1
|
Lanaro VM, Sombra LL, Altamirano JC, Almeida CA, Stege PW. Chiral separation of propranolol by electrokinetic chromatography using nanodiamonds and human serum albumin as a pseudo-stationary phase in river water. Chirality 2024; 36:e23640. [PMID: 38384157 DOI: 10.1002/chir.23640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Propranolol is currently considered as an emerging contaminant in water bodies. In this study, R- and S-propranolol were determined in river samples by electrokinetic chromatography (EKC) using nanodiamonds (NDs) and human serum albumin (HSA) as a pseudo-stationary phase in order to achieve enantioseparation. Previously, river samples were preconcentrated using a column filled with Amberlite® IR-120 and Dowex® 50WX8 resins. The setting up of influential factors such as temperature, voltage, pH, and HSA and NDs concentration is accurately described along this manuscript. A multivariate study and optimization was carried out to obtain the enantioseparation of propranolol (Rs = 2.91), which was reached under the following experimental conditions: voltage of 16 kV, temperature of 16°C, phosphate buffer pH 9.5, NDs of 0.20%, and HSA of 15 μmol l-1 . The recoveries of analytes under optimal conditions were higher than 98%. The limits of detection were 0.85 μg l-1 for R- and S-propranolol. The method was applied to real samples, and the obtained results in three different water sources studied were 1.02, 0.59, and 0.30 μg l-1 for the R-enantiomer and 0.99, 0.54, and 0.28 μg l-1 for the S-enantiomer. The accuracy of the proposed methodology (including bias and precision) has allowed us to propose it as a successful tool for the control of water quality.
Collapse
Affiliation(s)
- Verónica M Lanaro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Lorena L Sombra
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Jorgelina C Altamirano
- IANIGLA, Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
| | - César A Almeida
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
| | - Patricia W Stege
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
- Laboratorio de Medicina Experimental y Transcripcional, IMIBIO-SL, Instituto Multidisciplinario de Investigación Biológica, San Luis, Argentina
| |
Collapse
|
2
|
Alawadi M, Fakhari AR, Bayatloo MR, Nojavan S. Carboxymethylated maltodextrin as a chiral selector for the separation of some basic drug enantiomers using capillary electrophoresis. J Chromatogr A 2023; 1708:464335. [PMID: 37696127 DOI: 10.1016/j.chroma.2023.464335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023]
Abstract
In this work, carboxymethylated maltodextrin (Cm-MD) was successfully synthesized as an efficient anionic chiral selector and applied for the enantiomer separation of some basic drugs including tramadol, venlafaxine, verapamil, hydroxyzine, citalopram, fluoxetine, and amlodipine by capillary electrophoresis (CE). The synthesized chiral selector was characterized by the nuclear magnetic resonance and Fourier transform infrared spectrophotometry. Under the optimized Cm-MD modified CE conditions (background electrolyte: phosphate buffer (pH 5.0, 50 mM) containing 5% (w/v) Cm-MD; applied voltage: 20 kV; and capillary column temperature: 25 °C), successful enantiomer separation of all studied chiral drugs were observed. By comparison of Cm-MD and MD for enantiomer separation of the model drugs, it was revealed that Cm-MD exhibits a higher resolution in comparison to the MD modified CE. This enhanced resolution could be attributed to the electrostatic interactions between the cationic drugs and anionic Cm-MD and opposite direction mobility of the host-guest complex relative to the chiral analyte. The optimized Cm-MD modified CE method was successfully used for the assay of the enantiomers of citalopram and venlafaxine in commercial tablets. The proposed method showed the linear range of 5.0-150.0 mg/L and 10.0-150.0 mg/L for both enantiomers of citalopram and venlafaxine, respectively. The limits of quantification were 5.0 and 10.0 mg/L for the enantiomers of citalopram and venlafaxine, respectively. The limit of detection for all enantiomers was found to be < 3.0 mg/L. Intra- and inter-day RSDs (n = 4) were less than 9.7%. The relative errors were less than 9.4% for all enantiomers. The obtained results in this research show that Cm-MD as a new, efficient and inexpensive chiral selector can be used for enantiomer separation of basic drugs using the CE technique.
Collapse
Affiliation(s)
- Mustafa Alawadi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Ali Reza Fakhari
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Reza Bayatloo
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
3
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
4
|
Chiral ionic liquids synthesis and their applications in racemic drug separation and analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Chen B, Lin T, You H, Fang L, Chu C, Yang J, Tong S. Preparation of Sulfobutylether-β-cyclodextrin Bonded Fe3O4/SiO2 Core-Shell Nanoparticles and its Application in Enantioselective Liquid-Liquid Extraction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Liu Y, Xu F, Wu F, Wang H, Liang Z, Ding CF. Chiral distinction of phenyl-substituted ethanediol enantiomers by measuring the ion mobility of their ternary complexes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Quality by Design Assisted Optimization of a Chiral Capillary Electrokinetic Chromatographic Method for the Separation of Amlodipine Enantiomers Using Maltodextrin as Chiral Selector. Pharmaceuticals (Basel) 2022; 15:ph15030319. [PMID: 35337117 PMCID: PMC8955793 DOI: 10.3390/ph15030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Analytical-method development based on design of experiment has been applied for optimizing the enantioseparation of amlodipine by chiral capillary electrokinetic chromatography using maltodextrin as the chiral selector. The effect of different factors on the enantioresolution quality was screened. Three separation factors, namely maltodextrin concentration, pH of the background electrolyte and applied voltage were selected as independent variables. The number of experiments was reduced while maximizing the information content using design of experiment. Based on a full-quadratic design that included three variables on three levels, the total design space could be reduced to fifteen factor combinations using a D-optimal algorithm. The aim of the experiment was to find the optimal factor combinations with respect to resolution. The maltodextrin concentration (7.5–10% w/v) demonstrated the strongest effect on the resolution followed by pH (2–4) of the background electrolyte and the applied voltage (15–20 kV). An increase in the maltodextrin concentration was found to result in a greater stereoselectivity, represented by the higher resolution values (Rs ≥ 1.5). The separation conditions in the proposed method were feasible to be adjusted within the applied range with an acceptable resolution.
Collapse
|
8
|
|
9
|
Immobilization of Chondroitin Sulfate A onto Monolithic Epoxy Silica Column as a New Chiral Stationary Phase for High-Performance Liquid Chromatographic Enantioseparation. Pharmaceuticals (Basel) 2021; 14:ph14020098. [PMID: 33513944 PMCID: PMC7911330 DOI: 10.3390/ph14020098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/26/2022] Open
Abstract
Chondroitin sulfate A was covalently immobilized onto a monolithic silica epoxy column involving a Schiff base formation in the presence of ethylenediamine as a spacer and evaluated in terms of its selectivity in enantioseparation. The obtained column was utilized as a chiral stationary phase in enantioseparation of amlodipine and verapamil using a mobile phase consisting of 50 mM phosphate buffer pH 3.5 and UV detection. Sample dilution by organic solvents (preferably 25% v/v acetonitrile-aqueous solution) was applied to achieve baseline enantioresolution (Rs > 3.0) of the individual drug models within 7 min, an excellent linearity (R2 = 0.999) and an interday repeatability of 1.1% to 1.8% RSD. The performance of the immobilized column for quantification of racemate in commercial tablets showed a recovery of 86–98% from tablet matrices. Computational modeling by molecular docking was employed to investigate the feasible complexes between enantiomers and the chiral selector.
Collapse
|
10
|
Zhang Y, Jin X, Ma X, Wang Y. Chiral porous organic frameworks and their application in enantioseparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:8-33. [PMID: 33245740 DOI: 10.1039/d0ay01831g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Porous organic frameworks (POFs) are a kind of porous material with a network structure composed of repeated monomers, which have excellent physical and chemical properties, such as a high surface area, high porosity, uniform pore sizes and structural diversity, and which have aroused broad interest among researchers. With the rapid development of materials science, increasingly more porous materials have been developed and applied, especially metal organic frameworks (MOFs) and covalent organic frameworks (COFs), which have been widely applied in the fields of luminous materials, catalytic research, adsorption and drug transport. One of the most important applications for chiral porous materials is in chiral separation and these materials have become a research hotspot in the field of chromatographic separation and analysis in recent years. In this review, from the viewpoint of enantioseparation, the synthesis of chiral porous materials and their applications in high-performance liquid chromatography (HPLC), capillary electrochromatography (CEC), and gas chromatography (GC) are reviewed. The typical applications of MOFs in solid-phase microextraction (SPME) are also discussed.
Collapse
Affiliation(s)
- Ying Zhang
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | | | | | | |
Collapse
|
11
|
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis 2021; 42:38-57. [PMID: 32914880 PMCID: PMC7821218 DOI: 10.1002/elps.202000151] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.
Collapse
Affiliation(s)
- Nicky de Koster
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Charles P. Clark
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
12
|
Řemínek R, Foret F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: A review. Electrophoresis 2020; 42:19-37. [PMID: 32901975 DOI: 10.1002/elps.202000185] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Capillary electrophoresis represents a promising technique in the field of pharmaceutical analysis. The presented review provides a summary of capillary electrophoretic methods suitable for routine quality control analyses of small molecule drugs published since 2015. In total, more than 80 discussed methods are sorted into three main sections according to the applied electroseparation modes (capillary zone electrophoresis, electrokinetic chromatography, and micellar, microemulsion, and liposome-electrokinetic chromatography) and further subsections according to the applied detection techniques (UV, capacitively coupled contactless conductivity detection, and mass spectrometry). Key parameters of the procedures are summarized in four concise tables. The presented applications cover analyses of active pharmaceutical ingredients and their related substances such as degradation products or enantiomeric impurities. The contribution of reported results to the current knowledge of separation science and general aspects of the practical applications of capillary electrophoretic methods are also discussed.
Collapse
Affiliation(s)
- Roman Řemínek
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
13
|
Xu Z, Xue T, He T. Investigation on the chiral recognition mechanism between verteporfin and cholate salts by capillary electrophoresis. J Sep Sci 2020; 43:2905-2913. [DOI: 10.1002/jssc.202000026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Zhongqi Xu
- College of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Tianfeng Xue
- College of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Tao He
- College of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
14
|
Khan S, Li H, Zhao C, Wu X, Zhang YJ. Asymmetric Allylic Etherification of Vinylethylene Carbonates with Diols via Pd/B Cooperative Catalysis: A Route to Chiral Hemi-Crown Ethers. Org Lett 2019; 21:9457-9462. [DOI: 10.1021/acs.orglett.9b03663] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sardaraz Khan
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Hongfang Li
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, 977 Gongyuan Road, Yanji, Jilin 133002, P. R. China
| | - Can Zhao
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xue Wu
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, 977 Gongyuan Road, Yanji, Jilin 133002, P. R. China
| | - Yong Jian Zhang
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
15
|
Dascalu AE, Ghinet A, Billamboz M, Lipka E. Separations of antifungal compounds in capillary electrophoresis with two anionic cyclodextrins. Electrophoresis 2019; 40:1986-1991. [PMID: 30847936 DOI: 10.1002/elps.201800479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 11/09/2022]
Abstract
CD-CZE methods were developed for complete stereoisomeric separations of a series of six γ-lactam analogues, of which some were neutral, or cationic depending on the background electrolyte nature. The tested cyclodextrin was the versatile sulfobutylether- β-CD, used either in a phosphate buffer using capillaries dynamically coated with polyethylene oxide or in a borate buffer using uncoated capillaries. Long-end and short-end modes and concentration variations of chiral selectors allowed finding conditions of complete separation of four out of the six derivatives (i.e., 1, 2, 3, and 4) in short run times, confirming their broad range of applications. To separate the two last compounds, the highly sulfated- γ-CD was examined as chiral selector in acidic phosphate conditions. The enantiomers of the γ-lactam analogues 5 and 6 were baseline resolved with 5.5 and 4%, respectively as concentration in the buffer.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- Univ. Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,Ecole des Hautes Etudes d'Ingénieur (HEI), Laboratoire de Pharmacochimie, Lille, France.,Laboratoire de Chimie Analytique, Faculté de Pharmacie de Lille, Lille, France.,'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Iasi, Romania
| | - Alina Ghinet
- Univ. Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,Ecole des Hautes Etudes d'Ingénieur (HEI), Laboratoire de Pharmacochimie, Lille, France.,'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Iasi, Romania
| | - Muriel Billamboz
- Univ. Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,Ecole des Hautes Etudes d'Ingénieur (HEI), Laboratoire de Pharmacochimie, Lille, France
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,Laboratoire de Chimie Analytique, Faculté de Pharmacie de Lille, Lille, France
| |
Collapse
|
16
|
Zhang Y, Du Y, Yu T, Feng Z, Chen J. Investigation of dextrin-based synergistic system with chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis. J Pharm Biomed Anal 2019; 164:413-420. [DOI: 10.1016/j.jpba.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 11/25/2022]
|
17
|
Abstract
Capillary electrophoresis (CE) is a well-established and one of the most powerful separation techniques in the field of chiral separations. Its hyphenation with mass spectrometry (MS) combines both the high separation efficiency and low sample consumption of CE and the high sensitivity and structural information of MS. Thus, the outstanding chiral resolution power of CE along with the MS advantages makes CE-MS a perfect combination to achieve sensitive enantioseparations. This chapter describes three representative examples of different approaches used in the chiral analysis of amino acids in biological fluids by CE-MS. The first methodology uses the partial filling technique to avoid the entry of cyclodextrins in the MS source. The second method shows the possibility to carry out the direct coupling EKC-MS even when a relative high concentration of a native cyclodextrin is used as chiral selector. The last example illustrates an alternative strategy based on the formation of stable diastereomers between an enantiomerically pure chiral reagent and the amino acids enantiomers which can be separated in an achiral environment.
Collapse
|
18
|
Zhang Q, Zhang J, Xue S, Rui M, Gao B, Li A, Bai J, yin Z, Anochie EM. Enhanced enantioselectivity of native α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis. J Sep Sci 2018; 41:4525-4532. [DOI: 10.1002/jssc.201800792] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Qi Zhang
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Jian Zhang
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Song Xue
- Department of Pharmacy; Affiliated Hospital of Jiangsu University; Zhenjiang 212013 P. R. China
| | - Mengjie Rui
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Bin Gao
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Ang Li
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Jiashuai Bai
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Zhichao yin
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | | |
Collapse
|
19
|
Chalavi S, Fakhari AR, Nojavan S. Development of a modified partial filling method in capillary electrophoresis using two chiral plugs for the simultaneous enantioseparation of chiral drugs: Comparison with mixed chiral selector capillary electrophoresis. J Chromatogr A 2018; 1567:211-218. [DOI: 10.1016/j.chroma.2018.06.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 01/12/2023]
|
20
|
Chen J, Wang X, Ghulam M, Chen H, Qu F. Predefine resolution of enantiomers in partial filling capillary electrophoresis and two discontinuous function plugs coupling in-capillary. Electrophoresis 2018; 39:2391-2397. [DOI: 10.1002/elps.201800154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jin Chen
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Xiaoqian Wang
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Murtaza Ghulam
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Hongxu Chen
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Feng Qu
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| |
Collapse
|
21
|
Chalavi S, Fakhari AR, Nojavan S, Mirzaei P. Evaluation of the synergistic effect with amino acids for enantioseparation of basic drugs using capillary electrophoresis. Electrophoresis 2018; 39:2202-2209. [DOI: 10.1002/elps.201800128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/19/2018] [Accepted: 05/31/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Soheila Chalavi
- Faculty of Chemistry; Shahid Beheshti University; Tehran I. R. Iran
| | - Ali Reza Fakhari
- Faculty of Chemistry; Shahid Beheshti University; Tehran I. R. Iran
| | - Saeed Nojavan
- Faculty of Chemistry; Shahid Beheshti University; Tehran I. R. Iran
| | - Peyman Mirzaei
- Faculty of Chemistry; Shahid Beheshti University; Tehran I. R. Iran
| |
Collapse
|
22
|
Wang Z, Guo H, Chen M, Zhang G, Chang R, Chen A. Separation and determination of corynoxine and corynoxine B using chiral ionic liquid and hydroxypropyl-β-cyclodextrin as additives by field-amplified sample stacking in capillary electrophoresis. Electrophoresis 2018; 39:2195-2201. [PMID: 29947080 DOI: 10.1002/elps.201800129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 02/03/2023]
Abstract
A sensitive, fast, and effective method, field-amplified sample stacking (FASS) in capillary electrophoresis, has been established for the separation and determination of corynoxine and corynoxine B. Hydroxypropyl-β-CD (HP-β-CD) and tetrabutylammonium-L-glutamic acid (TBA-L-Glu) were used as additives in the separation system. Electrokinetic injection was chosen to introduce sample from inlet at 10 kV for 50 s after a water plug (0.5 psi, 4 s) was injected to permit FASS. The running buffer (pH 6.1) was composed of 40 mM sodium dihydrogen phosphate solution, 130 mM HP-β-CD, and 10 mM TBA-L-Glu and the separation voltage was 20 kV. Under the optimum conditions, corynoxine and corynoxine B were successfully enriched and separated within 12 min and the sensitivity was improved approximately by 700-900 folds. Calibration curves were in a good linear relationship within the range of 62.5-5.00 × 103 ng/mL for both corynoxine and corynoxine B. The limits of detection (S/N = 3) and quantitation (S/N = 10) were 14.9, 45.2 ng/mL for corynoxine and 11.2, 34.5 ng/mL for corynoxine B, respectively. Finally, this method was successfully applied for the determination of corynoxine and corynoxine B in the stems with hooks of Uncaria rhynchophylla and its formulations.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Haitao Guo
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Meng Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Guangbin Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Ruimiao Chang
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Anjia Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
23
|
Tseng WB, Hsieh MM, Chiu TC, Yu PL, Chen SH. Enantioseparation of phenothiazines through capillary electrophoresis with solid phase extraction and polymer based stacking. J Food Drug Anal 2018; 26:1171-1179. [PMID: 29976409 PMCID: PMC9303030 DOI: 10.1016/j.jfda.2017.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/15/2017] [Accepted: 12/07/2017] [Indexed: 12/02/2022] Open
Abstract
This study developed a sensitive method involving capillary electrophoresis (CE) coupled with ultraviolet absorption for the simultaneous separation of chiral phenothiazine drugs at nanomolar concentration levels. The method consists of hydroxypropyl-γ-cyclodextrin (Hp-γ-CD) as a chiral selector and poly (diallyldimethylammonium chloride) (PDDAC)-based CE. Five pairs of d,l-phenothiazines were baseline separated using a background electrolyte containing 0.9% PDDAC, 5 mM Hp-γ-CD, and 100 mM tris(hydroxymethyl)aminomethane (Tris)-formate (pH 3.0). The five pairs were successfully stacked on the basis of the difference in viscosity between the PDDAC-containing background electrolyte and the sample solution, with almost no loss of resolution. The combination of a solid-phase extraction and PDDAC-mediated CE can efficiently improve the sensitivity of the phenothiazine enantiomers. Under optimal conditions, calibration graphs displayed the linear range between 6 and 1500 nM, with relative standard deviation values lower than 3.5% (n = 5). Detection limit ranged from 2.1 to 6.3 nM for target analytes, and 607- to 1555-fold enhancement was achieved. The practicality of using the proposed method to determine five pairs of d,l-phenothiazines in urine is also validated, in which recoveries between recoveries of all phenothiazines from urine ranged from 89% to 101%.
Collapse
Affiliation(s)
- Wei-Bin Tseng
- Department of College of Ecology and Resource Engineering, Wuyi University, China
| | - Ming-Mu Hsieh
- Department of Chemistry, National Kaohsiung Normal University, Taiwan.
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, Taitung, Taiwan.
| | - Po-Lin Yu
- Department of Chemistry, National Kaohsiung Normal University, Taiwan
| | - Szu-Hua Chen
- Department of Chemistry, National Kaohsiung Normal University, Taiwan
| |
Collapse
|
24
|
Zhu Q, Scriba GK. Analysis of small molecule drugs, excipients and counter ions in pharmaceuticals by capillary electromigration methods – recent developments. J Pharm Biomed Anal 2018; 147:425-438. [DOI: 10.1016/j.jpba.2017.06.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
|
25
|
Deng X, Li W, Ding G, Xue T, Chen X. Synthesis and Applications of Functionalized Magnetic Nanomaterials in Enantioseparation. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1419257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaojuan Deng
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Analysis Center, Tianjin University, Tianjin, China
| | - Wenbin Li
- Dikma Technologies Inc., Tianjin, China
| | | | - Tao Xue
- Analysis Center, Tianjin University, Tianjin, China
| | | |
Collapse
|
26
|
Crego AL, Mateos M, Nozal L. Recent contributions for improving sensitivity in chiral CE. Electrophoresis 2017; 39:67-81. [PMID: 28960403 DOI: 10.1002/elps.201700293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/02/2023]
Abstract
The flexibility and versatility of the chiral CE are unrivaled and the same instrumentation can be used to separate a diverse range of analytes, both large and small molecules, whether charged or uncharged. However, one of the disadvantages is generally thought to be the poor sensitivity of ultraviolet (UV) detection, which is the most popular among CE detectors. This review focuses on methodologies and applications regarding improvements of sensitivity in chiral CE published in the last 2 years (June 2015 until May 2017). This contribution continues to update this series of biannual reviews, first published in Electrophoresis in 2006. The main body of the review brings a survey of publications organized according to different approaches to detect a low amount of analytes, either by sample treatment procedures or by in-capillary sample preconcentration techniques, both using UV detection, or even by employing detection systems more sensitive than UV absorption, such as LIF or MS. This review provides comprehensive tables listing the new approaches in sensitive chiral CE with categorizing by the fundamental mechanism to enhance the sensitivity, which provide relevant information on the strategies employed. The concluding remarks in the final part of the review evaluate present state of art and the trends for sensitivity enhancement in chiral CE.
Collapse
Affiliation(s)
- Antonio Luis Crego
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Faculty of Biology, Environmental Sciences, and Chemistry, University of Alcalá, Madrid, Spain
| | - María Mateos
- Institute of Applied Chemistry and Biotechnology, University of Alcalá, Madrid, Spain
| | - Leonor Nozal
- Institute of Applied Chemistry and Biotechnology, University of Alcalá, Madrid, Spain
| |
Collapse
|
27
|
|
28
|
A quality by design-based approach to a capillary electrokinetic assay for the determination of dextromepromazine and levomepromazine sulfoxide as impurities of levomepromazine. J Pharm Biomed Anal 2017; 146:402-409. [PMID: 28926734 DOI: 10.1016/j.jpba.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 02/03/2023]
Abstract
Using a quality by design approach, a capillary electrophoresis method for the simultaneous determination of dextromepromazine and the oxidation product levomepromazine sulfoxide in levomepromazine was developed. The analytical target profile was defined that the method should be able to quantify 0.1% of both impurities with a precision of ≤10%. Hydroxypropyl-γ-cyclodextrin was used as chiral selector. The critical process parameters cyclodextrin concentration, buffer pH and concentration as well as temperature and applied voltage were studied using a fractional factorial resolution V+ design for defining the knowledge space. A central composite face centered design was used as response surface methodology for deriving the design space by Monte Carlo simulations. The selected working point was a 100mM citric acid buffer, pH 2.85, containing 3.6mg/mL hydroxypropyl-γ-cyclodextrin, a temperature of 15°C and a voltage of 25kV. Robustness was estimated using a Plackett-Burman design. The method was subsequently validated in the relative concentration range of 0.1%-1.0% of the impurities for a solution containing 0.25mg/mL levomepromazine. The method was applied to the determination of the purity of the reference substance of the European Pharmacopoeia and of the drug in a commercial injection solution.
Collapse
|
29
|
Li L, Wu C, Ma Y, Zhou S, Li Z, Sun T. Effectively enhancing the enantioseparation ability of β-cyclodextrin derivatives by de novo design and molecular modeling. Analyst 2017; 142:3699-3706. [PMID: 28849820 DOI: 10.1039/c7an00986k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rational engineering of native β-CD as an ideal chiral selector for a definite analyte in capillary electrophoresis represents a challenge in separation science. Herein, a rational and systematic strategy that combines the de novo design and molecular modeling is firstly described to expedite the manipulation and selection of effective selector for enantioseparation in capillary electrophoresis. Using β-adrenoreceptor agonists as model analytes, we demonstrate how this strategy efficiently improves the enantiorecognition in chiral discrimination sites of inclusion complexes. The evolved β-CD derivative could be utilized as a chiral receptor to achieve the effective enantioseparation (Rs > 1.5) of racemic β-adrenoreceptor agonists. We highlight a novel strategy for efficiently and rapidly manipulating native CD based on the characteristics of analyte so as to gain an excellent chiral selector.
Collapse
Affiliation(s)
- Linwei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Yang Ma
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Shuhao Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Zhen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, PR China.
| |
Collapse
|
30
|
Delplanques T, Boulahjar R, Charton J, Houze C, Howsam M, Servais AC, Fillet M, Lipka E. Single and dual cyclodextrins systems for the enantiomeric and diastereoisomeric separations of structurally related dihydropyridone analogues. Electrophoresis 2017; 38:1922-1931. [DOI: 10.1002/elps.201600536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Thibaut Delplanques
- Inserm, U995 - LIRIC - Laboratoire de Chimie Analytique, Faculté de Pharmacie de Lille; Université de Lille; Lille France
| | - Rajaa Boulahjar
- Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems; Université de Lille; Lille France
| | - Julie Charton
- Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems; Université de Lille; Lille France
| | - Corentin Houze
- Inserm, U995 - LIRIC - Laboratoire de Chimie Analytique, Faculté de Pharmacie de Lille; Université de Lille; Lille France
| | - Michael Howsam
- Inserm, U995 - LIRIC - Faculté de Médecine de Lille; Université de Lille; Lille France
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM); University of Liège; Liege Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM); University of Liège; Liege Belgium
| | - Emmanuelle Lipka
- Inserm, U995 - LIRIC - Laboratoire de Chimie Analytique, Faculté de Pharmacie de Lille; Université de Lille; Lille France
| |
Collapse
|
31
|
Stavrou IJ, Agathokleous EA, Kapnissi-Christodoulou CP. Chiral selectors in CE: Recent development and applications (mid-2014 to mid-2016). Electrophoresis 2017; 38:786-819. [DOI: 10.1002/elps.201600322] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/05/2022]
|
32
|
Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016. [DOI: 10.1007/s10337-016-3167-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Bocato MZ, de Lima Moreira F, de Albuquerque NCP, de Gaitani CM, de Oliveira ARM. In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE. J Pharm Biomed Anal 2016; 128:528-537. [DOI: 10.1016/j.jpba.2016.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/26/2016] [Accepted: 06/19/2016] [Indexed: 11/29/2022]
|
34
|
Salgado A, Chankvetadze B. Applications of nuclear magnetic resonance spectroscopy for the understanding of enantiomer separation mechanisms in capillary electrophoresis. J Chromatogr A 2016; 1467:95-144. [PMID: 27604161 DOI: 10.1016/j.chroma.2016.08.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
This review deals with the applications of nuclear magnetic resonance (NMR) spectroscopy to understand the mechanisms of chiral separation in capillary electrophoresis (CE). It is accepted that changes observed in the separation process, including the reversal of enantiomer migration order (EMO), can be caused by subtle modifications in the molecular recognition mechanisms between enantiomer and chiral selector. These modifications may imply minor structural differences in those selector-selectand complexes that arise from the above mentioned interactions. Therefore, it is mandatory to understand the fine intermolecular interactions between analytes and chiral selectors. In other words, it is necessary to know in detail the structures of the complexes formed by the enantiomer (selectand) and the selector. Any differences in the structures of these complexes arising from either enantiomer should be detected, so that enantiomeric bias in the separation process could be explained. As to the nature of these interactions, those have been extensively reviewed, and it is not intended to be discussed here. These interactions contemplate ionic, ion-dipole and dipole-dipole interactions, hydrogen bonding, van der Waals forces, π-π stacking, steric and hydrophobic interactions. The main subject of this review is to describe how NMR spectroscopy helps to gain insight into the non-covalent intermolecular interactions between selector and selectand that lead to enantiomer separation by CE. Examples in which diastereomeric species are created by covalent (irreversible) derivatization will not be considered here. This review is structured upon the different structural classes of chiral selectors employed in CE, in which NMR spectroscopy has made substantial contributions to rationalize the observed enantioseparations. Cases in which other techniques complement NMR spectroscopic data are also mentioned.
Collapse
Affiliation(s)
- Antonio Salgado
- Centro de Espectroscopía de RMN (CERMN), Faculty of Pharmacy, University of Alcalá, University Campus, 28805 Alcalá de Henares, Madrid, Spain.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| |
Collapse
|
35
|
Růžička M, Koval D, Vávra J, Reyes-Gutiérrez PE, Teplý F, Kašička V. Interactions of helquats with chiral acidic aromatic analytes investigated by partial-filling affinity capillary electrophoresis. J Chromatogr A 2016; 1467:417-426. [PMID: 27578406 DOI: 10.1016/j.chroma.2016.08.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 01/18/2023]
Abstract
Noncovalent molecular interactions between helquats, a new class of dicationic helical extended diquats, and several chiral acidic aromatic drugs and catalysts have been investigated using partial-filling affinity capillary electrophoresis (PF-ACE). Helquats dissolved at 1mM concentration in the aqueous background electrolyte (40mM Tris, 20mM acetic acid, pH 8.1) were introduced as ligand zones of variable length (0-130mm) into the hydroxypropylcellulose coated fused silica capillary whereas 0.1mM solutions of negatively charged chiral drugs or catalysts (warfarin, ibuprofen, mandelic acid, etodolac, binaphthyl phosphate and 11 other acidic aromatic compounds) were applied as a short analyte zone at the injection capillary end. After application of electric field, analyte and ligand migrated against each other and in case of their interactions, migration time of the analyte was increasing with increasing length of the ligand zone. From the tested compounds, only isomers of those exhibiting helical chirality and/or possessing conjugated aromatic systems were enantioselectively separated through their differential interactions with helquats. Some compounds with conjugated aromatic groups interacted with helquats moderately strongly but non-enantiospecifically. Small compounds with single benzene ring exhibited no or very weak non-enantiospecific interactions. PF-ACE method allowed to determine binding constants of the analyte-helquat complexes from the changes of migration times of the analytes. Binding constants of the weakest complexes of the analytes with helquats were less than 50L/mol, whereas binding constants of the strongest complexes were in the range 1 000-1 400L/mol.
Collapse
Affiliation(s)
- Martin Růžička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic; Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Dušan Koval
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic
| | - Jan Vávra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic
| | - Paul E Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic
| | - Filip Teplý
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám., 542/2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
36
|
Dubský P, Dvořák M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem 2016; 408:8623-8641. [DOI: 10.1007/s00216-016-9799-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022]
|
37
|
Preparation of graphene oxide-modified affinity capillary monoliths based on three types of amino donor for chiral separation and proteolysis. J Chromatogr A 2016; 1456:249-56. [DOI: 10.1016/j.chroma.2016.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022]
|
38
|
Pérez-Míguez R, Marina ML, Castro-Puyana M. Enantiomeric separation of non-protein amino acids by electrokinetic chromatography. J Chromatogr A 2016; 1467:409-416. [PMID: 27372417 DOI: 10.1016/j.chroma.2016.06.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022]
Abstract
New analytical methodologies enabling the enantiomeric separation of a group of non-protein amino acids of interest in the pharmaceutical and food analysis fields were developed in this work using Electrokinetic Chromatography. The use of FMOC as derivatization reagent and the subsequent separation using acidic conditions (formate buffer at pH 2.0) and anionic cyclodextrins as chiral selectors allowed the chiral separation of eight from the ten non-protein amino acids studied. Pyroglutamic acid, norvaline, norleucine, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, and selenomethionine were enantiomericaly separated using sulfated-α-CD while sulfated-γ-CD enabled the enantiomeric separation of norvaline, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, selenomethionie, citrulline, and pipecolic acid. Moreover, the potential of the developed methodologies was demonstrated in the analysis of citrulline and its enantiomeric impurity in food supplements. For that purpose, experimental and instrumental variables were optimized and the analytical characteristics of the proposed method were evaluated. LODs of 2.1×10-7 and 1.8×10-7M for d- and l-citrulline, respectively, were obtained. d-Cit was not detectable in any of the six food supplement samples analyzed showing that the effect of storage time on the racemization of citrulline was negligible.
Collapse
Affiliation(s)
- Raquel Pérez-Míguez
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
39
|
Scriba GKE. Chiral recognition in separation science - an update. J Chromatogr A 2016; 1467:56-78. [PMID: 27318504 DOI: 10.1016/j.chroma.2016.05.061] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
Stereospecific recognition of chiral molecules is an important issue in various aspects of life sciences and chemistry including analytical separation sciences. The basis of analytical enantioseparations is the formation of transient diastereomeric complexes driven by hydrogen bonds or ionic, ion-dipole, dipole-dipole, van der Waals as well as π-π interactions. Recently, halogen bonding was also described to contribute to selector-selectand complexation. Besides structure-separation relationships, spectroscopic techniques, especially NMR spectroscopy, as well as X-ray crystallography have contributed to the understanding of the structure of the diastereomeric complexes. Molecular modeling has provided the tool for the visualization of the structures. The present review highlights recent contributions to the understanding of the binding mechanism between chiral selectors and selectands in analytical enantioseparations dating between 2012 and early 2016 including polysaccharide derivatives, cyclodextrins, cyclofructans, macrocyclic glycopeptides, proteins, brush-type selectors, ion-exchangers, polymers, crown ethers, ligand-exchangers, molecular micelles, ionic liquids, metal-organic frameworks and nucleotide-derived selectors. A systematic compilation of all published literature on the various chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Friedrich Schiller University Jena, Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
40
|
Application of rifampicin as a chiral selector for enantioresolution of basic drugs using capillary electrophoresis. J Chromatogr A 2016; 1453:138-42. [PMID: 27240943 DOI: 10.1016/j.chroma.2016.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 11/21/2022]
Abstract
Rifampicin, a member of rifamycin sub-class of antibiotics which belongs to the naphthalenic ansamycin class of antibiotics, has a characteristic ansa structure, i.e., a ring structure or chromophore spanned by an aliphatic chain. The present work was designed to evaluate its potential as a chiral selector (CS) as its structure consisting of nine stereogenic centers, an aromatic moiety and several functional groups (i.e., one imine, one amide, one acetoxy residue, two aliphatic hydroxyl and three phenolic hydroxyl groups) was expected to instigate multiple enantioselective interactions, namely, hydrogen bonding and inclusion complexation with chiral analytes, and therefore resulting in efficient enantioseparations. Systematic experiments were performed to investigate the effects of concentration of CS, composition of background electrolyte (BGE) and applied voltage on chiral separation. Enantiomers of propranolol and metoprolol were baseline resolved using a BGE consisting of 20mM CS and 50/50 (v/v) iso-propanol/phosphate buffer (100mM, pH 7.0) whereas for enantiomers of sertraline, a BGE consisting of 23mM CS and 40/60 (v/v) iso-propanol/phosphate buffer (100mM, pH 7.0) resulted in baseline resolutions.
Collapse
|
41
|
Analytical advances in pharmaceutical impurity profiling. Eur J Pharm Sci 2016; 87:118-35. [DOI: 10.1016/j.ejps.2015.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/14/2015] [Accepted: 12/05/2015] [Indexed: 01/11/2023]
|
42
|
Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013-2015). Electrophoresis 2016; 37:1591-608. [DOI: 10.1002/elps.201600058] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/07/2022]
|
43
|
Liu Y, Deng M, Yu J, Jiang Z, Guo X. Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism. J Sep Sci 2016; 39:1766-75. [PMID: 26935589 DOI: 10.1002/jssc.201501026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/28/2016] [Accepted: 02/21/2016] [Indexed: 12/29/2022]
Abstract
A novel single-isomer cyclodextrin derivative, heptakis {2,6-di-O-[3-(1,3-dicarboxyl propylamino)-2-hydroxypropyl]}-β-cyclodextrin (glutamic acid-β-cyclodextrin) was synthesized and used as a chiral selector in capillary electrophoresis for the enantioseparation of 12 basic drugs, including terbutaline, clorprenaline, tulobuterol, clenbuterol, procaterol, carvedilol, econazole, miconazole, homatropine methyl bromide, brompheniramine, chlorpheniramine and pheniramine. The primary factors affecting separation efficiency, which include the background electrolyte pH, the concentration of glutamic acid-β-cyclodextrin and phosphate buffer concentration, were investigated. Satisfactory enantioseparations were obtained using an uncoated fused-silica capillary of 50 cm (effective length 40 cm) × 50 μm id with 120 mM phosphate buffer (pH 2.5-4.0) containing 0.5-4.5 mM glutamic acid-β-cyclodextrin as background electrolyte. A voltage of 20 kV was applied and the capillary temperature was kept at 20°C. The results proved that glutamic acid-β-cyclodextrin was an effective chiral selector for studied 12 basic drugs. Moreover, the possible chiral recognition mechanism of brompheniramine, chlorpheniramine and pheniramine on glutamic acid-β-cyclodextrin was investigated using the semi-empirical Parametric Method 3.
Collapse
Affiliation(s)
- Yongjing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China.,Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, P. R. China
| | - Miaoduo Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Jia Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Zhen Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Xingjie Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
44
|
Bao JJ, Jia F, Li Y, Liang Q, Wang Y. Synthesis and applications of sulfopropyl ether γ-cyclodextrin polymer as chiral selector in capillary electrophoresis. Anal Bioanal Chem 2016; 408:3639-49. [PMID: 26993309 DOI: 10.1007/s00216-016-9452-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/14/2016] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
A novel sulfopropyl ether γ-cyclodextrin polymer (SPE-γ-CDP) through polycondensating sulfated cyclodextrins (SCDs) was synthesized. This synthesis approach also has the potential of preparing other derived cyclodextrins (CDs) polymers. The polymerized SCDs took on both the properties of SCDs and certain characteristics of polymers, such as chiral selectivity and high viscosity. Synthesis parameters, including reactions sequence, sulfation, and polycondensation conditions were investigated systematically. The product was characterized by elemental analysis, infrared spectroscopy (IR), and indirect UV detections prior to use as background electrolytes additive. The separation conditions, including the concentration of SPE-γ-CDP, the concentration and pH of running buffer, separation voltage, as well as the additional organic solution were optimized during chiral separation of neutral, acidic, and basic enantiomers in capillary electrophoresis (CE). SPE-γ-CDP was proven to be an effective chiral resolving agent in CE with the advantages of simple synthesis process, low cost, similar ratio of charge-to-mass, low current, great reproducibility, and reusability. Graphical Abstract Synthesis and applications of sulfopropyl ether γ-cyclodextrin polymer.
Collapse
Affiliation(s)
- James J Bao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Feifei Jia
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Qinggang Liang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
45
|
Huang J, Su P, Zhou L, Yang Y. Grafting l -valine on polyamidoamine dendrimer-modified magnetic microspheres for enantioselective adsorption of dansyl amino acids. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
46
|
Abstract
Capillary electrophoresis (CE) is a versatile and flexible technique for analytical enantioseparations. This is due to the large variety of chiral selectors as well as the different operation modes including electrokinetic chromatography, micellar electrokinetic chromatography, and microemulsion electrokinetic chromatography. The chiral selector, which is added to the background electrolyte, represents a pseudostationary phase with its own electrophoretic mobility allowing a variety of different separation protocols. The present chapter briefly addresses the basic fundamentals of CE enantioseparations as well as the most frequently applied chiral selectors and separation modes. The practical example illustrates the separation of the enantiomers of a positively charged analyte using native and charged cyclodextrin derivatives as chiral selectors.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, University of Jena, Philosophenweg 14, Jena, 07743, Germany.
| | - Henrik Harnisch
- Department of Pharmaceutical Chemistry, University of Jena, Philosophenweg 14, Jena, 07743, Germany
| | - Qingfu Zhu
- Department of Chemistry, Wichita State University, 1845 Fairmount St, Wichita, KS, 67260, USA
| |
Collapse
|
47
|
Domínguez-Vega E, Montealegre C, Marina ML. Analysis of antibiotics by CE and their use as chiral selectors: An update. Electrophoresis 2015; 37:189-211. [PMID: 26471773 DOI: 10.1002/elps.201500359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
The widespread use of antibiotics in medicine and as growth-promoting agents has increased the demand for suitable analytical techniques for their analysis. Analytical methods based on CE or miniaturized CE systems have proved over the years their ability for the analysis of antibiotics. Since our last review (Electrophoresis 2014, 35, 28-49) several new CE methodologies have been reported for antibiotic analysis. This review presents an update of the literature published from June 2013 to June 2015 for the analysis of antibiotics by CE. UV continues being the most used detection system for antibiotics analysis by CE. Strategies to improve sensitivity as the use of sensitive detection systems and the application of preconcentration techniques appear to be the major developments. Furthermore, the use of portable and miniaturized devices for antibiotic analysis is presented in detail. Applications of the developed methodologies to the determination of residues of antibiotics in biological, food, and environmental samples are carefully described. Finally, new developments and applications of antibiotics as chiral selectors in CE are also included.
Collapse
Affiliation(s)
- Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Maria Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
48
|
Piešťanský J, Maráková K, Kovaľ M, Havránek E, Mikuš P. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples. Electrophoresis 2015; 36:3069-79. [DOI: 10.1002/elps.201500351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Juraj Piešťanský
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Marián Kovaľ
- Villa Labeco spol. s r. o; Spišská Nová Ves Slovak Republic
| | - Emil Havránek
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| |
Collapse
|
49
|
Sánchez-López E, Marina ML, Crego AL. Improving the sensitivity in chiral capillary electrophoresis. Electrophoresis 2015; 37:19-34. [PMID: 26434566 DOI: 10.1002/elps.201500315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/14/2015] [Accepted: 09/26/2015] [Indexed: 12/16/2022]
Abstract
CE is known for being one of the most powerful analytical techniques when performing enantioseparations due to its numerous advantages such as excellent separation efficiency and extremely low solvents and reagents consumption, all of them derived from the capillary small dimensions. Moreover, it is worth highlighting that unlike in chromatographic techniques, in CE the chiral selector is generally within the separation medium instead of being attached to the separation column which makes the method optimization a more versatile task. Despite its numerous advantages, when using UV-Vis detection, CE lacks of sensitivity detection due to its short optical path length derived from the narrow separation capillary. This issue can be overcome by means of different approaches, either by sample treatment procedures or by in-capillary preconcentration techniques or even by employing detection systems more sensitive than UV-Vis, such as LIF or MS. The present review assembles the latest contributions regarding improvements of sensitivity in chiral CE published from June 2013 until May 2015, which follows the works included in a previous review reported by Sánchez-Hernández et al. [Electrophoresis 2014, 35, 12-27].
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Antonio L Crego
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
50
|
Melani F, Pasquini B, Caprini C, Gotti R, Orlandini S, Furlanetto S. Combination of capillary electrophoresis, molecular modeling and NMR to study the enantioselective complexation of sulpiride with double cyclodextrin systems. J Pharm Biomed Anal 2015; 114:265-71. [DOI: 10.1016/j.jpba.2015.05.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 01/02/2023]
|