1
|
LeMon MB, Douma CC, Burke GS, Bowser MT. Fabrication of µFFE Devices in COC via Hot Embossing with a 3D-Printed Master Mold. MICROMACHINES 2023; 14:1728. [PMID: 37763891 PMCID: PMC10534651 DOI: 10.3390/mi14091728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The fabrication of high-performance microscale devices in substrates with optimal material properties while keeping costs low and maintaining the flexibility to rapidly prototype new designs remains an ongoing challenge in the microfluidics field. To this end, we have fabricated a micro free-flow electrophoresis (µFFE) device in cyclic olefin copolymer (COC) via hot embossing using a PolyJet 3D-printed master mold. A room-temperature cyclohexane vapor bath was used to clarify the device and facilitate solvent-assisted thermal bonding to fully enclose the channels. Device profiling showed 55 µm deep channels with no detectable feature degradation due to solvent exposure. Baseline separation of fluorescein, rhodamine 110, and rhodamine 123, was achieved at 150 V. Limits of detection for these fluorophores were 2 nM, 1 nM, and 10 nM, respectively, and were comparable to previously reported values for glass and 3D-printed devices. Using PolyJet 3D printing in conjunction with hot embossing, the full design cycle, from initial design to production of fully functional COC µFFE devices, could be completed in as little as 6 days without the need for specialized clean room facilities. Replicate COC µFFE devices could be produced from an existing embossing mold in as little as two hours.
Collapse
Affiliation(s)
| | | | | | - Michael T. Bowser
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Younis AZ, Lavery GG, Christian M, Doig CL. Rapid isolation of respiring skeletal muscle mitochondria using nitrogen cavitation. Front Physiol 2023; 14:1114595. [PMID: 36960150 PMCID: PMC10027933 DOI: 10.3389/fphys.2023.1114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Methods of isolating mitochondria commonly utilise mechanical force and shear stress to homogenize tissue followed by purification by multiple rounds of ultracentrifugation. Existing protocols can be time-consuming with some physically impairing integrity of the sensitive mitochondrial double membrane. Here, we describe a method for the recovery of intact, respiring mitochondria from murine skeletal muscle tissue and cell lines using nitrogen cavitation. This protocol results in high-yield, pure and respiring mitochondria without the need for purification gradients or ultracentrifugation. The protocol takes under an hour and requires limited specialised equipment. Our methodology is successful in extracting mitochondria of both cell extracts and skeletal muscle tissue. This represents an improved yield in comparison to many of the existing methods. Western blotting and electron microscopy demonstrate the enrichment of mitochondria with their ultrastructure well-preserved and an absence of contamination from cytoplasmic or nuclear fractions. Using respirometry analysis we show that mitochondria extracted from murine skeletal muscle cell lines (C2C12) and tibialis anterior tissue have an appropriate respiratory control ratio. These measures are indicative of healthy coupled mitochondria. Our method successfully demonstrates the rapid isolation of functional mitochondria and will benefit researchers studying mitochondrial bioenergetics as well as providing greater throughput and application for time-sensitive assays.
Collapse
|
3
|
Heuer C, Preuß J, Habib T, Enders A, Bahnemann J. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Eng Life Sci 2022; 22:744-759. [PMID: 36514534 PMCID: PMC9731604 DOI: 10.1002/elsc.202100081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Since its invention in the 1980s, 3D printing has evolved into a versatile technique for the additive manufacturing of diverse objects and tools, using various materials. The relative flexibility, straightforwardness, and ability to enable rapid prototyping are tremendous advantages offered by this technique compared to conventional methods for miniaturized and microfluidic systems fabrication (such as soft lithography). The development of 3D printers exhibiting high printer resolution has enabled the fabrication of accurate miniaturized and microfluidic systems-which have, in turn, substantially reduced both device sizes and required sample volumes. Moreover, the continuing development of translucent, heat resistant, and biocompatible materials will make 3D printing more and more useful for applications in biotechnology in the coming years. Today, a wide variety of 3D-printed objects in biotechnology-ranging from miniaturized cultivation chambers to microfluidic lab-on-a-chip devices for diagnostics-are already being deployed in labs across the world. This review explains the 3D printing technologies that are currently used to fabricate such miniaturized microfluidic devices, and also seeks to offer some insight into recent developments demonstrating the use of these tools for biotechnological applications such as cell culture, separation techniques, and biosensors.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | | | - Taieb Habib
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Anton Enders
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Janina Bahnemann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
- Cell Culture TechnologyFaculty of TechnologyBielefeld UniversityBielefeldGermany
| |
Collapse
|
4
|
Guo Q, Liu L, Rupasinghe TWT, Roessner U, Barkla BJ. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. PLANT PHYSIOLOGY 2022; 189:805-826. [PMID: 35289902 PMCID: PMC9157097 DOI: 10.1093/plphys/kiac123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/22/2022] [Indexed: 05/25/2023]
Abstract
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.
Collapse
Affiliation(s)
- Qi Guo
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Thusitha W T Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
- Sciex, Mulgrave, VIC 3170, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
5
|
Microfluidic free-flow electrophoresis: a promising tool for protein purification and analysis in proteomics. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Barbaresco F, Cocuzza M, Pirri CF, Marasso SL. Application of a Micro Free-Flow Electrophoresis 3D Printed Lab-on-a-Chip for Micro-Nanoparticles Analysis. NANOMATERIALS 2020; 10:nano10071277. [PMID: 32629794 PMCID: PMC7408601 DOI: 10.3390/nano10071277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
The present work describes a novel microfluidic free-flow electrophoresis device developed by applying three-dimensional (3D) printing technology to rapid prototype a low-cost chip for micro- and nanoparticle collection and analysis. Accurate reproducibility of the device design and the integration of the inlet and outlet ports with the proper tube interconnection was achieved by the additive manufacturing process. Test prints were performed to compare the glossy and the matte type of surface finish. Analyzing the surface topography of the 3D printed device, we demonstrated how the best reproducibility was obtained with the glossy device showing a 5% accuracy. The performance of the device was demonstrated by a free-flow zone electrophoresis application on micro- and nanoparticles with different dimensions, charge surfaces and fluorescent dyes by applying different separation voltages up to 55 V. Dynamic light scattering (DLS) measurements and ultraviolet−visible spectroscopy (UV−Vis) analysis were performed on particles collected at the outlets. The percentage of particles observed at each outlet was determined in order to demonstrate the capability of the micro free-flow electrophoresis (µFFE) device to work properly in dependence of the applied electric field. In conclusion, we rapid prototyped a microfluidic device by 3D printing, which ensured micro- and nanoparticle deviation and concentration in a reduced operation volume and hence suitable for biomedical as well as pharmaceutical applications.
Collapse
Affiliation(s)
- Federica Barbaresco
- Chilab-Materials and Microsystems Laboratory, DISAT, Politecnico di Torino, 10034 Chivasso (Turin), Italy; (F.B.); (M.C.); (C.F.P.)
| | - Matteo Cocuzza
- Chilab-Materials and Microsystems Laboratory, DISAT, Politecnico di Torino, 10034 Chivasso (Turin), Italy; (F.B.); (M.C.); (C.F.P.)
- CNR-IMEM, Parco Area delle Scienze 37a, 43124 Parma, Italy
| | - Candido Fabrizio Pirri
- Chilab-Materials and Microsystems Laboratory, DISAT, Politecnico di Torino, 10034 Chivasso (Turin), Italy; (F.B.); (M.C.); (C.F.P.)
| | - Simone Luigi Marasso
- Chilab-Materials and Microsystems Laboratory, DISAT, Politecnico di Torino, 10034 Chivasso (Turin), Italy; (F.B.); (M.C.); (C.F.P.)
- CNR-IMEM, Parco Area delle Scienze 37a, 43124 Parma, Italy
- Correspondence:
| |
Collapse
|
7
|
Lu N, Sticker D, Kretschmann A, Petersen NJ, Kutter JP. A thiol-ene microfluidic device enabling continuous enzymatic digestion and electrophoretic separation as front-end to mass spectrometric peptide analysis. Anal Bioanal Chem 2020; 412:3559-3571. [DOI: 10.1007/s00216-020-02609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
|
8
|
Stastna M. Continuous flow electrophoretic separation - Recent developments and applications to biological sample analysis. Electrophoresis 2019; 41:36-55. [PMID: 31650578 DOI: 10.1002/elps.201900288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/23/2023]
Abstract
Continuous flow electrophoretic separation with continuous sample loading provides the advantage of processing volumes of any sizes, as well as the benefit of a real-time monitoring and optimization of the separation process. In addition, the spatial separation of the sample enables collecting multiple separated components simultaneously and in a continuous manner. The separation is usually performed in mild buffers without organic solvents and detergents (sample biological activity is retained) and it is carried out without usage of a solid support in the separation space preventing the interaction of the sample with it (high sample recovery). The method is used for the separation of proteins/peptides in proteomic applications, and its great applicability is to the separation of the cells, cellular organelles, vesicles, membrane fragments, and DNA. This review focuses on the electrophoretic separation performed in a continuous flow and it describes various electrophoretic modes and instrumental setups. Recent developments in methodology and instrumentation, the integration with other techniques, and the application to the biological sample analysis are discussed as well.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
9
|
Wang S, Zhang L, Sun H, Chu Z, Chen H, Zhao Y, Zhang W. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein. Electrophoresis 2019; 40:2610-2617. [PMID: 30977523 DOI: 10.1002/elps.201900148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/06/2019] [Indexed: 01/20/2023]
Abstract
Free-flow isoelectric focusing (FFIEF) has the merits of mild separation conditions, high recovery and resolution, but suffers from the issues of ampholytes interference and high cost due to expensive carrier ampholytes. In this paper, a home-made carrier ampholyte-free FFIEF system was constructed via orientated migration of H+ and OH- provided by electrode solutions. When applying an electric field, a linear pH gradient from pH 4 to 9 (R2 = 0.994) was automatically formed by the electromigration of protons and hydroxyl ions in the separation chamber. The carrier ampholyte-free FFIEF system not only avoids interference of ampholyte to detection but also guarantees high separation resolution by establishing stable pH gradient. The separation selectivity was conveniently adjusted by controlling operating voltage and optimizing the composition, concentration and flow rate of the carrier buffer. The constructed system was applied to separation of proteins in egg white, followed by MADLI-TOF-MS identification. Three major proteins, ovomucoid, ovalbumin and ovotransferrin, were successfully separated according to their pI values with 15 mmol/L Tris-acetic acid (pH = 6.5) as carrier buffer at a flow rate of 12.9 mL/min.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Haofan Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhanying Chu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Haihong Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
10
|
Šalplachta J, Horká M, Šlais K. Capillary electrophoresis with preparative isoelectric focusing preconcentration for sensitive determination of amphotericin B in human blood serum. Anal Chim Acta 2019; 1053:162-168. [DOI: 10.1016/j.aca.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/06/2018] [Accepted: 12/09/2018] [Indexed: 12/15/2022]
|
11
|
Fung KYC, Cursaro C, Lewanowitsch T, Cosgrove L, Hoffmann P. A Combined Free-Flow Electrophoresis and DIGE Approach to Compare Proteins in Complex Biological Samples. Methods Mol Biol 2018; 1855:403-415. [PMID: 30426435 DOI: 10.1007/978-1-4939-8793-1_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Free-flow electrophoresis has been applied in numerous studies as a protein separation technique due to its multiple advantages such as fast and efficient sample recovery, high resolving power, high reproducibility and wide applicability to protein classes. As a stand-alone platform, however, its utility in comparative proteomic analysis is limited as protein samples must be run sequentially rather than simultaneously which introduces inherent variability when attempting to perform quantitative analysis. Here we describe an approach combining fluorescent CyDye technology (DIGE) with free-flow electrophoresis to simultaneously separate and identify differentially expressed proteins in a model cell system.
Collapse
Affiliation(s)
- Kim Y C Fung
- CSIRO, Health and Biosecurity, Adelaide, SA, Australia.
| | - Chris Cursaro
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Leah Cosgrove
- CSIRO, Health and Biosecurity, Adelaide, SA, Australia
| | | |
Collapse
|
12
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Abstract
Micro free-flow electrophoresis (μFFE) is a continuous separation technique in which analytes are streamed through a perpendicularly applied electric field in a planar separation channel. Analyte streams are deflected laterally based on their electrophoretic mobilities as they flow through the separation channel. A number of μFFE separation modes have been demonstrated, including free zone (FZ), micellar electrokinetic chromatography (MEKC), isoelectric focusing (IEF) and isotachophoresis (ITP). Approximately 60 articles have been published since the first μFFE device was fabricated in 1994. We anticipate that recent advances in device design, detection, and fabrication, will allow μFFE to be applied to a much wider range of applications. Applications particularly well suited for μFFE analysis include continuous, real time monitoring and microscale purifications.
Collapse
Affiliation(s)
- Alexander C Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
14
|
Mozafari M, El Deeb S, Krull F, Wildgruber R, Weber G, Reiter CG, Wätzig H. Interaction of albumins and heparinoids investigated by affinity capillary electrophoresis and free flow electrophoresis. Electrophoresis 2017; 39:569-580. [PMID: 29131355 DOI: 10.1002/elps.201700202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
A fast and precise affinity capillary electrophoresis (ACE) method has been applied to investigate the interactions between two serum albumins (HSA and BSA) and heparinoids. Furthermore, different free flow electrophoresis methods were developed to separate the species which appears owing to interaction of albumins with pentosan polysulfate sodium (PPS) under different experimental conditions. For ACE experiments, the normalized mobility ratios (∆R/Rf ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. ACE experiments were performed at two different temperatures (23 and 37°C). Both BSA and HSA interact more strongly with PPS than with unfractionated and low molecular weight heparins. For PPS, the interactions can already be observed at low mg/L concentrations (3 mg/L), and saturation is already obtained at approximately 20 mg/L. Unfractionated heparin showed almost no interactions with BSA at 23°C, but weak interactions at 37°C at higher heparin concentrations. The additional signals also appeared at higher concentrations at 37°C. Nevertheless, in most cases the binding data were similar at both temperatures. Furthermore, HSA showed a characteristic splitting in two peaks especially after interacting with PPS, which is probably attributable to the formation of two species or conformational change of HSA after interacting with PPS. The free flow electrophoresis methods have confirmed and completed the ACE experiments.
Collapse
Affiliation(s)
- Mona Mozafari
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Brunswick, Germany
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Brunswick, Germany
| | - Friederike Krull
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Brunswick, Germany
| | | | | | | | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Brunswick, Germany
| |
Collapse
|
15
|
Mass spectrometry approaches to study plant endomembrane trafficking. Semin Cell Dev Biol 2017; 80:123-132. [PMID: 29042236 DOI: 10.1016/j.semcdb.2017.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
Abstract
Intracellular proteins reside in highly controlled microenvironments in which they perform context specific functions. Trafficking pathways have evolved that enable proteins to be precisely delivered to the correct location but also to re-locate in response to environmental perturbation. Trafficking of membrane proteins to their correct endomembrane location is especially important to enable them to carry out their function. Although a considerable amount of knowledge about membrane protein trafficking in plants has been delivered by years of dedicated research, there are still significant gaps in our understanding of this process. Further knowledge of endomembrane trafficking is dependent on thorough characterization of the subcellular components that constitute the endomembrane system. Such studies are challenging for a number of reasons including the complexity of the plant endomembrane system, inability to purify individual constituents, discrimination protein cargo for full time residents of compartments, and the fact that many proteins function at more than one location. In this review, we describe the components of the secretory pathway and focus on how mass spectrometry based proteomics methods have helped elucidation of this pathway. We demonstrate that the combination of targeted and untargeted approaches is allowing research into new areas of the secretory pathway investigation. Finally we describe new enabling technologies that will impact future studies in this area.
Collapse
|
16
|
Abstract
Free flow zonal electrophoresis (FFZE) is a versatile, reproducible, and potentially high-throughput technique for the separation of plant organelles and membranes by differences in membrane surface charge. It offers considerable benefits over traditional fractionation techniques, such as density gradient centrifugation and two-phase partitioning, as it is relatively fast, sample recovery is high, and the method provides unparalleled sample purity. It has been used to successfully purify chloroplasts and mitochondria from plants but also, to obtain highly pure fractions of plasma membrane, tonoplast, ER, Golgi, and thylakoid membranes. Application of the technique can significantly improve protein coverage in large-scale proteomics studies by decreasing sample complexity. Here, we describe the method for the fractionation of plant cellular membranes from leaves by FFZE.
Collapse
|
17
|
Horká M, Šlais K, Šalplachta J, Růžička F. Preparative isoelectric focusing of microorganisms in cellulose-based separation medium and subsequent analysis by CIEF and MALDI-TOF MS. Anal Chim Acta 2017; 990:185-193. [DOI: 10.1016/j.aca.2017.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/01/2023]
|
18
|
Novo P, Janasek D. Current advances and challenges in microfluidic free-flow electrophoresis-A critical review. Anal Chim Acta 2017; 991:9-29. [PMID: 29031303 DOI: 10.1016/j.aca.2017.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
Abstract
The research field on microfluidic free-flow electrophoresis has developed vast amounts of devices, methods, applications and raised new questions, often in analogy to conventional techniques from which it derives. Most efforts have been employed on device development and a myriad of architectures and fabrication techniques have been reported using simple proof-of-principle separations. As technological aspects reach a quite mature state, researchers' new challenges include the development of protocols for the separation of complex mixtures, as required in the fields of application. The success of this effort is extremely dependent on the capability to transfer the device's fabrication to an industrial setting as well as to ensure interfacing simplicity, namely at the solutions' supply and collection, and actuation such as electric potential application and temperature control. Other advanced applications such as direct interfacing to downstream systems such as mass spectrometry, integration of sensing and feedback controls will require further development in the laboratory. In this review we provide an overview on the field, from basic concepts, through advanced developments both in the theoretical and experimental arenas, and addressing the above details. A comprehensive survey of designs, materials and applications is presented with particular highlights to most recent developments, namely the integration of electrodes, flow control and hyphenation of microfluidic free-flow electrophoresis with other techniques.
Collapse
Affiliation(s)
- Pedro Novo
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Otto-Hahn-Str. 6b, Dortmund, Germany
| | - Dirk Janasek
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Otto-Hahn-Str. 6b, Dortmund, Germany.
| |
Collapse
|
19
|
Nagl S. Micro free-flow isoelectric focusing with integrated optical pH sensors. Eng Life Sci 2017; 18:114-123. [PMID: 32624893 DOI: 10.1002/elsc.201700035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/07/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023] Open
Abstract
Recently, a new observation method for monitoring of pH gradients in microfluidic free-flow electrophoresis has emerged. It is based on the use of chip-integrated fluorescent or luminescent micro sensor layers. These are able to monitor pH gradients in miniaturized separations in real time and spatially resolved; this is particularly useful in isoelectric focusing. Here these multifunctional microdevices that feature continuous separation, monitoring, and in some instances other functionalities, are reviewed. The employed microfabrication procedures to produce these devices are discussed and the different pH sensor matrices that were integrated and their applications in the separation of different types of biomolecules. The procedures for obtaining spatially resolved information about the separated molecules and the pH at the same time and different detection modalities to achieve this such as deep UV fluorescence as well as time-resolved referenced pH sensing and the integration of a precolumn labeling step into these platforms are also highlighted.
Collapse
Affiliation(s)
- Stefan Nagl
- Department of Chemistry The Hong Kong University of Science and Technology Kowloon Hong Kong SAR P. R. China
| |
Collapse
|
20
|
Abstract
The organization of eukaryotic cells into distinct subcompartments is vital for all functional processes, and aberrant protein localization is a hallmark of many diseases. Microscopy methods, although powerful, are usually low-throughput and dependent on the availability of fluorescent fusion proteins or highly specific and sensitive antibodies. One method that provides a global picture of the cell is localization of organelle proteins by isotope tagging (LOPIT), which combines biochemical cell fractionation using density gradient ultracentrifugation with multiplexed quantitative proteomics mass spectrometry, allowing simultaneous determination of the steady-state distribution of hundreds of proteins within organelles. Proteins are assigned to organelles based on the similarity of their gradient distribution to those of well-annotated organelle marker proteins. We have substantially re-developed our original LOPIT protocol (published by Nature Protocols in 2006) to enable the subcellular localization of thousands of proteins per experiment (hyperLOPIT), including spatial resolution at the suborganelle and large protein complex level. This Protocol Extension article integrates all elements of the hyperLOPIT pipeline, including an additional enrichment strategy for chromatin, extended multiplexing capacity of isobaric mass tags, state-of-the-art mass spectrometry methods and multivariate machine-learning approaches for analysis of spatial proteomics data. We have also created an open-source infrastructure to support analysis of quantitative mass-spectrometry-based spatial proteomics data (http://bioconductor.org/packages/pRoloc) and an accompanying interactive visualization framework (http://www. bioconductor.org/packages/pRolocGUI). The procedure we outline here is applicable to any cell culture system and requires ∼1 week to complete sample preparation steps, ∼2 d for mass spectrometry data acquisition and 1-2 d for data analysis and downstream informatics.
Collapse
|
21
|
Šalplachta J, Horká M, Šlais K. Preparative isoelectric focusing in a cellulose-based separation medium. J Sep Sci 2017; 40:2498-2505. [PMID: 28432777 DOI: 10.1002/jssc.201700036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 01/04/2023]
Abstract
An improved preparative method based on isoelectric focusing of analytes in a cellulose-based separation medium is described in this study. Cellulose is suspended in an aqueous solution of simple buffers, ethylene glycol, glycerol, nonionic surfactant, and colored pI markers. Water partially evaporates during focusing run and the separation takes place in an in situ generated layer of cellulose, which has a gel-like appearance at the end of analysis. Final positions of analytes are indicated by the positions of zones of focused pI markers. Fractions, segments of the separation medium with analytes, can be simply collected by spatula and analyzed by downstream analytical methods. Good focusing ability of the new method and almost quantitative recovery of model proteins, cytochrome c and bovine serum albumin, was verified by gel electrophoresis and capillary isoelectric focusing of the collected fractions.
Collapse
Affiliation(s)
- Jiří Šalplachta
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Marie Horká
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Karel Šlais
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| |
Collapse
|
22
|
Fu X, Mavrogiannis N, Ibo M, Crivellari F, Gagnon ZR. Microfluidic free-flow zone electrophoresis and isotachophoresis using carbon black nano-composite PDMS sidewall membranes. Electrophoresis 2016; 38:327-334. [DOI: 10.1002/elps.201600104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaotong Fu
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| | - Nicholas Mavrogiannis
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| | - Markela Ibo
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| | - Francesca Crivellari
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| | - Zachary R. Gagnon
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore MD USA
| |
Collapse
|
23
|
Luo J, Muratore KA, Arriaga EA, Ros A. Deterministic Absolute Negative Mobility for Micro- and Submicrometer Particles Induced in a Microfluidic Device. Anal Chem 2016; 88:5920-7. [PMID: 27149097 PMCID: PMC5316477 DOI: 10.1021/acs.analchem.6b00837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Efficient separations of particles with micron and submicron dimensions are extremely useful in preparation and analysis of materials for nanotechnological and biological applications. Here, we demonstrate a nonintuitive, yet efficient, separation mechanism for μm and subμm colloidal particles and organelles, taking advantage of particle transport in a nonlinear post array in a microfluidic device under the periodic action of electrokinetic and dielectrophoretic forces. We reveal regimes in which deterministic particle migration opposite to the average applied force occurs for a larger particle, a typical signature of deterministic absolute negative mobility (dANM), whereas normal response is obtained for smaller particles. The coexistence of dANM and normal migration was characterized and optimized in numerical modeling and subsequently implemented in a microfluidic device demonstrating at least 2 orders of magnitude higher migration speeds as compared to previous ANM systems. We also induce dANM for mouse liver mitochondria and envision that the separation mechanisms described here provide size selectivity required in future separations of organelles, nanoparticles, and protein nanocrystals.
Collapse
Affiliation(s)
- Jinghui Luo
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Katherine A. Muratore
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edgar A. Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alexandra Ros
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
24
|
Herzog C, Poehler E, Peretzki AJ, Borisov SM, Aigner D, Mayr T, Nagl S. Continuous on-chip fluorescence labelling, free-flow isoelectric focusing and marker-free isoelectric point determination of proteins and peptides. LAB ON A CHIP 2016; 16:1565-1572. [PMID: 27064144 DOI: 10.1039/c6lc00055j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a microfluidic platform that contains a micro flow reactor for on-chip biomolecule labelling that is directly followed by a separation bed for continuous free-flow electrophoresis and has an integrated hydrogel-based near-infrared fluorescent pH sensor layer. Using this assembly, labelling of protein and peptide mixtures, their separation via free-flow isoelectric focusing and the determination of the isoelectric point (pI) of the separated products via the integrated sensor layer could be carried out within typically around 5 minutes. Spatially-resolved immobilization of fluidic and sensing structures was carried out via multistep photolithography. The assembly was characterized and optimized with respect to their fluidic and pH sensing properties and applied in the IEF of model proteins, peptides and a tryptic digest from physalaemine. We have therefore realized continuous sample preparation and preparative separation, analyte detection, process observation and analyte assignment capability based on pI on a single platform the size of a microscope slide.
Collapse
Affiliation(s)
- Christin Herzog
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | - Elisabeth Poehler
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | - Andrea J Peretzki
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | - Sergey M Borisov
- Institut für Analytische Chemie und Lebensmittelchemie, Technische Universität Graz, Stremayrgasse 9/III, 8010 Graz, Austria
| | - Daniel Aigner
- Institut für Analytische Chemie und Lebensmittelchemie, Technische Universität Graz, Stremayrgasse 9/III, 8010 Graz, Austria
| | - Torsten Mayr
- Institut für Analytische Chemie und Lebensmittelchemie, Technische Universität Graz, Stremayrgasse 9/III, 8010 Graz, Austria
| | - Stefan Nagl
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
25
|
Stastna M, Slais K. Continuous fast focusing in a trapezoidal void channel based on bidirectional isotachophoresis in a wide pH range. Electrophoresis 2015; 36:2579-86. [PMID: 26104601 DOI: 10.1002/elps.201500223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
Abstract
This study concentrates on development of instrumentation for focusing and separation of analytes in continuous flow. It is based on bidirectional ITP working in wide pH range with separation space of closed void channel of trapezoidal shape and continuous supply of sample. The novel instrumentation is working with electrolyte system formulated previously and on the contrary to devices currently available, it allows preparative separation and concentration of cationic, anionic, and amphoteric analytes simultaneously and in wide pH range. The formation of sharp edges at zone boundaries as well as low conductivity zones are avoided in suggested system and thus, local overheating is eliminated allowing for high current densities at initial stages of focusing. This results in high focusing speed and reduction of analysis time, which is particularly advantageous for separations performed in continuous flow systems. The closed void channel is designed to avoid basic obstacles related to liquid leakage, bubbles formation, contacts with electrodes, channel height and complicated assembling. The performance of designed instrumentation and focusing dynamics were tested by using colored low molecular mass pH indicators for local pH determination, focusing pattern, and completion. In addition, feasibility and separation efficiency were demonstrated by focusing of cytochrome C and myoglobin. The collection of fractions at instrument output allows for subsequent analysis and identification of sample components that are concentrated and conveniently in form of solution for further processing. Since the instrumentation operates with commercially available simple defined buffers and compounds without need of carrier ampholytes background, it is economically favorable.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i, Brno, Czech Republic
| | - Karel Slais
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i, Brno, Czech Republic
| |
Collapse
|
26
|
Brans T, Strubbe F, Schreuer C, Vandewiele S, Neyts K, Beunis F. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere. Electrophoresis 2015; 36:2102-9. [PMID: 25963750 DOI: 10.1002/elps.201500144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
Electric fields offer a variety of functionalities to Lab-on-a-Chip devices. The use of these fields often results in significant Joule heating, affecting the overall performance of the system. Precise knowledge of the temperature profile inside a microfluidic device is necessary to evaluate the implications of heat dissipation. This article demonstrates how an optically trapped microsphere can be used as a temperature probe to monitor Joule heating in these devices. The Brownian motion of the bead at room temperature is compared with the motion when power is dissipated in the system. This gives an estimate of the temperature increase at a specific location in a microfluidic channel. We demonstrate this method with solutions of different ionic strengths, and establish a precision of 0.9 K and an accuracy of 15%. Furthermore, it is demonstrated that transient heating processes can be monitored with this technique, albeit with a limited time resolution.
Collapse
Affiliation(s)
- Toon Brans
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Center for Nano and Biophotonics (NB-photonics), Ghent University, Ghent, Belgium
| | - Filip Strubbe
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Center for Nano and Biophotonics (NB-photonics), Ghent University, Ghent, Belgium
| | - Caspar Schreuer
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Center for Nano and Biophotonics (NB-photonics), Ghent University, Ghent, Belgium
| | - Stijn Vandewiele
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Center for Nano and Biophotonics (NB-photonics), Ghent University, Ghent, Belgium
| | - Kristiaan Neyts
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Center for Nano and Biophotonics (NB-photonics), Ghent University, Ghent, Belgium
| | - Filip Beunis
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.,Center for Nano and Biophotonics (NB-photonics), Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Dutta D. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis. J Chromatogr A 2015; 1404:124-30. [PMID: 26044384 DOI: 10.1016/j.chroma.2015.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 01/11/2023]
Abstract
The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Chemistry, (Dept. # 3838), University of Wyoming, 1000 East University Avenue, Laramie, WY 82071 USA.
| |
Collapse
|
28
|
Kinde TF, Lopez TD, Dutta D. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry. Anal Chem 2015; 87:2702-9. [PMID: 25664891 PMCID: PMC4455540 DOI: 10.1021/ac503903j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.
Collapse
Affiliation(s)
- Tristan F. Kinde
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Thomas D. Lopez
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
29
|
Poehler E, Herzog C, Lotter C, Pfeiffer SA, Aigner D, Mayr T, Nagl S. Label-free microfluidic free-flow isoelectric focusing, pH gradient sensing and near real-time isoelectric point determination of biomolecules and blood plasma fractions. Analyst 2015; 140:7496-502. [DOI: 10.1039/c5an01345c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuous biomolecular separation and pH gradient observation using UV and NIR fluorescence.
Collapse
Affiliation(s)
- Elisabeth Poehler
- Institut für Analytische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Christin Herzog
- Institut für Analytische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Carsten Lotter
- Institut für Analytische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Simon A. Pfeiffer
- Institut für Analytische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Daniel Aigner
- Institut für Analytische Chemie und Lebensmittelchemie
- Technische Universität Graz
- 8010 Graz
- Austria
| | - Torsten Mayr
- Institut für Analytische Chemie und Lebensmittelchemie
- Technische Universität Graz
- 8010 Graz
- Austria
| | - Stefan Nagl
- Institut für Analytische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| |
Collapse
|
30
|
Dutta D. A method-of-moments formulation for describing hydrodynamic dispersion of analyte streams in free-flow zone electrophoresis. J Chromatogr A 2014; 1340:134-8. [DOI: 10.1016/j.chroma.2014.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 01/08/2023]
|
31
|
Cheng LJ, Chang HC. Switchable pH actuators and 3D integrated salt bridges as new strategies for reconfigurable microfluidic free-flow electrophoretic separation. LAB ON A CHIP 2014; 14:979-87. [PMID: 24430103 DOI: 10.1039/c3lc51023a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present novel strategies for reconfigurable, high-throughput microfluidic free-flow electrophoretic separation using electrically switchable pH actuators and 3D integrated salt bridges to allow rapid formation of stable pH gradients and efficient electrophoresis. The pH actuator is achieved by microfluidic integration of bipolar membranes which change electrolyte pH by injecting excess H(+) or OH(-) ions produced by a field-enhanced water dissociation phenomenon at the membrane junction upon voltage bias. The technique does not require conventional multiple buffer inflows and leaves no gas production as experienced in electrolysis, thus providing stable pH gradients for isoelectric focusing (IEF) separation. With the pH actuator inactivated, the platform can perform zone electrophoretic (ZE) separation in a medium of constant pH. We also describe the use of 3D integrated ion conductive polymers that serve as salt bridges for improving the voltage efficiency of electrophoresis and to allow high throughput. The proof of concept was successfully demonstrated for free-flow IEF and ZE separation of protein mixtures showing the potential and the simplicity of the platform for high-throughput and high-precision sample separation.
Collapse
Affiliation(s)
- Li-Jing Cheng
- School of Electrical Engineering and Computer Science, Oregon State University, OR 97331, USA.
| | | |
Collapse
|
32
|
Parsons HT, Fernández-Niño SMG, Heazlewood JL. Separation of the plant Golgi apparatus and endoplasmic reticulum by free-flow electrophoresis. Methods Mol Biol 2014; 1072:527-539. [PMID: 24136544 DOI: 10.1007/978-1-62703-631-3_35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Free-flow electrophoresis (FFE) is a technique for separation of proteins, peptides, organelles, and cells. With zone electrophoresis (ZE-FFE), organelles are separated according to surface charge. The plant Golgi and endoplasmic reticulum (ER) are similar in density and are therefore separated with difficulty using standard techniques such as density centrifugation. Purification of the ER and Golgi apparatus permits a biochemical and proteomic characterization which can reveal the division of processes between these compartments. Here we describe complete separation between the ER and more negatively charged Golgi compartments using ZE-FFE. We also describe techniques for assigning proteins to partially separated ER and the less negatively charged Golgi compartments.
Collapse
Affiliation(s)
- Harriet T Parsons
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | |
Collapse
|
33
|
Wildgruber R, Weber G, Wise P, Grimm D, Bauer J. Free-flow electrophoresis in proteome sample preparation. Proteomics 2013; 14:629-36. [PMID: 24123730 DOI: 10.1002/pmic.201300253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/07/2013] [Accepted: 08/23/2013] [Indexed: 02/01/2023]
Abstract
An aim of proteome research is to identify the entire complement of proteins expressed in defined cell types of humans, animals, plants, and microorganisms. The approach requires searching for low abundant or even rarely expressed proteins in many cell types, as well as the determination of the protein expression levels in subcellular compartments and organelles. In recent years, rather powerful MS technologies have been developed. At this stage of MS device development, it is of highest interest to purify intact cell types or isolate subcellular compartments, where the proteins of interest are originating from, which determine the final composition of a peptide mixture. Free-flow electrophoresis proved to be useful to prepare meaningful peptide mixtures because of its improved capabilities in particle electrophoresis and the enhanced resolution in protein separation. Sample preparation by free-flow electrophoresis mediated particle separation was preferentially performed for purification of either organelles and their subspecies or major protein complexes. Especially, the introduction of isotachophoresis and interval zone electrophoresis improved the purity of the gained analytes of interest. In addition, free-flow IEF proved to be helpful, when proteins of low solubility, obtained, e.g. from cell membranes, were investigated.
Collapse
|
34
|
Hartwig S, Knebel B, Goeddeke S, Koellmer C, Jacob S, Nitzgen U, Passlack W, Schiller M, Dicken HD, Haas J, Muller-Wieland D, Lehr S, Kotzka J. So close and yet so far: mitochondria and peroxisomes are one but with specific talents. Arch Physiol Biochem 2013; 119:126-35. [PMID: 23705958 DOI: 10.3109/13813455.2013.796994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cellular compartmentalization of central metabolic pathways as lipid metabolism to mitochondria and peroxisomes enables high efficient control processes. The basis to understand mitochondrial or peroxisomal function is exactly to determine proteins physically present. For proteomic investigations of mouse liver organelles, we developed 2-DE reference maps covering the range pH 4-9, available under ( www.diabesityprot.org ). MALDI-TOF-MS/MS analyses identified a total of 799 (mitochondria) and 681 (peroxisome) protein spots resembling 323 and 293 unique proteins, respectively. Direct comparison of mitochondrial and peroxisomal proteins indicated an approximate overlap of 2/3 of identified proteins. Gene Ontologies (GO) of the identified proteins in respect to physical presence confirmed functional specifications within the organelles. The 2-DE organelle reference maps will aid to point out functional differences and similarities. Our observations suggest that for functional analyses metabolic alterations focusing on one organelle are not sufficient and parallel comparison of both organelles is to be preferred.
Collapse
Affiliation(s)
- Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Deusseldorf, Leibniz Center for Diabetes Research, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
New solution IEF device for micropreparative separation of peptides and proteins. Electrophoresis 2013; 34:1519-25. [DOI: 10.1002/elps.201200485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/17/2012] [Accepted: 12/27/2012] [Indexed: 11/07/2022]
|
36
|
Behrens C, Hartmann K, Sunderhaus S, Braun HP, Eubel H. Approximate calculation and experimental derivation of native isoelectric points of membrane protein complexes of Arabidopsis chloroplasts and mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013. [DOI: 10.1016/j.bbamem.2012.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Souchelnytskyi S. INDIVIDUALIZATION OF CANCER TREATMENT: CONTRIBUTION OF OMICS TECHNOLOGIES TO CANCER DIAGNOSTIC. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.04.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Satori CP, Kostal V, Arriaga EA. Review on recent advances in the analysis of isolated organelles. Anal Chim Acta 2012; 753:8-18. [PMID: 23107131 PMCID: PMC3484375 DOI: 10.1016/j.aca.2012.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The analysis of isolated organelles is one of the pillars of modern bioanalytical chemistry. This review describes recent developments on the isolation and characterization of isolated organelles both from living organisms and cell cultures. Salient reports on methods to release organelles focused on reproducibility and yield, membrane isolation, and integrated devices for organelle release. New developments on organelle fractionation after their isolation were on the topics of centrifugation, immunocapture, free flow electrophoresis, flow field-flow fractionation, fluorescence activated organelle sorting, laser capture microdissection, and dielectrophoresis. New concepts on characterization of isolated organelles included atomic force microscopy, optical tweezers combined with Raman spectroscopy, organelle sensors, flow cytometry, capillary electrophoresis, and microfluidic devices.
Collapse
Affiliation(s)
- Chad P Satori
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
39
|
Shao J, Fan LY, Cao CX, Huang XQ, Xu YQ. Quantitative investigation of resolution increase of free-flow electrophoresis via simple interval sample injection and separation. Electrophoresis 2012; 33:2065-74. [DOI: 10.1002/elps.201200169] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jing Shao
- Laboratory of Bio-separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Liu-Yin Fan
- Laboratory of Bio-separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Cheng-Xi Cao
- Laboratory of Bio-separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Xian-Qing Huang
- Laboratory of Bio-separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Yu-Quan Xu
- Laboratory of Bio-separation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| |
Collapse
|
40
|
Brotherton MC, Racine G, Ouameur AA, Leprohon P, Papadopoulou B, Ouellette M. Analysis of membrane-enriched and high molecular weight proteins in Leishmania infantum promastigotes and axenic amastigotes. J Proteome Res 2012; 11:3974-85. [PMID: 22716046 DOI: 10.1021/pr201248h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane and high molecular weight (HMW) proteins tend to be underrepresented in proteome analyses. Here, we optimized a protocol designed for the extraction and purification of membranes from the protozoan parasite Leishmania using a combination of serial centrifugation and free-flow zone electrophoresis (ZE-FFE). We also enriched for Leishmania HMW proteins from total extracts using the Gelfree 8100 fractionation system. This allowed the study of expression of both membrane-enriched and HMW proteins in Leishmania infantum promastigotes and amastigotes. We identified 194 proteins with at least one transmembrane domain (TMD) and 171 HMW proteins (≥100 kDa) in the invertebrate promastigote stage and 66 proteins with at least one TMD and 154 HMW proteins in the mammalian amastigote stage. Several of the proteins identified in one of the stages are part of pathways consistent with the known biology of the parasite, with many proteins involved in lipid synthesis, numerous dynein heavy chains, and some surface antigen proteins 2 detected in the promastigote stage. Notably, some proteins involved in transport and proteolysis were detected either in promastigote or amastigote. The present study is using improved proteomic methods for studying membrane-enriched and HMW proteins helping to achieve a better understanding of the parasite life cycle.
Collapse
Affiliation(s)
- Marie-Christine Brotherton
- Centre de Recherche en Infectiologie, Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J, Batth TS, Smith-Moritz AM, Morrison S, McInerney P, Hadi MZ, Auer M, Mukhopadhyay A, Petzold CJ, Scheller HV, Loqué D, Heazlewood JL. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. PLANT PHYSIOLOGY 2012; 159:12-26. [PMID: 22430844 PMCID: PMC3375956 DOI: 10.1104/pp.111.193151] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/04/2012] [Indexed: 05/17/2023]
Abstract
The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized.
Collapse
|
42
|
Pang B, Shao J, Zhang J, Geng JZ, Fan LY, Cao CX, Hou JL. Enhancing separation of histidine from amino acids via free-flow affinity electrophoresis with gravity-induced uniform hydrodynamic flow. Electrophoresis 2012; 33:856-65. [DOI: 10.1002/elps.201100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bo Pang
- Laboratory of Bioseparation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Jing Shao
- Laboratory of Bioseparation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Jie Zhang
- Laboratory of Bioseparation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Jia-Zhen Geng
- Laboratory of Bioseparation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Liu-Yin Fan
- Laboratory of Bioseparation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Cheng-Xi Cao
- Laboratory of Bioseparation and Analytical Biochemistry; State Key Laboratory of Microbial Metabolism; School of Life Science and Biotechnology; Shanghai Jiao Tong University; Shanghai; China
| | - Jing-Li Hou
- Instrumental Analysis Center; Shanghai Jiao Tong University; Shanghai; China
| |
Collapse
|
43
|
Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 2011; 33:48-73. [DOI: 10.1002/elps.201100419] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
|
44
|
Geng JZ, Shao J, Yang JH, Pang B, Cao CX, Fan LY. Reassemblable quasi-chip free-flow electrophoresis with simple heating dispersion for rapid micropreparation of trypsin in crude porcine pancreatin. Electrophoresis 2011; 32:3248-56. [DOI: 10.1002/elps.201100358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Dong YC, Shao J, Yin XY, Fan LY, Cao CX. Mid-scale free-flow electrophoresis with gravity-induced uniform flow of background buffer in chamber for the separation of cells and proteins. J Sep Sci 2011; 34:1683-91. [DOI: 10.1002/jssc.201100293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 01/22/2023]
|
46
|
Capriotti AL, Cavaliere C, Foglia P, Samperi R, Laganà A. Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics. J Chromatogr A 2011; 1218:8760-76. [PMID: 21689823 DOI: 10.1016/j.chroma.2011.05.094] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/13/2011] [Accepted: 05/28/2011] [Indexed: 12/26/2022]
Abstract
Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
47
|
Pietsch J, Sickmann A, Weber G, Bauer J, Egli M, Wildgruber R, Infanger M, Grimm D. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 2011; 11:2095-104. [PMID: 21520503 DOI: 10.1002/pmic.201000817] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/26/2011] [Accepted: 02/17/2011] [Indexed: 01/17/2023]
Abstract
The human cell lines FTC-133 and CGTH W-1, both derived from patients with thyroid cancer, assemble to form different types of spheroids when cultured on a random positioning machine. In order to obtain a possible explanation for their distinguishable aggregation behaviour under equal culturing conditions, we evaluated a proteomic analysis emphasising cytoskeletal and membrane-associated proteins. For this analysis, we treated the cells by ultrasound, which freed up some of the proteins into the supernatant but left some attached to the cell fragments. Both types of proteins were further separated by free-flow IEF and SDS gel electrophoresis until their identity was determined by MS. The MS data revealed differences between the two cell lines with regard to various structural proteins such as vimentin, tubulins and actin. Interestingly, integrin α-5 chains, myosin-10 and filamin B were only found in FTC-133 cells, while collagen was only detected in CGTH W-1 cells. These analyses suggest that FTC-133 cells express surface proteins that bind fibronectin, strengthening the three-dimensional cell cohesion.
Collapse
Affiliation(s)
- Jessica Pietsch
- Department of Biology, Chemistry, Pharmacy, FU Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Raimondo F, Morosi L, Chinello C, Magni F, Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 2011; 11:709-20. [PMID: 21241021 DOI: 10.1002/pmic.201000422] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/16/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022]
Abstract
Exosomes are membranous vesicles released by cells in extracellular fluids: they have been found and analyzed in blood, urine, amniotic fluid, breast milk, seminal fluid, saliva and malignant effusions, besides conditioned media from different cell lines. Several recent papers show that exosome proteomes of different origin include both a common set of membrane and cytosolic proteins, and specific subsets of proteins, likely correlated to cell-type associated functions. This is particularly interesting in relation to their possible involvement in human diseases. The knowledge of exosome proteomics can help not only in understanding their biological roles but also in supplying new biomarkers to be searched for in patients' fluids. This review offers an overview of technical and analytical issues in exosome proteomics, and it highlights the significance of proteomic studies in terms of biological and clinical usefulness.
Collapse
Affiliation(s)
- Francesca Raimondo
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | | | | | | |
Collapse
|