|
35
|
Next-generation sequencing of the mitochondrial genome and association with IgA nephropathy in a renal transplant population. Sci Rep 2014; 4:7379. [PMID: 25488329 PMCID: PMC4260226 DOI: 10.1038/srep07379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/19/2014] [Indexed: 11/30/2022] Open
Abstract
Kidneys are highly aerobic organs that are critically dependent on the normal functioning of mitochondria. Genetic variations disrupting mitochondrial function are associated with multifactorial disorders including kidney disease. This study sequenced the entire mitochondrial genome in a renal transplant cohort of 64 individuals, using next-generation sequencing, to evaluate the association of genetic variants with IgA nephropathy and end-stage renal disease (ESRD, n = 100).
Collapse
|
36
|
Marques SL, Goios A, Rocha AM, Prata MJ, Amorim A, Gusmão L, Alves C, Alvarez L. Portuguese mitochondrial DNA genetic diversity-An update and a phylogenetic revision. Forensic Sci Int Genet 2014; 15:27-32. [PMID: 25457629 DOI: 10.1016/j.fsigen.2014.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
In recent years a large amount of mitochondrial population data for forensic purposes has been produced. Current efforts are focused at increasing the number of studied populations while generating updated genetic information of forensic quality. However, complete mitochondrial control region sequences are still scarce for most populations and even more so for complete mitochondrial genomes. In the case of Portugal, previous population genetics studies have already revealed the general portrait of HVS-I and HVS-II mitochondrial diversity, becoming now important to update and expand the mitochondrial region analysed. Accordingly, a total of 292 complete control region sequences from continental Portugal were obtained, under a stringent experimental design to ensure the quality of data through double sequencing of each target region. Furthermore, H-specific coding region SNPs were examined to detail haplogroup classification and complete mitogenomes were obtained for all sequences belonging to haplogroups U4 and U5. In general, a typical Western European haplogroup composition was found in mainland Portugal, associated to high level of mitochondrial genetic diversity. Within the country, no signs of substructure were detected. The typing of extra coding region SNPs has provided the refinement or confirmation of the previous classification obtained with EMMA tool in 96% of the cases. Finally, it was also possible to enlarge haplogroup U phylogeny with 28 new U4 and U5 mitogenomes.
Collapse
Affiliation(s)
- Sofia L Marques
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Goios
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Ana M Rocha
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - António Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Leonor Gusmão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cíntia Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Luis Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
37
|
Whole-mitochondrial genome sequencing in primary open-angle glaucoma using massively parallel sequencing identifies novel and known pathogenic variants. Genet Med 2014; 17:279-84. [PMID: 25232845 DOI: 10.1038/gim.2014.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The aim of this study was to determine whether mutations in mitochondrial DNA play a role in high-pressure primary open-angle glaucoma (OMIM 137760) by analyzing new data from massively parallel sequencing of mitochondrial DNA. METHODS Glaucoma patients with high-tension primary open-angle glaucoma and ethnically matched and age-matched control subjects without glaucoma were recruited. The entire human mitochondrial genome was amplified in two overlapping fragments by long-range polymerase chain reaction and used as a template for massively parallel sequencing on an Ion Torrent Personal Genome Machine. All variants were confirmed by conventional Sanger sequencing. RESULTS Whole-mitochondrial genome sequencing was performed in 32 patients with primary open-angle glaucoma from India (n = 16) and Ireland (n = 16). In 16 of the 32 patients with primary open-angle glaucoma (50% of cases), there were 22 mitochondrial DNA mutations consisting of 7 novel mutations and 8 previously reported disease-associated sequence variants. Eight of 22 (36.4%) of the mitochondrial DNA mutations were in complex I mitochondrial genes. CONCLUSION Massively parallel sequencing using the Ion Torrent Personal Genome Machine with confirmation by Sanger sequencing detected a pathogenic mitochondrial DNA mutation in 50% of the primary open-angle glaucoma cohort. Our findings support the emerging concept that mitochondrial dysfunction results in the development of glaucoma and, more specifically, that complex I defects play a significant role in primary open-angle glaucoma pathogenesis.
Collapse
|
38
|
Pardiñas AF, Martínez JL, Roca A, García-Vazquez E, López B. Over the sands and far away: interpreting an Iberian mitochondrial lineage with ancient Western African origins. Am J Hum Biol 2014; 26:777-83. [PMID: 25130626 DOI: 10.1002/ajhb.22601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES There is an ongoing effort to characterize the genetic links between Africa and Europe, mostly using lineages and haplotypes that are specific to one continent but had an ancient origin in the other. Mitochondrial DNA has been proven to be a very useful tool for this purpose since a high number of putatively European-specific variants of the African L* lineages have been defined over the years. Due to their geographic locations, Spain and Portugal seem to be ideal places for searching for these lineages. METHODS Five members of a minor branch of haplogroup L3f were found in recent DNA samplings in the region of Asturias (Northern Spain), which is known for its historical isolation. The frequency of L3f in this population (≈1%) is unexpectedly high in comparison with other related lineages in Europe. Complete mitochondrial DNA sequencing of these L3f lineages, as well phylogenetic and phylogeographic comparative analyses have been performed. RESULTS The L3f variant found in Asturias seems to constitute an Iberian-specific haplogroup, distantly related to lineages in Northern Africa and with a deep ancestry in Western Africa. Coalescent algorithms estimate the minimum arrival time as 8,000 years ago, and a possible route through the Gibraltar Strait. CONCLUSIONS Results are concordant with a previously proposed Neolithic connection between Southern Europe and Western Africa, which might be key to the proper understanding of the ancient links between these two continents.
Collapse
Affiliation(s)
- Antonio F Pardiñas
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, 33071, Spain
| | | | | | | | | |
Collapse
|
39
|
Echoes from Sepharad: signatures on the maternal gene pool of crypto-Jewish descendants. Eur J Hum Genet 2014; 23:693-9. [PMID: 25074462 DOI: 10.1038/ejhg.2014.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 11/08/2022] Open
Abstract
The majority of genetic studies on Jewish populations have been focused on Ashkenazim, and genetic data from the Sephardic original source, the Iberian Peninsula, are particularly scarce. Regarding the mitochondrial genome, the available information is limited to a single Portuguese village, Belmonte, where just two different lineages (a single one corresponding to 93.3%) were found in 30 individuals. Aiming at disclosing the ancestral maternal background of the Portuguese Jewry, we enlarged the sampling to other crypto-Jewish descendants in the Bragança district (NE Portugal). Fifty-seven complete mtDNA genomes were newly sequenced and - in contrast with Belmonte - a high level of diversity was found, with five haplogroups (HV0b, N1, T2b11, T2e and U2e) being putatively identified as Sephardic founding lineages. Therefore - in sharp contrast with Belmonte - these communities have managed to escape the expected inbreeding effects caused by centuries of religious repression and have kept a significant proportion of the Sephardic founder gene pool. This deeper analysis of the surviving Sephardic maternal lineages allowed a much more comprehensive and detailed perspective on the origins and survival of the Sephardic genetic heritage. In line with previously published results on Sephardic paternal lineages, our findings also show a surprising resistance to the erosion of genetic diversity in the maternal lineages.
Collapse
|
40
|
Hamoy IG, Ribeiro-Dos-Santos AM, Alvarez L, Barbosa S, Silva A, Santos S, Gusmão L, Ribeiro-Dos-Santos A. A Protocol for mtGenome Analysis on Large Sample Numbers. Bioinform Biol Insights 2014; 8:127-34. [PMID: 25002812 PMCID: PMC4069038 DOI: 10.4137/bbi.s14623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial genome is widely studied in a variety of fields, such as population, forensic, and human and medical genetics. Most studies have been limited to a small portion of the sequence that, although highly diverse, does not describe the total variability. The arrival of modern high-throughput sequencing technologies has made it possible to investigate larger sequences in a shorter amount of time as well as in a more affordable fashion. This work aims to describe a protocol for sequencing and analyzing the complete mitochondrial genome with the Ion PGM™ platform. To evaluate the protocol, the mitochondrial genome was sequenced to approximately 210 Mbp, with high-quality sequences distributed between 12 samples that had an average coverage of 1023× per sample. Several variant callers were compared to improve the protocol outcome. The results suggest that it is possible to run up to 120 samples per run without any loss of any significant quality. Therefore, this protocol is an efficient and accurate tool for full mitochondrial genome analysis.
Collapse
Affiliation(s)
- Igor G Hamoy
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Universidade Federal Rural da Amazônia, Campus de Capanema, PA, Brazil
| | | | - Luiz Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto, Universidade do Porto. Porto, Portugal
| | - Silvanira Barbosa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Sidney Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leonor Gusmão
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Institute of Molecular Pathology and Immunology of the University of Porto, Universidade do Porto. Porto, Portugal
| | - Andrea Ribeiro-Dos-Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
41
|
Kampira E, Kumwenda J, Van Oosterhout JJ, Dandara C. Mitochondrial subhaplogroups and differential risk of stavudine-induced lipodystrophy in Malawian HIV/AIDS patients. Pharmacogenomics 2014; 14:1999-2004. [PMID: 24279854 DOI: 10.2217/pgs.13.188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND & AIM Lipodystrophy remains a significant problem in HIV/AIDS patients, especially those on regimens containing either protease inhibitors or thymidine analogs (stavudine or zidovudine). Many of the manifestations of lipodystrophy have been linked to mitochondrial dysfunction. We set out to investigate whether mtDNA variation is associated with the development of stavudine-induced lipodystrophy among adult Malawian HIV/AIDS patients on antiretroviral therapy that included stavudine. MATERIALS & METHODS A total of 117 adult HIV/AIDS patients on stavudine-containing antiretroviral therapy (ART) were recruited from the ART clinic at the Queen Elizabeth Central Hospital, Malawi. The patients were categorized according to whether or not they had developed lipodystrophy after being on a stavudine-containing ART regimen for at least 6 months. Whole mtDNA-coding regions of each patient were sequenced and correlated with clinical characteristics. RESULTS Lipodystrophy was apparent in 16% (n = 19) of the participants. In multivariate analysis, age >40 years (odds ratio: 4.43; 95% CI: 1.36-14.47; p = 0.014) was significantly associated with the presence of lipodystrophy. The mtDNA subhaplogroup L3e appeared to be protective against lipodystrophy, as none of 11 subjects with this subhaplogroup presented with lipodystrophy. CONCLUSION mtDNA subhaplogroups seem to differentially affect susceptibility to lipodystrophy. More research is required in order to identify patients who are more or less likely to benefit from stavudine-containing ART.
Collapse
Affiliation(s)
- Elizabeth Kampira
- Division of Human Genetics, Department of Clinical Laboratory Sciences, Faculty of Health Science, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | | | | | | |
Collapse
|
42
|
Kampira E, Dzobo K, Kumwenda J, van Oosterhout JJ, Parker MI, Dandara C. Peripheral blood mitochondrial DNA/nuclear DNA (mtDNA/nDNA) ratio as a marker of mitochondrial toxicities of stavudine containing antiretroviral therapy in HIV-infected Malawian patients. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:438-45. [PMID: 24816082 DOI: 10.1089/omi.2014.0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial toxicity is a major concern related to nucleoside reverse transcriptase inhibitors. Common manifestations are peripheral neuropathy and lipodystrophy. Depletion of mitochondria has been associated with mitochondrial dysfunction. We investigated whether mitochondria DNA (mtDNA) levels in peripheral blood can be used as biomarker of stavudine-associated mitochondrial toxicities. We enrolled 203 HIV-infected Malawian adult patients on stavudine-containing ART and 64 healthy controls of Bantu origin in a cross-sectional study. Total DNA was extracted from whole blood.The glyceraldehyde-3-phosphate dehydrogenase gene was used to estimate nuclear DNA (nDNA) levels and the ATP synthase-8 mitochondrial DNA gene to estimate mtDNA levels, from which mtDNA/nDNA ratios were determined. MtDNA subhaplogroups were established by sequencing. Among patients, peripheral neuropathy was present in 21% (43/203), lipodystrophy in 18% (20/112), elevated lactate level (>2.5 mmol/L) in 17% (19/113). Healthy controls had a higher median mtDNA/nDNA ratio when compared to HIV/AIDS patients (6.64 vs. 5.08; p=0.05), patients presenting with peripheral neuropathy (6.64 vs. 3.40, p=0.039), and patients with high lactate levels (6.64 vs. 0.68, p=0.024), respectively. Significant differences in median mtDNA/nDNA ratios were observed between patients with high and normal lactate levels (5.88 vs. 0.68, p=0.018). The median mtDNA/nDNA ratio of patients in subhaplogroup L0a2 was much lower (0.62 vs. 8.50, p=0.01) than that of those in subhaplogroup L2a. Our data indicate that peripheral blood mtDNA/nDNA ratio is a marker of mitochondrial toxicities of stavudine and is associated with elevated lactate levels and mtDNA subhaplogroups. This could open the prospect to select a substantial group of patients who will not have problematic side effects from stavudine, an affordable and effective antiretroviral drug that is being phased out in Africa due to its toxicity.
Collapse
Affiliation(s)
- Elizabeth Kampira
- 1 Division of Human Genetics, University of Cape Town , Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
43
|
Roby RK, Sprouse M, Phillips N, Alicea-Centeno A, Shewale S, Shore S, Paul N. Mitochondrial genome interrogation for forensic casework and research studies. CURRENT PROTOCOLS IN HUMAN GENETICS 2014; 81:14.9.1-14.9.23. [PMID: 24763992 DOI: 10.1002/0471142905.hg1409s81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit describes methods used in the analysis of mitochondrial DNA (mtDNA) for forensic and research applications. UNIT describes procedures specifically for forensic casework where the DNA from evidentiary material is often degraded or inhibited. In this unit, protocols are described for quantification of mtDNA before amplification; amplification of the entire control region from high-quality samples as well as procedures for interrogating the whole mitochondrial genome (mtGenome); quantification of mtDNA post-amplification; and, post-PCR cleanup and sequencing. The protocols for amplification were developed for high-throughput databasing applications for forensic DNA testing such as reference samples and population studies. However, these same protocols can be applied to biomedical research such as age-related disease and health disparities research.
Collapse
Affiliation(s)
- Rhonda K Roby
- Department of Molecular & Medical Genetics, UNT Health Science Center, Fort Worth, Texas.,Institute of Applied Genetics, UNT Health Science Center, Fort Worth, Texas
| | - Marc Sprouse
- Department of Molecular & Medical Genetics, UNT Health Science Center, Fort Worth, Texas
| | - Nicole Phillips
- Department of Molecular & Medical Genetics, UNT Health Science Center, Fort Worth, Texas
| | | | - Shantanu Shewale
- Department of Molecular & Medical Genetics, UNT Health Science Center, Fort Worth, Texas
| | | | - Natasha Paul
- TriLink BioTechnologies, Inc, San Diego, California
| |
Collapse
|
44
|
Yen HC, Li SL, Hsu WC, Tang P. Interference of Co-amplified nuclear mitochondrial DNA sequences on the determination of human mtDNA heteroplasmy by Using the SURVEYOR nuclease and the WAVE HS system. PLoS One 2014; 9:e92817. [PMID: 24664244 PMCID: PMC3963942 DOI: 10.1371/journal.pone.0092817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/25/2014] [Indexed: 01/02/2023] Open
Abstract
High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detecting human mtDNA variants and found that its performance was slightly better than that of denaturing high-performance liquid chromatography (DHPLC). The potential interference from co-amplified NUMTs on screening mtDNA heteroplasmy when using these 2 highly sensitive techniques was further examined by using 2 published primer sets containing a total of 65 primer pairs, which were originally designed to be used with one of the 2 techniques. We confirmed that 24 primer pairs could amplify NUMTs by conducting bioinformatic analysis and PCR with the DNA from 143B-ρ0 cells. Using mtDNA extracted from the mitochondria of human 143B cells and a cybrid line with the nuclear background of 143B-ρ0 cells, we demonstrated that NUMTs could affect the patterns of chromatograms for cell DNA during SN-WAVE/HS analysis of mtDNA, leading to incorrect judgment of mtDNA homoplasmy or heteroplasmy status. However, we observed such interference only in 2 of 24 primer pairs selected, and did not observe such effects during DHPLC analysis. These results indicate that NUMTs can affect the screening of low-level mtDNA variants, but it might not be predicted by bioinformatic analysis or the amplification of DNA from 143B-ρ0 cells. Therefore, using purified mtDNA from cultured cells with proven purity to evaluate the effects of NUMTs from a primer pair on mtDNA detection by using PCR-based high-sensitivity methods prior to the use of a primer pair in real studies would be a more practical strategy.
Collapse
Affiliation(s)
- Hsiu-Chuan Yen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| | - Shiue-Li Li
- Department and Graduate Institute of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Chien Hsu
- Department and Graduate Institute of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Petrus Tang
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
45
|
Santos C, Fregel R, Cabrera VM, Álvarez L, Larruga JM, Ramos A, López MA, Pilar Aluja M, González AM. Mitochondrial DNA and Y-chromosome structure at the mediterranean and atlantic façades of the iberian peninsula. Am J Hum Biol 2013; 26:130-41. [DOI: 10.1002/ajhb.22497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 12/07/2013] [Indexed: 01/24/2023] Open
Affiliation(s)
- Cristina Santos
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Rosa Fregel
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Vicente M. Cabrera
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Luis Álvarez
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
- IPATIMUP; Institute of Molecular Pathology and Immunology of the University of Porto; 4200-465 Porto Portugal
| | - Jose M. Larruga
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Amanda Ramos
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
- Centre of Research in Natural Resources (CIRN), Department of Biology; University of the Azores; 9500-321 Ponta Delgada Portugal
- Molecular and Cellular Biology Institute (IBMC); University of Porto; 4150-180 Porto Portugal
| | - Miguel A. López
- Clinical Management and Biotechnology Unit; Torre Cárdena Hospital; 04008 Almería Spain
| | - María Pilar Aluja
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Ana M. González
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| |
Collapse
|
46
|
Kampira E, Kumwenda J, van Oosterhout JJ, Dandara C. Mitochondrial DNA subhaplogroups L0a2 and L2a modify susceptibility to peripheral neuropathy in malawian adults on stavudine containing highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2013; 63:647-52. [PMID: 23614993 PMCID: PMC3815091 DOI: 10.1097/qai.0b013e3182968ea5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Peripheral neuropathy (PN) is one of the main toxicities associated with stavudine. Genetic variants in mitochondrial DNA (mtDNA) haplogroups have been associated with increased risk of developing PN in European non-Hispanic and black patients on stavudine containing antiretroviral therapy (ART). We investigated mtDNA haplogroups and their role in susceptibility to stavudine-induced peripheral in Malawian patients on ART. Method: Two hundred and fifteen adults on stavudine containing regimens were recruited from the ART clinic at Queen Elizabeth Central Hospital, Blantyre, into a cross-sectional study to investigate the effects of genetic variants in mtDNA of individuals in relation to response to treatment. Patients were categorized according to whether or not they had developed PN after a minimum of 6 months on stavudine containing ART. Whole mtDNA coding regions of each patient were sequenced, and CD4 count, viral load, and creatinine were determined. The mtDNA variation was correlated with clinical characteristics. Results: Fifty-three (25%) of the participants developed PN after starting stavudine containing ART. Mitochondrial DNA subhaplogroup L0a2 was independently associated with increased risk of PN in a multivariate model (odds ratio, 2.23; 95% confidence interval, 1.14 to 4.39; P = 0.019), and subhaplogroup L2a was independently associated with reduced risk of PN (odds ratio, 0.39; 95% confidence interval, 0.16 to 0.94; P = 0.036). Conclusions: Genetic variation in mtDNA confers differential risk of developing PN in patients on stavudine containing ART among Malawians.
Collapse
Affiliation(s)
- Elizabeth Kampira
- *Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; and †Department of Pathology, ‡Department of Medicine, and §Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Malawi
| | | | | | | |
Collapse
|
47
|
Frequency and pattern of heteroplasmy in the complete human mitochondrial genome. PLoS One 2013; 8:e74636. [PMID: 24098342 PMCID: PMC3788774 DOI: 10.1371/journal.pone.0074636] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/03/2013] [Indexed: 11/19/2022] Open
Abstract
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields.
Collapse
|
48
|
Collins DW, Gudiseva HV, Trachtman BT, Jerrehian M, Gorry T, Merritt III WT, Rhodes AL, Sankar PS, Regina M, Miller-Ellis E, O’Brien JM. Mitochondrial sequence variation in African-American primary open-angle glaucoma patients. PLoS One 2013; 8:e76627. [PMID: 24146900 PMCID: PMC3798711 DOI: 10.1371/journal.pone.0076627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/23/2013] [Indexed: 01/21/2023] Open
Abstract
Primary open-angle glaucoma (POAG) is a major cause of blindness and results from irreversible retinal ganglion cell damage and optic nerve degeneration. In the United States, POAG is most prevalent in African-Americans. Mitochondrial genetics and dysfunction have been implicated in POAG, and potentially pathogenic sequence variations, in particular novel transversional base substitutions, are reportedly common in mitochondrial genomes (mtDNA) from POAG patient blood. The purpose of this study was to ascertain the spectrum of sequence variation in mtDNA from African-American POAG patients and determine whether novel nonsynonymous, transversional or other potentially pathogenic sequence variations are observed more commonly in POAG cases than controls. mtDNA from African-American POAG cases (n = 22) and age-matched controls (n = 22) was analyzed by deep sequencing of a single 16,487 base pair PCR amplicon by Ion Torrent, and candidate novel variants were validated by Sanger sequencing. Sequence variants were classified and interpreted using the MITOMAP compendium of polymorphisms. 99.8% of the observed variations had been previously reported. The ratio of novel variants to POAG cases was 7-fold lower than a prior estimate. Novel mtDNA variants were present in 3 of 22 cases, novel nonsynonymous changes in 1 of 22 cases and novel transversions in 0 of 22 cases; these proportions are significantly lower (p<.0005, p<.0004, p<.0001) than estimated previously for POAG, and did not differ significantly from controls. Although it is possible that mitochondrial genetics play a role in African-Americans' high susceptibility to POAG, it is unlikely that any mitochondrial respiratory dysfunction is due to an abnormally high incidence of novel mutations that can be detected in mtDNA from peripheral blood.
Collapse
Affiliation(s)
- David W. Collins
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Harini V. Gudiseva
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamin T. Trachtman
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Matthew Jerrehian
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Thomasine Gorry
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - William T. Merritt III
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Allison L. Rhodes
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Prithvi S. Sankar
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Meredith Regina
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Eydie Miller-Ellis
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joan M. O’Brien
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
49
|
Linguistic isolates in Portugal: insights from the mitochondrial DNA pattern. Forensic Sci Int Genet 2013; 7:618-623. [PMID: 24041913 DOI: 10.1016/j.fsigen.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/23/2022]
Abstract
Miranda do Douro, located in the northeastern region of Portugal, has notable characteristics not only from a geographic or naturalistic point of view, but also from a cultural perspective. A remarkable one is the coexistence of two different languages: Portuguese and Mirandese, the second being an Astur-Leonese dialect. The current persistence of the Astur-Leonese dialect in this population falls on the singularity of the region: relative isolation, implying difficulties to communicate with other Portuguese regions, while the same location facilitated the establishment of social and commercial relationships with adjacent Spanish territories, origin of the Astur-Leonese language. The objective of this study was to characterize the population from Miranda through the analysis of maternal lineages in order to evaluate whether its mitochondrial DNA diversity fitted the patterns previously reported for other populations from the Iberian Peninsula. Viewing that, the entire control region of mitochondrial DNA from 121 individuals was examined. Miranda showed a haplogroup composition usual for a Western European population, in the sense that as high as 63.6% of sequences belonged to macro-haplogroup R0. Lineages ascribed to have an African (L2a and L1b) origin, were detected, but reaching an amount commonly found in Portugal. Miranda also presented a few haplogroups typically found in Jewish populations, while rarely observed in other Iberian populations. The finding can be explained by gene flow with crypto-Jew communities that since long are known to be established in the region where Miranda is located. In Miranda, both genetic and nucleotide diversities presented low values (0.9292 ± 0.0180 and 0.01101 ± 0.00614 respectively) when compared to populations from its micro-geographical framework, which constitute a sign of population isolation that certainly provided conditions for the survival of the Astur-Leonese dialect in the region.
Collapse
|
50
|
Liu S, Bai Y, Huang J, Zhao H, Zhang X, Hu S, Wei Y. Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab 2013; 109:100-6. [PMID: 23465694 DOI: 10.1016/j.ymgme.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Left ventricular non-compaction cardiomyopathy (LVNC) is a rare congenital cardiomyopathy that is associated with mutations in mitochondrial DNA (mtDNA), however, no study of myocardium mtDNA of LVNC patients has been reported. To identify novel candidate mtDNA variants that may be responsible for the pathogenesis of LVNC, myocardial specimens were examined to investigate pathogenic mtDNA variants. MATERIALS AND METHODS Samples from six patients who were diagnosed with LVNC and underwent heart transplantation were analyzed. The sequence and copy number of mtDNA from these samples were determined by Sanger sequencing and fluorescence-based quantitative polymerase chain reaction, respectively. RESULTS Myocardial mtDNA sequences analysis revealed 227 substitution variants, including 157 coding variants and 70 non-coding variants. An m.9856T>C (Ile217Thr) mutation in MT-CO3 from one LVNC patient was found to be a non-haplogroup associated variant, and was rare in the mtDB Human Mitochondrial Genome Database, suggesting that the variant may be pathogenic. And there was statistically significant difference in mtDNA copy number between LVNC patients and normal control subjects. Electron microscopy (EM) of left ventricular myocardium showed abnormality in mitochondrial morphology and disordered sarcomeric organization. CONCLUSION The identification of mtDNA sequence variants in myocardial specimens may be helpful for further investigation of the underlying pathogenic implications of myocardial mtDNA mutations in LVNC. However, measurement of mtDNA copy number showed that there was lower mtDNA content in myocardium of LVNC patients than in normal controls (P<0.01). Lower mtDNA copy number and morphological abnormalities of mitochondria suggested mitochondrial dysfunction that may be associated with etiology of LVNC.
Collapse
Affiliation(s)
- Shenghua Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|