1
|
Isoelectric focusing array with immobilized pH gradient and dynamic scanning imaging for diabetes diagnosis. Anal Chim Acta 2019; 1063:178-186. [DOI: 10.1016/j.aca.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022]
|
2
|
Common Effects on Cancer Cells Exerted by a Random Positioning Machine and a 2D Clinostat. PLoS One 2015; 10:e0135157. [PMID: 26274317 PMCID: PMC4537186 DOI: 10.1371/journal.pone.0135157] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/19/2015] [Indexed: 12/20/2022] Open
Abstract
In this study we focused on gravity-sensitive proteins of two human thyroid cancer cell lines (ML-1; RO82-W-1), which were exposed to a 2D clinostat (CLINO), a random positioning machine (RPM) and to normal 1g-conditions. After a three (3d)- or seven-day-culture (7d) on the two devices, we found both cell types growing three-dimensionally within multicellular spheroids (MCS) and also cells remaining adherent (AD) to the culture flask, while 1g-control cultures only formed adherent monolayers, unless the bottom of the culture dish was covered by agarose. In this case, the cytokines IL-6 and IL-8 facilitated the formation of MCS in both cell lines using the liquid-overlay technique at 1g. ML-1 cells grown on the RPM or the CLINO released amounts of IL-6 and MCP-1 into the supernatant, which were significantly elevated as compared to 1g-controls. Release of IL-4, IL-7, IL-8, IL-17, eotaxin-1 and VEGF increased time-dependently, but was not significantly influenced by the gravity conditions. After 3d on the RPM or the CLINO, an accumulation of F-actin around the cellular membrane was detectable in AD cells of both cell lines. IL-6 and IL-8 stimulation of ML-1 cells for 3d and 7d influenced the protein contents of ß1-integrin, talin-1, Ki-67, and beta-actin dose-dependently in adherent cells. The ß1-integrin content was significantly decreased in AD and MCS samples compared with 1g, while talin-1 was higher expressed in MCS than AD populations. The proliferation marker Ki-67 was elevated in AD samples compared with 1g and MCS samples. The ß-actin content of R082-W-1 cells remained unchanged. ML-1 cells exhibited no change in ß-actin in RPM cultures, but a reduction in CLINO samples. Thus, we concluded that simulated microgravity influences the release of cytokines in follicular thyroid cancer cells, and the production of ß1-integrin and talin-1 and predicts an identical effect under real microgravity conditions.
Collapse
|
3
|
Stastna M, Slais K. Continuous fast focusing in a trapezoidal void channel based on bidirectional isotachophoresis in a wide pH range. Electrophoresis 2015; 36:2579-86. [PMID: 26104601 DOI: 10.1002/elps.201500223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
Abstract
This study concentrates on development of instrumentation for focusing and separation of analytes in continuous flow. It is based on bidirectional ITP working in wide pH range with separation space of closed void channel of trapezoidal shape and continuous supply of sample. The novel instrumentation is working with electrolyte system formulated previously and on the contrary to devices currently available, it allows preparative separation and concentration of cationic, anionic, and amphoteric analytes simultaneously and in wide pH range. The formation of sharp edges at zone boundaries as well as low conductivity zones are avoided in suggested system and thus, local overheating is eliminated allowing for high current densities at initial stages of focusing. This results in high focusing speed and reduction of analysis time, which is particularly advantageous for separations performed in continuous flow systems. The closed void channel is designed to avoid basic obstacles related to liquid leakage, bubbles formation, contacts with electrodes, channel height and complicated assembling. The performance of designed instrumentation and focusing dynamics were tested by using colored low molecular mass pH indicators for local pH determination, focusing pattern, and completion. In addition, feasibility and separation efficiency were demonstrated by focusing of cytochrome C and myoglobin. The collection of fractions at instrument output allows for subsequent analysis and identification of sample components that are concentrated and conveniently in form of solution for further processing. Since the instrumentation operates with commercially available simple defined buffers and compounds without need of carrier ampholytes background, it is economically favorable.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i, Brno, Czech Republic
| | - Karel Slais
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i, Brno, Czech Republic
| |
Collapse
|
4
|
Liu Y, Zhang D, Pang S, Liu Y, Shang Y. Size separation of graphene oxide using preparative free-flow electrophoresis. J Sep Sci 2014; 38:157-63. [DOI: 10.1002/jssc.201401000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Liu
- Key Laboratory of Advanced Civil Engineering Materials; School of Materials Science and Engineering; Tongji University; Shanghai P. R. China
| | - Dong Zhang
- Key Laboratory of Advanced Civil Engineering Materials; School of Materials Science and Engineering; Tongji University; Shanghai P. R. China
| | - Shiwu Pang
- Key Laboratory of Advanced Civil Engineering Materials; School of Materials Science and Engineering; Tongji University; Shanghai P. R. China
| | - Yanyun Liu
- Key Laboratory of Advanced Civil Engineering Materials; School of Materials Science and Engineering; Tongji University; Shanghai P. R. China
| | - Yu Shang
- Key Laboratory of Advanced Civil Engineering Materials; School of Materials Science and Engineering; Tongji University; Shanghai P. R. China
| |
Collapse
|
5
|
Yang CZ, Yan J, Zhang Q, Guo CG, Kong FZ, Cao CX, Fan LY, Jin XQ. Negative-pressure-induced collector for a self-balance free-flow electrophoresis device. J Sep Sci 2014; 37:1359-63. [PMID: 24648284 DOI: 10.1002/jssc.201400007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 11/10/2022]
Abstract
Uneven flow in free-flow electrophoresis (FFE) with a gravity-induced fraction collector caused by air bubbles in outlets and/or imbalance of the surface tension of collecting tubes would result in a poor separation. To solve these issues, this work describes a novel collector for FFE. The collector is composed of a self-balance unit, multisoft pipe flow controller, fraction collector, and vacuum pump. A negative pressure induced continuous air flow rapidly flowed through the self-balance unit, taking the background electrolyte and samples into the fraction collector. The developed collector has the following advantages: (i) supplying a stable and harmonious hydrodynamic environment in the separation chamber for FFE separation, (ii) effectively preventing background electrolyte and sample flow-back at the outlet of the chamber and improving the resolution, (iii) increasing the preparative scale of the separation, and (iv) simplifying the operation. In addition, the cost of the FFE device was reduced without using a multichannel peristaltic pump for sample collection. Finally, comparative FFE experiments on dyes, proteins, and cells were carried out. It is evident that the new developed collector could overcome the problems inherent in the previous gravity-induced self-balance collector.
Collapse
Affiliation(s)
- Cheng-Zhang Yang
- Laboratory of Analytical Biochemistry and Bioseparation, Key State Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ma X, Sickmann A, Pietsch J, Wildgruber R, Weber G, Infanger M, Bauer J, Grimm D. Proteomic differences between microvascular endothelial cells and the EA.hy926 cell line forming three-dimensional structures. Proteomics 2014; 14:689-98. [PMID: 24376074 DOI: 10.1002/pmic.201300453] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/28/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022]
Abstract
Proteomic changes of two types of human endothelial cells (ECs) were determined and compared to morphological alterations occurring during the scaffold-free in vitro formation of 3D structures resembling vascular intimas. The EA.hy926 cell line and human microvascular ECs (HMVECs) were cultured on a random positioning machine or static on ground (normal gravity) for 5 and 7 days, before their morphology was examined and their protein content was analysed by MS after free-flow electrophoretic separation. A total of 1175 types of proteins were found in EA.hy926 cells and 846 in HMVEC forming 3D structures faster than the EA.hy926 cells. Five hundred and eighty-four of these kinds of proteins were present in both types of cells. They included a number of metabolic enzymes, of structure-related and stress proteins. Comparing proteins of EA.hy926 cells growing either adherently on ground or in 3D aggregates on the random positioning machine revealed that ribosomal proteins were enhanced, while tubes are formed and various components of 26S proteasomes remained prevalent in static normal gravity control cells only. The fast developing tube-like 3D structures of HMVEC suggested a transient augmentation of ribosomal proteins during the 3D assembling of ECs.
Collapse
Affiliation(s)
- Xiao Ma
- Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wildgruber R, Weber G, Wise P, Grimm D, Bauer J. Free-flow electrophoresis in proteome sample preparation. Proteomics 2013; 14:629-36. [PMID: 24123730 DOI: 10.1002/pmic.201300253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/07/2013] [Accepted: 08/23/2013] [Indexed: 02/01/2023]
Abstract
An aim of proteome research is to identify the entire complement of proteins expressed in defined cell types of humans, animals, plants, and microorganisms. The approach requires searching for low abundant or even rarely expressed proteins in many cell types, as well as the determination of the protein expression levels in subcellular compartments and organelles. In recent years, rather powerful MS technologies have been developed. At this stage of MS device development, it is of highest interest to purify intact cell types or isolate subcellular compartments, where the proteins of interest are originating from, which determine the final composition of a peptide mixture. Free-flow electrophoresis proved to be useful to prepare meaningful peptide mixtures because of its improved capabilities in particle electrophoresis and the enhanced resolution in protein separation. Sample preparation by free-flow electrophoresis mediated particle separation was preferentially performed for purification of either organelles and their subspecies or major protein complexes. Especially, the introduction of isotachophoresis and interval zone electrophoresis improved the purity of the gained analytes of interest. In addition, free-flow IEF proved to be helpful, when proteins of low solubility, obtained, e.g. from cell membranes, were investigated.
Collapse
|
8
|
Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells. PLoS One 2013; 8:e68140. [PMID: 23844163 PMCID: PMC3699536 DOI: 10.1371/journal.pone.0068140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/25/2013] [Indexed: 01/16/2023] Open
Abstract
It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge) simulating the hypergravity phases that occur during one (P1) and 31 parabolas (P31) of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1) and modulating (EZR, RDX, and MSN) the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8) or protein kinases (PRKAA1 and PRKCA). The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers.
Collapse
|
9
|
Pietsch J, Riwaldt S, Bauer J, Sickmann A, Weber G, Grosse J, Infanger M, Eilles C, Grimm D. Interaction of proteins identified in human thyroid cells. Int J Mol Sci 2013; 14:1164-78. [PMID: 23303277 PMCID: PMC3565314 DOI: 10.3390/ijms14011164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 01/06/2013] [Indexed: 11/16/2022] Open
Abstract
Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.
Collapse
Affiliation(s)
- Jessica Pietsch
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany; E-Mails: (J.P.); (S.R.); (M.I.)
| | - Stefan Riwaldt
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany; E-Mails: (J.P.); (S.R.); (M.I.)
| | - Johann Bauer
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; E-Mail:
| | - Albert Sickmann
- Leibniz-Institute for Analytical Sciences (ISAS), Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; E-Mail:
| | - Gerhard Weber
- FFE Service GmbH, Frankfurter Ring 193a, 80807 Munich, Germany; E-Mail:
| | - Jirka Grosse
- Nuclear Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; E-Mails: (J.G.); (C.E.)
| | - Manfred Infanger
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany; E-Mails: (J.P.); (S.R.); (M.I.)
| | - Christoph Eilles
- Nuclear Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; E-Mails: (J.G.); (C.E.)
| | - Daniela Grimm
- Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University Clinic, Leipziger Str. 44, 39120 Magdeburg, Germany; E-Mails: (J.P.); (S.R.); (M.I.)
- Institute of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-8716-7693; Fax: +45-8612-8804
| |
Collapse
|