1
|
Huang W, Xie Y, Guo T, Dai W, Nan L, Wang Q, Liu Y, Lan W, Wang Z, Huang L, Gong G. A new perspective on structural characterisation and immunomodulatory activity of arabinogalactan in Larix kaempferi from Qinling Mountains. Int J Biol Macromol 2024; 265:130859. [PMID: 38490389 DOI: 10.1016/j.ijbiomac.2024.130859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
In this study, crude polysaccharide (LAG-C) and homogeneous arabinogalactan (LAG-W) were isolated from Qinling Larix kaempferi of Shaanxi Province. Bioactivity assays showed that LAG-W and LAG-C enhanced the phagocytic ability, NO secretion, acid phosphatase activity, and cytokine production (IL-6, IL-1β, and TNF-α) of RAW264.7 macrophages. Notably, LAG-W exhibited a significantly stronger immunomodulatory effect than LAG-C. The primary structure of LAG-W was characterised by chemical methods (monosaccharide composition, methylation analysis, and alkali treatment) and spectroscopic techniques (gas chromatography-mass spectrometry, high-performance liquid chromatography-mass spectrometry, and 1D/2D nuclear magnetic resonance). LAG-W was identified as a 22.08 kilodaltons (kDa) neutral polysaccharide composed of arabinose and galactose at a 1:7.5 molar ratio. Its backbone consisted of repeated →3)-β-Galp-(1→ residues. Side chains, connected at the O-6 position, were mainly composed of T-β-Galp-(1→ and T-β-Galp-(1→6)-β-Galp-(1→ residues. And it also contained small amounts of T-β-Arap-(1→, T-α-Araf-(1→6)-β-Galp-(1→6)-β-Galp-(1→, and T-α-Araf-(1→3)-α-Araf-(1→6)-β-Galp-(1→ residues. By structurally and functionally characterising L. kaempferi polysaccharides, this study opens the way for the valorisation of this species.
Collapse
Affiliation(s)
- Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yutao Xie
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tongyi Guo
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wei Dai
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Linhua Nan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wenxian Lan
- The Core Facility Centre of CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
2
|
Shao S, Xu W, Xie Z, Li M, Zhao J, Yang X, Yu P, Yang H. Distinctive carbohydrate profiles of black ginseng revealed by IM-MS combined with PMP labeling and multivariate data analysis. Curr Res Food Sci 2022; 5:2243-2250. [DOI: 10.1016/j.crfs.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
|
3
|
Abstract
Food carbohydrates are macronutrients that are found in fruits, grains, vegetables, and milk products. These organic compounds are present in foods in the form of sugars, starches, and fibers and are composed of carbon, hydrogen, and oxygen. These wide ranging macromolecules can be classified according to their chemical structure into three major groups: low molecular weight mono- and disaccharides, intermediate molecular weight oligosaccharides, and high molecular weight polysaccharides. Notably, the digestibility of specific carbohydrate components differ and nondigestible carbohydrates can reach the large intestine intact where they act as food sources for beneficial bacteria. In this review, we give an overview of advances made in food carbohydrate analysis. Overall, this review indicates the importance of carbohydrate analytical techniques in the quest to identify and isolate health-promoting carbohydrates to be used as additives in the functional foods industry.
Collapse
Affiliation(s)
- Leonie J Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
4
|
Shriver Z, Sasisekharan R. Capillary Electrophoretic Analysis of Isolated Sulfated Polysaccharides to Characterize Pharmaceutical Products. Methods Mol Biol 2021; 2303:329-339. [PMID: 34626391 DOI: 10.1007/978-1-0716-1398-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Capillary electrophoresis is a powerful methodology for quantification and structural characterization of highly anionic polysaccharides. Separation of saccharides under conditions of electrophoretic flow, typically achieved under low pH (Ampofo et al., Anal Biochem 199: 249-255, 1991; Rhomberg et al., Proc Natl Acad Sci U S A 95: 4176-4181, 1998) is charge-based. Resolution of components is often superior to flow-based techniques, such as liquid chromatography. During the heparin contamination crisis, capillary electrophoresis was one of the key methodologies used to identify whether or not heparin lots were contaminated (Guerrini et al., Nat Biotechnol 26: 669-675, 2008; Ye et al., J Pharm Biomed Anal 85: 99-107, 2013; Volpi et al., Electrophoresis 33: 1531-1537, 2012).Here we describe a method for the isolation of sulfated heparin/heparan sulfate saccharides from urine, their digestion by deployment of heparinase enzymes (Ernst et al., Crit Rev Biochem Mol Biol 30: 387-444, 1995) resolution of species through use of orthogonal digestions, and analysis of the resulting disaccharides by capillary electrophoresis.
Collapse
Affiliation(s)
- Zachary Shriver
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Shi Q, Yan J, Jiang B, Chi X, Wang J, Liang X, Ai X. A general strategy for the structural determination of carbohydrates by multi-dimensional NMR spectroscopies. Carbohydr Polym 2021; 267:118218. [PMID: 34119172 DOI: 10.1016/j.carbpol.2021.118218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
Two-dimensional NMR spectroscopies are one of the most frequently used techniques for the structural determination of carbohydrates. However, the data analysis is challenging because of the signal overlap in the 1H homonuclear correlation spectra. We attempted to explore a general strategy for the structural determination of carbohydrates by combined multi-dimensional spectroscopies. The strategy was applied to a human milk oligosaccharide lacto-N-difucohexaose I, that has been previously studied by conventional two-dimensional NMR spectroscopy. Assignment of the intra-residue resonances of the hexasaccharide using the three-dimensional spectrum was straightforward. Consequently, data analysis of the multi-dimensional spectra was significantly simplified, leading to a quicker determination of the intra- and inter-residue connections in the hexasaccharide. Application of the NMR strategy to chondroitin sulfate from bovine cartilage revealed two repeating disaccharide regions of the A and C units of chondroitin sulfate, indicating the high potential of this technique for the structural determination of complex polysaccharides.
Collapse
Affiliation(s)
- Qi Shi
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingyu Yan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiujuan Chi
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; School of Chemical Engineering and Energy Technology, Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China.
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xuanjun Ai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
6
|
McKenna KR, Li L, Baker AG, Ujma J, Krishnamurthy R, Liotta CL, Fernández FM. Carbohydrate isomer resolutionviamulti-site derivatization cyclic ion mobility-mass spectrometry. Analyst 2019; 144:7220-7226. [DOI: 10.1039/c9an01584a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic ion mobility-tandem mass spectrometry enhances the separation and identification of small carbohydrate isomers.
Collapse
Affiliation(s)
- Kristin R. McKenna
- NSF/NASA Center for Chemical Evolution
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemistry and Biochemistry
| | - Li Li
- NSF/NASA Center for Chemical Evolution
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemistry and Biochemistry
| | | | | | | | - Charles L. Liotta
- NSF/NASA Center for Chemical Evolution
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemistry and Biochemistry
| | - Facundo M. Fernández
- NSF/NASA Center for Chemical Evolution
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemistry and Biochemistry
| |
Collapse
|
7
|
Mantovani V, Galeotti F, Maccari F, Volpi N. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides. Electrophoresis 2017; 39:179-189. [DOI: 10.1002/elps.201700290] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Veronica Mantovani
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Fabio Galeotti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Francesca Maccari
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Nicola Volpi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
8
|
Morrison KA, Clowers BH. Differential Fragmentation of Mobility-Selected Glycans via Ultraviolet Photodissociation and Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1236-1241. [PMID: 28421405 DOI: 10.1007/s13361-017-1621-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
The alternative dissociation pathways initiated by ultraviolet photodissociation (UVPD) compared with collision-induced dissociation (CID) may provide useful diagnostic fragments for biomolecule identification, including glycans. However, underivatized glycans do not commonly demonstrate strong UV absorbance, resulting in low fragmentation yields for UVPD spectra. In contrast to UVPD experiments that leverage covalent modification of glycans, we detail the capacity of metal adduction to yield comparatively rich UVPD fragmentation patterns and enhance separation factors for an isomeric glycan set in a drift tube ion mobility system. Ion mobility and UVPD-MS spectra for two N-acetyl glycan isomers were examined, each adducted with sodium or cobalt cations, with the latter providing fragment yield gains of an order of magnitude versus sodium adducts. Furthermore, our glycan analysis incorporated front-end ion mobility separation such that the structural glycan isomers could still be identified even as a mixture and not simply composite spectra of isomeric standards. Cobalt adduction proved influential in the glycan separation by yielding an isomer resolution of 0.78 when analyzed simultaneously versus no discernable separation obtained with the sodium adducts. It is the combined enhancement of both isomeric drift time separation and isomer distinction with improved UVPD fragment ion yields that further bolster multivalent metal adduction for advancing glycan IM-MS experiments. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kelsey A Morrison
- Department of Chemistry, Washington State University, P.O. Box 644630, Pullman, WA, 99164, USA
| | - Brian H Clowers
- Department of Chemistry, Washington State University, P.O. Box 644630, Pullman, WA, 99164, USA.
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
10
|
Glykys J, Dzhala V, Egawa K, Kahle KT, Delpire E, Staley K. Chloride Dysregulation, Seizures, and Cerebral Edema: A Relationship with Therapeutic Potential. Trends Neurosci 2017; 40:276-294. [PMID: 28431741 DOI: 10.1016/j.tins.2017.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Pharmacoresistant seizures and cytotoxic cerebral edema are serious complications of ischemic and traumatic brain injury. Intraneuronal Cl- concentration ([Cl-]i) regulation impacts on both cell volume homeostasis and Cl--permeable GABAA receptor-dependent membrane excitability. Understanding the pleiotropic molecular determinants of neuronal [Cl-]i - cytoplasmic impermeant anions, polyanionic extracellular matrix (ECM) glycoproteins, and plasmalemmal Cl- transporters - could help the identification of novel anticonvulsive and neuroprotective targets. The cation/Cl- cotransporters and ECM metalloproteinases may be particularly druggable targets for intervention. We establish here a paradigm that accounts for recent data regarding the complex regulatory mechanisms of neuronal [Cl-]i and how these mechanisms impact on neuronal volume and excitability. We propose approaches to modulate [Cl-]i that are relevant for two common clinical sequela of brain injury: edema and seizures.
Collapse
Affiliation(s)
- Joseph Glykys
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Hospital, Sapporo 0010019, Japan
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria. Appl Environ Microbiol 2016; 82:3622-3630. [PMID: 27084007 DOI: 10.1128/aem.00547-16] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/26/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (<1%) sialylated N-glycans. These results provide mechanistic support that N-linked glycoproteins from milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as novel prebiotic substrates with selective properties similar to those of human milk oligosaccharides. IMPORTANCE It has been previously shown that glycoproteins serve as growth substrates for bifidobacteria. However, which part of a glycoprotein (glycans or polypeptides) is responsible for this function was not known. In this study, we used a novel enzyme to cleave conjugated N-glycans from milk glycoproteins and tested their consumption by various bifidobacteria. The results showed that the glycans selectively stimulated the growth of B. infantis, which is a key infant gut microbe. The selectivity of consumption of individual N-glycans was determined using advanced mass spectrometry (nano-liquid chromatography chip-quadrupole time of flight mass spectrometry [nano-LC-Chip-Q-TOF MS]) to reveal that B. infantis can consume the range of glycan structures released from whey protein concentrate.
Collapse
|
12
|
Aich U, Liu A, Lakbub J, Mozdzanowski J, Byrne M, Shah N, Galosy S, Patel P, Bam N. An Integrated Solution-Based Rapid Sample Preparation Procedure for the Analysis of N-Glycans From Therapeutic Monoclonal Antibodies. J Pharm Sci 2016; 105:1221-32. [DOI: 10.1016/j.xphs.2015.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/27/2022]
|
13
|
Gasser RB, Korhonen PK, Zhu XQ, Young ND. Harnessing the Toxocara Genome to Underpin Toxocariasis Research and New Interventions. ADVANCES IN PARASITOLOGY 2016; 91:87-110. [PMID: 27015948 DOI: 10.1016/bs.apar.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parasitic worms, such as flatworms (platyhelminths) and roundworms (nematodes), cause substantial morbidity and mortality in animals and people globally. The ascaridoid nematode Toxocara canis is a zoonotic parasite of socioeconomic significance worldwide. In humans, this worm causes toxocariasis (disease) mainly in underprivileged communities in both the developed and developing worlds. While reasonably well studied from clinical and epidemiological perspectives, little is understood about the molecular biology of T. canis, its relationship with its hosts and the disease that it causes. However, a recent report of the draft genome and transcriptomes of T. canis should underpin many fundamental and applied research areas in the future. The present article gives a background on Toxocara and toxocariasis, a brief account of diagnostic approaches for specific identification and genetic analysis, and gives a perspective on the impact that the genome of T. canis and advanced molecular technologies could have on our understanding of the parasite and the diseases that it causes as well as the design of new and improved approaches for the diagnosis, treatment and control of toxocariasis.
Collapse
|
14
|
Song T, Aldredge D, Lebrilla CB. A Method for In-Depth Structural Annotation of Human Serum Glycans That Yields Biological Variations. Anal Chem 2015; 87:7754-62. [PMID: 26086522 PMCID: PMC5444872 DOI: 10.1021/acs.analchem.5b01340] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycosylation is an important post-translational modification of proteins present in the vast majority of human proteins. For this reason, they are potentially new sources of biomarkers and active targets of therapeutics and vaccines. However, the absence of a biosynthetic template as in the genome and the general complexity of the structures have limited the development of methods for comprehensive structural analysis. Even now, the exact structures of many abundant N-glycans in serum are not known. Structural elucidation of oligosaccharides remains difficult and time-consuming. Here, we introduce a means of rapidly identifying released N-glycan structures using their accurate masses and retention times based on a glycan library. This serum glycan library, significantly expanded from a previous one covering glycans released from a handful of serum glycoproteins, has more than 170 complete and partial structures and constructed instead from whole serum. The method employs primarily nanoflow liquid chromatography and accurate mass spectrometry. The method allows us to readily profile N-glycans in biological fluids with deep structural analysis. This approach is used to determine the relative abundances and variations in the N-glycans from several individuals providing detailed variations in the abundances of the important N-glycans in blood.
Collapse
Affiliation(s)
- Ting Song
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States Corresponding Author
| | - Danielle Aldredge
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States Corresponding Author
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States Corresponding Author
| |
Collapse
|
15
|
Srinivasan K, Roy S, Washburn N, Sipsey SF, Meccariello R, Meador JW, Ling LE, Manning AM, Kaundinya GV. A Quantitative Microtiter Assay for Sialylated Glycoform Analyses Using Lectin Complexes. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:768-78. [PMID: 25851037 PMCID: PMC4512520 DOI: 10.1177/1087057115577597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 12/12/2022]
Abstract
Fidelity of glycan structures is a key requirement for biotherapeutics, with carbohydrates playing an important role for therapeutic efficacy. Comprehensive glycan profiling techniques such as liquid chromatography (LC) and mass spectrometry (MS), while providing detailed description of glycan structures, require glycan cleavage, labeling, and paradigms to deconvolute the considerable data sets they generate. On the other hand, lectins as probes on microarrays have recently been used in orthogonal approaches for in situ glycoprofiling but require analyte labeling to take advantage of the capabilities of automated microarray readers and data analysis they afford. Herein, we describe a lectin-based microtiter assay (lectin-enzyme-linked immunosorbent assay [ELISA]) to quantify terminal glycan moieties, applicable to in vitro and in-cell glycan-engineered Fc proteins as well as intact IgGs from intravenous immunoglobulin (IVIG), a blood product containing pooled polyvalent IgG antibodies extracted from plasma from healthy human donors. We corroborate our findings with industry-standard LC-MS profiling. This "customizable" ELISA juxtaposes readouts from multiple lectins, focusing on a subset of glycoforms, and provides the ability to discern single- versus dual-arm glycosylation while defining levels of epitopes at sensitivities comparable to MS. Extendable to other biologics, this ELISA can be used stand-alone or complementary to MS for quantitative glycan analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leona E Ling
- Momenta Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
16
|
Ali F, Cheong WJ. Open tubular capillary electrochromatography with an N
-phenylacrylamide-styrene copolymer-based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose. J Sep Sci 2015; 38:1763-70. [DOI: 10.1002/jssc.201401356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Faiz Ali
- Department of Chemistry; Inha University; Namku Incheon South Korea
| | - Won Jo Cheong
- Department of Chemistry; Inha University; Namku Incheon South Korea
| |
Collapse
|
17
|
Zhu XQ, Korhonen PK, Cai H, Young ND, Nejsum P, von Samson-Himmelstjerna G, Boag PR, Tan P, Li Q, Min J, Yang Y, Wang X, Fang X, Hall RS, Hofmann A, Sternberg PW, Jex AR, Gasser RB. Genetic blueprint of the zoonotic pathogen Toxocara canis. Nat Commun 2015; 6:6145. [PMID: 25649139 PMCID: PMC4327413 DOI: 10.1038/ncomms7145] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/11/2014] [Indexed: 11/09/2022] Open
Abstract
Toxocara canis is a zoonotic parasite of major socioeconomic importance worldwide. In humans, this nematode causes disease (toxocariasis) mainly in the under-privileged communities in developed and developing countries. Although relatively well studied from clinical and epidemiological perspectives, to date, there has been no global investigation of the molecular biology of this parasite. Here we use next-generation sequencing to produce a draft genome and transcriptome of T. canis to support future biological and biotechnological investigations. This genome is 317 Mb in size, has a repeat content of 13.5% and encodes at least 18,596 protein-coding genes. We study transcription in a larval, as well as adult female and male stages, characterize the parasite’s gene-silencing machinery, explore molecules involved in development or host–parasite interactions and predict intervention targets. The draft genome of T. canis should provide a useful resource for future molecular studies of this and other, related parasites. Toxocara canis is a zoonotic parasite of major worldwide socioeconomic importance. Here, the authors sequence the genome and transcriptome of T. canis, and highlight potential mechanisms involved in development and host–parasite interactions that could support the pursuit of new drug interventions.
Collapse
Affiliation(s)
- Xing-Quan Zhu
- 1] State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu Province, China [2] Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | | | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Peter Nejsum
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Patrick Tan
- 1] Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore [2] Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | | | | | | | | | | | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane 4111, Queensland, Australia
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena 91125, California, USA
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
18
|
Shriver Z, Sasisekharan R. Capillary electrophoretic analysis of isolated sulfated polysaccharides to characterize pharmaceutical products. Methods Mol Biol 2015; 1229:161-71. [PMID: 25325952 PMCID: PMC5460761 DOI: 10.1007/978-1-4939-1714-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Capillary electrophoresis is a powerful methodology for quantification and structural characterization of highly anionic polysaccharides. Separation of saccharides under conditions of electrophoretic flow, typically achieved under low pH (Ampofo et al., Anal Biochem 199:249-255, 1991; Rhomberg et al., Proc Natl Acad Sci U S A 95:4176-4181, 1998), is charge-based. Resolution of components is often superior to flow-based techniques, such as liquid chromatography. During the heparin contamination crisis, capillary electrophoresis was one of the key methodologies used to identify whether or not heparin lots were contaminated (Guerrini et al., Nat Biotechnol 26:669-675, 2008). Here we describe a method for isolation of sulfated heparin/heparan sulfate saccharides from urine, their digestion by deployment of heparinase enzymes (Ernst et al., Crit Rev Biochem Mol Biol 30:387-444, 1995), resolution of species through use of orthogonal digestions, and analysis of the resulting disaccharides by capillary electrophoresis.
Collapse
Affiliation(s)
- Z Shriver
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - R Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
19
|
Song T, Ozcan S, Becker A, Lebrilla CB. In-depth method for the characterization of glycosylation in manufactured recombinant monoclonal antibody drugs. Anal Chem 2014; 86:5661-6. [PMID: 24828102 PMCID: PMC4066919 DOI: 10.1021/ac501102t] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022]
Abstract
The glycosylation in recombinant monoclonal antibody (rMab) drugs is a major concern in the biopharmaceutical industry as it impacts the drugs' many attributes. Characterization is important but complicated by the intricate structures, microheterogeneity, and the limitations of current tools for structural analysis. In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) N-glycan library based on eight commercial rMab drugs. A library of over 70 structures was developed for the rapid characterization of rMab. N-Glycans were separated on a porous graphitized carbon (PGC) column incorporated on a chip and then analyzed by an electrospray ionization hybrid quadrupole time-of-flight (ESI-Q-TOF) MS. The retention time and accurate mass for each N-glycan were recorded in the library. The complete structures were obtained through exoglycosidase sequencing. The results showed that most of the N-glycans between different antibodies are nearly the same with different abundances. The utility of this library enables one to identify structures in a rapid manner by matching LC retention times and accurate masses.
Collapse
Affiliation(s)
- Ting Song
- Department of Chemistry, University of
California, One Shields
Avenue, Davis, California 95616, United States
| | - Sureyya Ozcan
- Department of Chemistry, University of
California, One Shields
Avenue, Davis, California 95616, United States
| | - Alicia Becker
- Department of Chemistry, University of
California, One Shields
Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of
California, One Shields
Avenue, Davis, California 95616, United States
| |
Collapse
|
20
|
Yu Y, Song X, Smith DF, Cummings RD. Applications of Glycan Microarrays to Functional Glycomics. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-62651-6.00012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Minkiewicz P, Miciński J, Darewicz M, Bucholska J. Biological and Chemical Databases for Research into the Composition of Animal Source Foods. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2013.818011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Gerlach JQ, Krüger A, Gallogly S, Hanley SA, Hogan MC, Ward CJ, Joshi L, Griffin MD. Surface glycosylation profiles of urine extracellular vesicles. PLoS One 2013; 8:e74801. [PMID: 24069349 PMCID: PMC3777961 DOI: 10.1371/journal.pone.0074801] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/02/2013] [Indexed: 12/12/2022] Open
Abstract
Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.
Collapse
Affiliation(s)
- Jared Q. Gerlach
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Anja Krüger
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Susan Gallogly
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Shirley A. Hanley
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Marie C. Hogan
- Dept. of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christopher J. Ward
- Dept. of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
23
|
|
24
|
Campbell MP, Nguyen-Khuong T, Hayes CA, Flowers SA, Alagesan K, Kolarich D, Packer NH, Karlsson NG. Validation of the curation pipeline of UniCarb-DB: building a global glycan reference MS/MS repository. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:108-16. [PMID: 23624262 DOI: 10.1016/j.bbapap.2013.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/01/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
The UniCarb-DB database is an emerging public glycomics data repository, containing over 500 tandem mass spectra (as of March 2013) of glycans released from glycoproteins. A major challenge in glycomics research is to provide and maintain high-quality datasets that will offer the necessary diversity to support the development of accurate bioinformatics tools for data deposition and analysis. The role of UniCarb-DB, as an archival database, is to provide the glycomics community with open-access to a comprehensive LC MS/MS library of N- and O- linked glycans released from glycoproteins that have been annotated with glycosidic and cross-ring fragmentation ions, retention times, and associated experimental metadata descriptions. Here, we introduce the UniCarb-DB data submission pipeline and its practical application to construct a library of LC-MS/MS glycan standards that forms part of this database. In this context, an independent consortium of three laboratories was established to analyze the same 23 commercially available oligosaccharide standards, all by using graphitized carbon-liquid chromatography (LC) electrospray ionization (ESI) ion trap mass spectrometry in the negative ion mode. A dot product score was calculated for each spectrum in the three sets of data as a measure of the comparability that is necessary for use of such a collection in library-based spectral matching and glycan structural identification. The effects of charge state, de-isotoping and threshold levels on the quality of the input data are shown. The provision of well-characterized oligosaccharide fragmentation data provides the opportunity to identify determinants of specific glycan structures, and will contribute to the confidence level of algorithms that assign glycan structures to experimental MS/MS spectra. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Collapse
Affiliation(s)
- Matthew P Campbell
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
A perfect time to harness advanced molecular technologies to explore the fundamental biology of Toxocara species. Vet Parasitol 2013; 193:353-64. [DOI: 10.1016/j.vetpar.2012.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Schiel JE, Smith NJ, Phinney KW. Universal proteolysis and MS(n) for N- and O-glycan branching analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:533-538. [PMID: 23584946 DOI: 10.1002/jms.3196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 06/02/2023]
Abstract
The continually growing list of critical glycosylation-related processes has made analytical methodology for detailed glycan characterization an area of increasing interest. Glycosylation is a post translational modification of unsurpassed complexity due to the variety of compositions and linkages formed by these biopolymers. Structural characterization of glycan isomers has been achieved using ion trap mass spectrometry and MS(n) of released, permethylated glycans. However, N- and O-glycans require different sample preparation strategies; and release of the glycans may be hindered, result in degradation of the glycan, and/or produce limited yields of permethylated product. In the current report, we demonstrate universal proteolysis of both N- and O-linked glycoproteins to individual glycoamino acids. These samples were shown to be directly amenable to permethylation and MS(n) analysis for isomeric structural determination. Universal proteolysis and permethylation provides an identical sample preparation strategy for both classes of glycans that avoids potential pitfalls of commonly used release methods. This methodology should be applicable to all glycoproteins and serve as an alternative to glycan release for MS(n) branching analysis. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- John E Schiel
- National Institute of Standards and Technology, Analytical Chemistry Division, 100 Bureau Dr., Stop 8392, Gaithersburg, MD 20899, USA.
| | | | | |
Collapse
|
27
|
Furukawa JI, Fujitani N, Shinohara Y. Recent advances in cellular glycomic analyses. Biomolecules 2013; 3:198-225. [PMID: 24970165 PMCID: PMC4030886 DOI: 10.3390/biom3010198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022] Open
Abstract
A large variety of glycans is intricately located on the cell surface, and the overall profile (the glycome, given the entire repertoire of glycoconjugate-associated sugars in cells and tissues) is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that control cell-cell adhesion, immune response, microbial pathogenesis and other cellular events. The glycomic profile also reflects cellular alterations, such as development, differentiation and cancerous change. A glycoconjugate-based approach would therefore be expected to streamline discovery of novel cellular biomarkers. Development of such an approach has proven challenging, due to the technical difficulties associated with the analysis of various types of cellular glycomes; however, recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various classes of glycoconjugates. This review focuses on recent advances in the technical aspects of cellular glycomic analyses of major classes of glycoconjugates, including N- and O-linked glycans, derived from glycoproteins, proteoglycans and glycosphingolipids. Articles that unveil the glycomics of various biologically important cells, including embryonic and somatic stem cells, induced pluripotent stem (iPS) cells and cancer cells, are discussed.
Collapse
Affiliation(s)
- Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
28
|
Smith DF, Cummings RD. Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics 2013; 12:902-12. [PMID: 23412570 DOI: 10.1074/mcp.r112.027110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycan structures were defined historically using multiple methods to determine composition, sequence, linkage, and anomericity of component monosaccharides. Such approaches have been replaced by more sensitive MS methods to profile or predict glycan structures, but these methods are limited in their ability to completely define glycan structures. Glycan-binding proteins, including lectins and antibodies, have been found to have exquisite binding specificities that can provide information about glycan structures. Here, we show glycan-binding proteins can be used along with MS to help define glycan linkages and other determinants in unknown glycans printed as shotgun glycan microarrays.
Collapse
Affiliation(s)
- David F Smith
- Department of Biochemistry and Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
29
|
Systems metabolic engineering in an industrial setting. Appl Microbiol Biotechnol 2013; 97:2319-26. [DOI: 10.1007/s00253-013-4738-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
|