1
|
Wang Y, Liu Y, Liu S, Cheng L, Liu X. Recent advances in N-glycan biomarker discovery among human diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1156-1171. [PMID: 38910518 PMCID: PMC11464920 DOI: 10.3724/abbs.2024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
N-glycans play important roles in a variety of biological processes. In recent years, analytical technologies with high resolution and sensitivity have advanced exponentially, enabling analysts to investigate N-glycomic changes in different states. Specific glycan and glycosylation signatures have been identified in multiple diseases, including cancer, autoimmune diseases, nervous system disorders, and metabolic and cardiovascular diseases. These glycans demonstrate comparable or superior indicating capability in disease diagnosis and prognosis over routine biomarkers. Moreover, synchronous glycan alterations concurrent with disease initiation and progression provide novel insights into pathogenetic mechanisms and potential treatment targets. This review elucidates the biological significance of N-glycans, compares the existing glycomic technologies, and delineates the clinical performance of N-glycans across a range of diseases.
Collapse
Affiliation(s)
- Yi Wang
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Si Liu
- Department of Epidemiology and Health StatisticsSchool of Public HealthFujian Medical UniversityFuzhou350122China
| | - Liming Cheng
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
2
|
Li J, Huang L, Guo Y, Cupp-Sutton KA, Wu S. An automated spray-capillary platform for the microsampling and CE-MS analysis of picoliter- and nanoliter-volume samples. Anal Bioanal Chem 2023; 415:6961-6973. [PMID: 37581707 PMCID: PMC10843549 DOI: 10.1007/s00216-023-04870-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 08/16/2023]
Abstract
Capillary electrophoresis mass spectrometry (CE-MS) is an emerging analytical tool for microscale biological sample analysis that offers high separation resolution, low detection limit, and low sample consumption. We recently developed a novel microsampling device, "spray-capillary," for quantitative low-volume sample extraction (as low as 15 pL/s) and online CE-MS analysis. This platform can efficiently analyze picoliter samples (e.g., single cells) with minimal sample loss and no additional offline sample-handling steps. However, our original spray-capillary-based experiments required manual manipulation of the sample inlet for sample collection and separation, which is time consuming and requires proficiency in device handling. To optimize the performance of spray-capillary CE-MS analysis, we developed an automated platform for robust, high-throughput analysis of picoliter samples using a commercially available CE autosampler. Our results demonstrated high reproducibility among 50 continuous runs using the standard peptide angiotensin II (Ang II), with an RSD of 14.70% and 0.62% with respect to intensity and elution time, respectively. We also analyzed Ang II using varying injection times to evaluate the capability of the spray-capillary to perform quantitative sampling and found high linearity for peptide intensity with respect to injection time (R2 > 0.99). These results demonstrate the capability of the spray-capillary sampling platform for high-throughput quantitative analysis of low-volume, low-complexity samples using pressure elution (e.g., direct injection). To further evaluate and optimize the automated spray-capillary platform to analyze complex biological samples, we performed online CE-MS analysis on Escherichia coli lysate digest spiked with Ang II using varying injection times. We maintained high linearity of intensity with respect to injection time for Ang II and E. coli peptides (R2 > 0.97 in all cases). Furthermore, we observed good CE separation and high reproducibility between automated runs. Overall, we demonstrated that the automated spray-capillary CE-MS platform can efficiently and reproducibly sample picoliter and nanoliter biological samples for high-throughput proteomics analysis.
Collapse
Affiliation(s)
- Jiaxue Li
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Lushuang Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Yanting Guo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA.
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA.
| |
Collapse
|
3
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
4
|
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020; 30:226-240. [PMID: 31281930 PMCID: PMC7225405 DOI: 10.1093/glycob/cwz048] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.
Collapse
Affiliation(s)
- Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
5
|
Fu H, Qian C, Tong W, Li H, Chen DD. Mass spectrometry and affinity capillary electrophoresis for characterization of host-guest interactions. J Chromatogr A 2019; 1589:182-190. [DOI: 10.1016/j.chroma.2019.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
|
6
|
O'Flaherty R, Trbojević-Akmačić I, Greville G, Rudd PM, Lauc G. The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins. Expert Rev Proteomics 2017; 15:13-29. [PMID: 29130774 DOI: 10.1080/14789450.2018.1404907] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glycosylation is recognized as a Critical Quality Attribute for therapeutic glycoproteins such as monoclonal antibodies, fusion proteins and therapeutic replacement enzymes. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for their discovery, development and quality control. The aim of this review is to highlight relevant and recent advances in analytical technologies for characterization of biotherapeutic glycoproteins. Areas covered: The review gives an overview of the glycosylation trends of biotherapeutics approved in 2016 and 2017 by FDA. It describes current and novel analytical technologies for characterization of therapeutic glycoproteins and is explored in the context of released glycan, glycopeptide or intact glycoprotein analysis. Ultra performance liquid chromatography, mass spectrometry and capillary electrophoresis technologies are explored in this context. Expert commentary: There is a need for the biopharmaceutical industry to incorporate novel state of the art analytical technologies into existing and new therapeutic glycoprotein workflows for safer and more efficient biotherapeutics and for the improvement of future biotherapeutic design. Additionally, at present, there is no 'gold-standard' approach to address all the regulatory requirements and as such this will involve the use of orthogonal glycoanalytical technologies with a view to gain diagnostic information about the therapeutic glycoprotein.
Collapse
Affiliation(s)
- Róisín O'Flaherty
- a NIBRT GlycoScience Group , National Institute for Bioprocessing, Research and Training , Blackrock, Co. Dublin , Ireland
| | | | - Gordon Greville
- a NIBRT GlycoScience Group , National Institute for Bioprocessing, Research and Training , Blackrock, Co. Dublin , Ireland
| | - Pauline M Rudd
- a NIBRT GlycoScience Group , National Institute for Bioprocessing, Research and Training , Blackrock, Co. Dublin , Ireland
| | - Gordan Lauc
- b Genos Glycoscience Research Laboratory , 10000 , Zagreb , Croatia.,c Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
7
|
Zhang W, He M, Yuan T, Xu W. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis. Electrophoresis 2017; 38:3130-3135. [DOI: 10.1002/elps.201700215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Wenjing Zhang
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Muyi He
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Tao Yuan
- College of Information Science; Shenzhen University; Shenzhen P. R. China
| | - Wei Xu
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| |
Collapse
|
8
|
MacLennan MS, Tie C, Kovalchik K, Peru KM, Zhang X, Headley JV, Chen DDY. Potential of capillary electrophoresis mass spectrometry for the characterization and monitoring of amine-derivatized naphthenic acids from oil sands process-affected water. J Environ Sci (China) 2016; 49:203-212. [PMID: 28007176 DOI: 10.1016/j.jes.2016.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Capillary electrophoresis coupled to mass spectrometry (CE-MS) was used for the analysis of naphthenic acid fraction compounds (NAFCs) of oil sands process-affected water (OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE-MS in less than 15min. Time of flight MS analysis (TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs (between 100 and 450m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30% (V/V) methanol in water and 2% (V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE-MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500m/z.
Collapse
Affiliation(s)
- Matthew S MacLennan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Cai Tie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Kevin Kovalchik
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Kerry M Peru
- Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
| | - Xinxiang Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - John V Headley
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
9
|
Trbojević-Akmačić I, Vilaj M, Lauc G. High-throughput analysis of immunoglobulin G glycosylation. Expert Rev Proteomics 2016; 13:523-34. [DOI: 10.1080/14789450.2016.1174584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Zhong X, Chen Z, Snovida S, Liu Y, Rogers JC, Li L. Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry for Quantitative Analysis of Glycans Labeled with Multiplex Carbonyl-Reactive Tandem Mass Tags. Anal Chem 2015; 87:6527-34. [PMID: 25981625 DOI: 10.1021/acs.analchem.5b01835] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently developed carbonyl-reactive aminoxy tandem mass tag (aminoxyTMT) reagents enable multiplexed characterization and quantitative comparison of structurally complex glycans between different biological samples. Compared to some previously reported isotopic labeling strategies for glycans, the use of the aminoxyTMT method features a simple labeling procedure, excellent labeling efficiency, and reduced spectral complexity at the MS(1) level. Presence of the tertiary amine functionality in the reporter region of the aminoxyTMT labels leads to increased ionization efficiency of the labeled glycans thus improving electrospray ionization (ESI)-mass spectrometry (MS) detection sensitivity. The use of the labeling reagent also makes electrophoretic separation of the labeled neutral and acidic glycans feasible. In this work, we characterized the ESI and collision induced dissociation (CID) behavior of the aminoxyTMT-labeled neutral and sialylated glycans. For the high-mannose N-glycans and small sialylated oligosaccharides, CID fragmentation of [M + Na + H](2+) provides the most informative MS(2) spectra for both quantitative and qualitative analysis. For complex N-glycans, MS(3) of the protonated Y1(H) ion can be used for relative quantification without interference from the HexNAc fragments. Online capillary electrophoresis (CE)-ESI-MS/MS analyses of multiplexed aminoxyTMT-labeled human milk oligosaccharides (HMOs) and different types of N-glycans released from glycoprotein standards were demonstrated. Improved resolution and quantification accuracy of the labeled HMO isomers was achieved by coupling CE with traveling wave ion mobility (TWIM)-CID-MS/MS. N-Glycans released from human serum protein digests were labeled with six-plex aminoxyTMT and subjected to CE-ESI-MS/pseudo-MS(3) analysis, which demonstrated the potential utility of this glycan relative quantification platform for more complex biological samples.
Collapse
Affiliation(s)
- Xuefei Zhong
- †School of Pharmacy, University of Wisconsin, Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Zhengwei Chen
- ‡Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sergei Snovida
- §Thermo Scientific Pierce Protein Research, Thermo Fisher Scientific, Rockford, Illinois 61105, United States
| | - Yan Liu
- ∥School of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - John C Rogers
- §Thermo Scientific Pierce Protein Research, Thermo Fisher Scientific, Rockford, Illinois 61105, United States
| | - Lingjun Li
- †School of Pharmacy, University of Wisconsin, Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States.,‡Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Lindenburg PW, Haselberg R, Rozing G, Ramautar R. Developments in Interfacing Designs for CE–MS: Towards Enabling Tools for Proteomics and Metabolomics. Chromatographia 2014. [DOI: 10.1007/s10337-014-2795-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Tan L, Zheng X, Chen L, Wang Y. Quality testing of human albumin by capillary electrophoresis using thermally cross-linked poly(vinyl pyrrolidone)-coated fused-silica capillary. J Sep Sci 2014; 37:2974-82. [DOI: 10.1002/jssc.201400463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/26/2014] [Accepted: 07/27/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei P.R. China
| | - Xiajun Zheng
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei P.R. China
| | - Lijuan Chen
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei P.R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei P.R. China
| |
Collapse
|
13
|
Jayo RG, Thaysen-Andersen M, Lindenburg PW, Haselberg R, Hankemeier T, Ramautar R, Chen DDY. Simple Capillary Electrophoresis–Mass Spectrometry Method for Complex Glycan Analysis Using a Flow-Through Microvial Interface. Anal Chem 2014; 86:6479-86. [DOI: 10.1021/ac5010212] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roxana G. Jayo
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Petrus W. Lindenburg
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - Rob Haselberg
- Division
of BioAnalytical Chemistry, AIMMS research group BioMolecular Analysis, VU University 1081 HV Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - Rawi Ramautar
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - David D. Y. Chen
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
14
|
Dvořáčková E, Snóblová M, Hrdlička P. Carbohydrate analysis: from sample preparation to HPLC on different stationary phases coupled with evaporative light-scattering detection. J Sep Sci 2014; 37:323-37. [PMID: 24339213 DOI: 10.1002/jssc.201301089] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 11/06/2022]
Abstract
After 20 years of development, evaporative light-scattering detection (ELSD) has become the mainstream choice for the detection of various classes of natural products. ELSD continues to grow in popularity as a "quasi-universal" technique because of the specificity of the detection method, which is based on the scattering of laser light from nonvolatile analyte particles. It represents an attractive alternative compared to other types of detection, such as refractive index detection and/or ultraviolet detection. This review presents issues concerned with the separation of carbohydrates in plant materials by HPLC and ELSD, as well as the advantages and limitations relating to the ELSD method. Additionally, an overview of possible ELSD applications in the analysis of carbohydrates in natural products is presented.
Collapse
Affiliation(s)
- Eva Dvořáčková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic
| | | | | |
Collapse
|
15
|
Lindenburg PW, Ramautar R, Jayo RG, Chen DDY, Hankemeier T. Capillary electrophoresis-mass spectrometry using a flow-through microvial interface for cationic metabolome analysis. Electrophoresis 2013; 35:1308-14. [DOI: 10.1002/elps.201300357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Petrus W. Lindenburg
- Division of Analytical Biosciences; Leiden Academic Center for Drug Research; Leiden University; Leiden The Netherlands
- Netherlands Metabolomics Centre; Leiden The Netherlands
| | - Rawi Ramautar
- Division of Analytical Biosciences; Leiden Academic Center for Drug Research; Leiden University; Leiden The Netherlands
- Netherlands Metabolomics Centre; Leiden The Netherlands
| | - Roxana G. Jayo
- Department of Chemistry; University of British Columbia; Vancouver British Columbia Canada
| | - David D. Y. Chen
- Department of Chemistry; University of British Columbia; Vancouver British Columbia Canada
| | - Thomas Hankemeier
- Division of Analytical Biosciences; Leiden Academic Center for Drug Research; Leiden University; Leiden The Netherlands
- Netherlands Metabolomics Centre; Leiden The Netherlands
| |
Collapse
|
16
|
Zhong X, Zhang Z, Jiang S, Li L. Recent advances in coupling capillary electrophoresis-based separation techniques to ESI and MALDI-MS. Electrophoresis 2013; 35:1214-25. [PMID: 24170529 DOI: 10.1002/elps.201300451] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/13/2023]
Abstract
Coupling CE-based separation techniques to MS creates a powerful platform for analysis of a wide range of biomolecules from complex samples because it combines the high separation efficiency of CE and the sensitivity and selectivity of MS detection. ESI and MALDI, as the most common soft ionization techniques employed for CE and MS coupling, offer distinct advantages for biomolecular characterization. This review is focused primarily on technological advances in combining CE and chip-based CE with ESI and MALDI-MS detection in the past five years. Selected applications in the analyses of metabolites, peptides, and proteins with recently developed CE-MS platforms are also highlighted.
Collapse
Affiliation(s)
- Xuefei Zhong
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
17
|
Bunz SC, Cutillo F, Neusüß C. Analysis of native and APTS-labeled N-glycans by capillary electrophoresis/time-of-flight mass spectrometry. Anal Bioanal Chem 2013; 405:8277-84. [DOI: 10.1007/s00216-013-7231-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022]
|
18
|
Bouri M, Salghi R, Zougagh M, Ríos A. Design and Adaptation of an Interface for Commercial Capillary Electrophoresis—Evaporative Light Scattering Detection Coupling. Anal Chem 2013; 85:4858-62. [DOI: 10.1021/ac400370f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed Bouri
- Department of Analytical Chemistry and Food Technology, University of Castilla−La Mancha, Av. Camilo José Cela 10, E-13004 Ciudad Real, Spain
- Laboratoire d’Ingénieries des Procédés de l’Energie et de l’Environnement, ENSA, B.P. 1136 Agadir, Morocco
| | - Rachid Salghi
- Laboratoire d’Ingénieries des Procédés de l’Energie et de l’Environnement, ENSA, B.P. 1136 Agadir, Morocco
| | - Mohammed Zougagh
- Regional Institute for Applied Chemistry Research, IRICA, Av. Camilo José Cela 10, E-13004 Ciudad Real, Spain
- Albacete Science and Technology Park, E-02006 Albacete, Spain
| | - Angel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla−La Mancha, Av. Camilo José Cela 10, E-13004 Ciudad Real, Spain
- Regional Institute for Applied Chemistry Research, IRICA, Av. Camilo José Cela 10, E-13004 Ciudad Real, Spain
| |
Collapse
|
19
|
Breadmore MC. Approaches to enhancing the sensitivity of carbohydrate separations in capillary electrophoresis. Methods Mol Biol 2013; 984:27-43. [PMID: 23386334 DOI: 10.1007/978-1-62703-296-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electrophoresis in both capillaries (CE) and microchips (ME) is an extremely powerful liquid phase-separation technique that is indispensable for the separation of carbohydrates. It is capable of separating both small mono- and disaccharides, through to more complex oligo- and polysaccharides, with high resolution, but as with all CE and ME separations, the detection limits are often inferior to those that can be achieved with liquid chromatographic methods. One avenue to address this is to use an on-line concentration strategy. Various approaches have been developed over the past 20 years, and this chapter will highlight their application to improve the sensitivity of carbohydrate separations in both CE and ME.
Collapse
Affiliation(s)
- M C Breadmore
- Australian Center for Research on Separation Science, School of Chemistry, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
20
|
Abstract
The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.
Collapse
Affiliation(s)
- Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medial Campus, Boston, MA, USA.
| |
Collapse
|
21
|
Klepárník K. Recent advances in the combination of capillary electrophoresis with mass spectrometry: From element to single-cell analysis. Electrophoresis 2012; 34:70-85. [DOI: 10.1002/elps.201200488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno; Czech Republic
| |
Collapse
|
22
|
Haselberg R, de Jong GJ, Somsen GW. CE-MS for the analysis of intact proteins 2010-2012. Electrophoresis 2012; 34:99-112. [DOI: 10.1002/elps.201200439] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/18/2022]
Affiliation(s)
- Rob Haselberg
- Biomolecular Analysis; Utrecht University; CG Utrecht; The Netherlands
| | | | - Govert W. Somsen
- Biomolecular Analysis; Utrecht University; CG Utrecht; The Netherlands
| |
Collapse
|
23
|
Bonvin G, Schappler J, Rudaz S. Capillary electrophoresis–electrospray ionization-mass spectrometry interfaces: Fundamental concepts and technical developments. J Chromatogr A 2012; 1267:17-31. [DOI: 10.1016/j.chroma.2012.07.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/24/2023]
|
24
|
Pioch M, Bunz SC, Neusüss C. Capillary electrophoresis/mass spectrometry relevant to pharmaceutical and biotechnological applications. Electrophoresis 2012; 33:1517-30. [PMID: 22736352 DOI: 10.1002/elps.201200030] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advanced analytical techniques play a crucial role in the pharmaceutical and biotechnological field. In this context, capillary electrophoresis/mass spectrometry (CE/MS) has attracted attention due to efficient and selective separation in combination with powerful detection allowing identification and detailed characterization. Method developments and applications of CE/MS have been focused on questions not easily accessible by liquid chromatography/mass spectrometry (LC/MS) as the analysis of intact proteins, carbohydrates, and various small molecules, including peptides. Here, recent approaches and applications of CE/MS relevant to (bio)pharmaceuticals are reviewed and discussed to show actual developments and future prospects. Based on other reviews on related subjects covering large parts of previous works, the paper is focused on general ideas and contributions of the last 2 years; for the analysis of glycans, the period is extended back to 2006.
Collapse
Affiliation(s)
- Markus Pioch
- Chemistry Department, Aalen University, Aalen, Germany
| | | | | |
Collapse
|
25
|
Jayo RG, Li J, Chen DDY. Capillary Electrophoresis Mass Spectrometry for the Characterization of O-Acetylated N-Glycans from Fish Serum. Anal Chem 2012; 84:8756-62. [DOI: 10.1021/ac301889k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Roxana G. Jayo
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada
| | - Jianjun Li
- Human
Health Therapeutics, National Research Council Canada, Ontario, Canada
| | - David D. Y. Chen
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada
| |
Collapse
|
26
|
Zhao SS, Zhong X, Tie C, Chen DD. Capillary electrophoresis-mass spectrometry for analysis of complex samples. Proteomics 2012; 12:2991-3012. [DOI: 10.1002/pmic.201200221] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Shuai Sherry Zhao
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Xuefei Zhong
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Cai Tie
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - David D.Y. Chen
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
27
|
Krenkova J, Foret F. On-line CE/ESI/MS interfacing: recent developments and applications in proteomics. Proteomics 2012; 12:2978-90. [PMID: 22888067 DOI: 10.1002/pmic.201200140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/17/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
Abstract
After shining as the ultimate separation - sequencing technique used for the successful completion of the Human Genome Project, in the early 2000s CE experienced lowered popularity among separation scientists. The renewed interest in recent years relates to the separation needs, especially in proteomics, metabolomics, and glycomics, where CE complements liquid chromatography techniques. This interest is further boosted by the regulators requiring additional separation techniques for characterization of newly developed pharmaceuticals. This paper gives a short overview of recent developments in the on-line interfacing of CE separation techniques with electrospray ionization/mass spectrometric analysis. Both the instrumentation and selected CE/ESI/MS applications including analyses of peptides, proteins, and glycans are discussed with the stress on research published in the past 3 years. Techniques related to the proteomic and glycomic analyses such as sample preconcentration, on-line protein digestion, and analyte derivatization prior CE/ESI/MS analysis are also included.
Collapse
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the ASCR, Brno, Czech Republic.
| | | |
Collapse
|