1
|
Li S, Liu J, Xu W, Zhang S, Zhao M, Miao L, Hui M, Wang Y, Hou Y, Cong B, Wang Z. A multi-class support vector machine classification model based on 14 microRNAs for forensic body fluid identification. Forensic Sci Int Genet 2025; 75:103180. [PMID: 39591840 DOI: 10.1016/j.fsigen.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
MicroRNAs (miRNAs) are promising biomarkers for forensic body fluid identification owing to their small size, stability against degradation, and differential expression patterns. However, the expression of most body fluid-miRNAs is relative (differentially expressed in certain body fluids) rather than absolute (exclusively expressed in a specific body fluid). Moreover, different body fluids contain heterogeneous cell types, complicating their identification. Therefore, appropriate normalization strategies to eliminate non-biological variations and robust models to interpret expression levels accurately are necessary prerequisites for applying miRNAs in body fluid identification. In this study, the expression stability of six candidate reference genes (RGs) across five body fluids was validated using geNorm, NormFinder, BestKeeper and RankAggreg, and the most suitable combination of RGs (hsa-miR-484 and hsa-miR-191-5p) was identified under our experimental conditions. Subsequently, we systematically evaluated the expression patterns of the 28 most promising body fluid-specific miRNA markers using TaqMan RT-qPCR and selected the optimal combination of markers (12 miRNAs) to establish a multi-class support vector machine (MSVM) classification model. An independent test set (60 samples) was used to validate the accuracy of the proposed classification model, while an additional 30 casework samples were used to assess its robustness. The MSVM model accurately predicted the body fluid origin for almost all (59/60) single-source samples. Moreover, this model demonstrated the capability to identify aged forensic samples and to predict the primary components of mixed stains to a certain extent. In summary, this study presented a miRNA-based MSVM classification model for forensic body fluid identification using the qPCR platform. However, extensive validation, especially inter-laboratory collaborative exercises, is necessary before miRNA can be routinely applied in forensic identification practice.
Collapse
Affiliation(s)
- Suyu Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Wei Xu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Criminal Investigation Detachment of Huainan Public Security Bureau, Huainan 232000, China
| | - Shuyuan Zhang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lu Miao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Criminal Investigation Detachment of Huainan Public Security Bureau, Huainan 232000, China
| | - Minxiao Hui
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuan Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Anhui Hopegenerich Biotechnology, Hefei 230031, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Altmeyer L, Baumer K, Hall D. Differentiation of five forensically relevant body fluids using a small set of microRNA markers. Electrophoresis 2024; 45:1785-1795. [PMID: 39076047 DOI: 10.1002/elps.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
In forensic investigations, identifying the type of body fluid allows for the interpretation of biological evidence at the activity level. Over the past two decades, significant research efforts have focused on developing molecular methods for this purpose. MicroRNAs (miRNAs) hold great promise due to their tissue-specific expression, abundance, lack of splice variants, and relative stability. Although initial findings are promising, achieving consistent results across studies is still challenging, underscoring the necessity for both original and replication studies. To address this, we selected 18 miRNA candidates and tested them on 6 body fluids commonly encountered in forensic cases: peripheral blood, menstrual blood, saliva, semen, vaginal secretion, and skin. Using reverse transcription quantitative PCR analysis, we confirmed eight miRNA candidates (miR-144-3p, miR-451a, miR-205-5p, miR-214-3p, miR-888-5p, miR-891a-5p, miR-193b-3p, miR-1260b) with high tissue specificity and four (miR-203a-3p, miR-141-3p, miR-200b-3p, miR-4286) with lesser discrimination ability but still contributing to body fluid differentiation. Through principal component analysis and hierarchical clustering, the set of 12 miRNAs successfully distinguished all body fluids, including the challenging discrimination of blood from menstrual blood and saliva from vaginal secretion. In conclusion, our results provide additional data supporting the use of a small set of miRNAs for predicting common body fluids in forensic contexts. Large population data need to be gathered to develop a body fluid prediction model and assess its accuracy.
Collapse
Affiliation(s)
- Linus Altmeyer
- School of Criminal Justice, University of Lausanne, Lausanne, Switzerland
| | - Karine Baumer
- Unité de Génétique Forensique, Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Switzerland
| | - Diana Hall
- Unité de Génétique Forensique, Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Hamza M, Sankhyan D, Shukla S, Pandey P. Advances in body fluid identification: MiRNA markers as powerful tool. Int J Legal Med 2024; 138:1223-1232. [PMID: 38467753 DOI: 10.1007/s00414-024-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Body fluids are one of the most encountered types of evidence in any crime and are commonly used for identifying a person's identity. In addition to these, they are also useful in ascertaining the nature of crime by determining the ty pe of fluid such as blood, semen, saliva, urine etc. Body fluids collected from crime scenes are mostly found in degraded, trace amounts and/or mixed with other fluids. However, the existing immunological and enzyme-based methods used for differentiating these fluids show limited specificity and sensitivity in such cases. To overcome these challenges, a new method utilizing microRNA expression of the body fluids has been proposed. This method is believed to be non-destructive as well as sensitive in nature and researches have shown promising results for highly degraded samples as well. This systematic review focuses on and explores the use and reliability of miRNAs in body fluid identification. It also summarizes the researches conducted on various aspects of miRNA in terms of body fluid examination in forensic investigations.
Collapse
Affiliation(s)
- Mohd Hamza
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deeksha Sankhyan
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Saurabh Shukla
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preeti Pandey
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
4
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
5
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Lewis CA, Seashols-Williams SJ. A combined molecular approach utilizing microbial DNA and microRNAs in a qPCR multiplex for the classification of five forensically relevant body fluids. J Forensic Sci 2024; 69:282-290. [PMID: 37818748 DOI: 10.1111/1556-4029.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Body fluid identification is an essential step in the forensic biology workflow that can assist DNA analysts in determining where to collect DNA evidence. Current presumptive tests lack the specificity that molecular techniques can achieve; therefore, molecular methods, including microRNA (miRNA) and microbial signature characterization, have been extensively researched in the forensic community. Limitations of each method suggest combining molecular markers to increase the discrimination efficiency of multiple body fluids from a single assay. While microbial signatures have been successful in identifying fluids with high bacterial abundances, microRNAs have shown promise in fluids with low microbial abundance (blood and semen). This project synergized the benefits of microRNAs and microbial DNA to identify multiple body fluids using DNA extracts. A reverse transcription (RT)-qPCR duplex targeting miR-891a and let-7g was validated, and miR-891a differential expression was significantly different between blood and semen. The miRNA duplex was incorporated into a previously reported qPCR multiplex targeting 16S rRNA genes of Lactobacillus crispatus, Bacteroides uniformis, and Streptococcus salivarius to presumptively identify vaginal/menstrual secretions, feces, and saliva, respectively. The combined classification regression tree model resulted in the presumptive classification of five body fluids with 94.6% overall accuracy, now including blood and semen identification. These results provide proof of concept that microRNAs and microbial DNA can classify multiple body fluids simultaneously at the quantification step of the current forensic DNA workflow.
Collapse
Affiliation(s)
- Carolyn A Lewis
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
7
|
Chen H, Hu S, Yang R, Hu S, Yao Q, Zhao Y, Lian J, Ji A, Cao Y, Sun Q. The screening and validation process of miR-223-3p for saliva identification. Leg Med (Tokyo) 2023; 65:102312. [PMID: 37603982 DOI: 10.1016/j.legalmed.2023.102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
More accurate identification of the types of body fluids left at a crime scene is indispensable for improving the judicial chain of evidence. MicroRNAs (miRNAs) have become recognized as ideal molecular markers for the identification of body fluids in forensic science due to their short length, stability and high tissue specificity. In this study, small RNA sequencing was performed on 20 samples of five types of body fluids (peripheral blood, menstrual blood, saliva, semen, and vaginal secretions) with the BGISEQ-500 sequencing platform, and the specific miRNA markers of saliva and vaginal secretions were screened by bioinformatics methods, including differential expression analysis and significant enrichment analysis. Through RT-qPCR validation of 169 samples, we confirmed that miR-223-3p can be used as a saliva-specific marker. In addition, we considered miR-223-3p in combination with four other miRNA molecules (miR-451a, miR-891a-5p, miR-144-5p, miR-203a-3p) that had been previously screened and verified in our laboratory, and seven body fluid prediction models based on machine learning algorithms were constructed and verified. The results showed that a kernel density estimation (KDE) model based on the five miRNA markers for body fluid identification could achieve 100% accuracy in the samples tested in the present study.
Collapse
Affiliation(s)
- Huixiang Chen
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Sheng Hu
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Rui Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shuxiao Hu
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Qianwei Yao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yixia Zhao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Jie Lian
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| | - Yang Cao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| |
Collapse
|
8
|
Li Y, Wang Z, Ishmael D, Lvy Y. The potential of using non-coding RNAs in forensic science applications. Forensic Sci Res 2023; 8:98-106. [PMID: 37621455 PMCID: PMC10445561 DOI: 10.1093/fsr/owad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 01/29/2023] [Indexed: 08/26/2023] Open
Abstract
With the continuous development and integration of molecular biology and forensic science, non-coding RNAs (ncRNAs), especially ncRNAs with regulatory functions such as microRNA, long non-coding RNA, and circular RNA, have recently been actively explored by forensic scholars. In this study, we review the literature on these ncRNAs in various fields of forensic science, including postmortem interval determination, wound age estimation, forensic age assessment, cause of death analysis, and body fluid identification, aiming to evaluate the current research and provide a perspective for future applications.
Collapse
Affiliation(s)
- Yawen Li
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhuoqun Wang
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dikeledi Ishmael
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yehui Lvy
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
9
|
Rhodes C, Lewis C, Price K, Valentine A, Creighton MRA, Boone E, Seashols-Williams S. Evaluation and Verification of a microRNA Panel Using Quadratic Discriminant Analysis for the Classification of Human Body Fluids in DNA Extracts. Genes (Basel) 2023; 14:genes14050968. [PMID: 37239328 DOI: 10.3390/genes14050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
There is significant interest in the use of miRNA analysis for forensic body fluid identification. Demonstrated co-extraction and detection in DNA extracts could make the use of miRNAs a more streamlined molecular body fluid identification method than other RNA-based methods. We previously reported a reverse transcription-quantitative PCR (RT-qPCR) panel of eight miRNAs that classified venous and menstrual blood, feces, urine, saliva, semen, and vaginal secretions using a quadratic discriminant analysis (QDA) model with 93% accuracy in RNA extracts. Herein, miRNA expression in DNA extracts from 50 donors of each body fluid were tested using the model. Initially, a classification rate of 87% was obtained, which increased to 92% when three additional miRNAs were added. Body fluid identification was found to be reliable across population samples of mixed ages, ethnicities, and sex, with 72-98% of the unknown samples classifying correctly. The model was then tested against compromised samples and over biological cycles, where classification accuracy varied, depending on the body fluid. In conclusion, we demonstrated the ability to classify body fluids using miRNA expression from DNA extracts, eliminating the need for RNA extraction, greatly reducing evidentiary sample consumption and processing time in forensic laboratories, but acknowledge that compromised semen and saliva samples can fail to classify properly, and mixed sample classification remains untested and may have limitations.
Collapse
Affiliation(s)
- Ciara Rhodes
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
- Integrative Life Sciences Program, Virginia Commonwealth University, P.O. Box 842030, 1000 West Cary St., Richmond, VA 23284-2030, USA
| | - Carolyn Lewis
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
- Integrative Life Sciences Program, Virginia Commonwealth University, P.O. Box 842030, 1000 West Cary St., Richmond, VA 23284-2030, USA
| | - Kelsey Price
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
| | - Anaya Valentine
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
| | - Mary-Randall A Creighton
- Center for Biological Data Science, Virginia Commonwealth University, P.O. Box 842030, 1015 Floyd Ave., Richmond, VA 23284-2030, USA
| | - Edward Boone
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, P.O. Box 843083, 1015 Floyd Ave., Richmond, VA 23284-3083, USA
| | - Sarah Seashols-Williams
- Department of Forensic Science, Virginia Commonwealth University, P.O. Box 843079, 1015 Floyd Ave., Richmond, VA 23284-3079, USA
| |
Collapse
|
10
|
A Comprehensive Characterization of Small RNA Profiles by Massively Parallel Sequencing in Six Forensic Body Fluids/Tissue. Genes (Basel) 2022; 13:genes13091530. [PMID: 36140698 PMCID: PMC9498867 DOI: 10.3390/genes13091530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Body fluids/tissue identification (BFID) is an essential procedure in forensic practice, and RNA profiling has become one of the most important methods. Small non-coding RNAs, being expressed in high copy numbers and resistant to degradation, have great potential in BFID but have not been comprehensively characterized in common forensic stains. In this study, the miRNA, piRNA, snoRNA, and snRNA were sequenced in 30 forensic relevant samples (menstrual blood, saliva, semen, skin, venous blood, and vaginal secretion) using the BGI platform. Based on small RNA profiles, relative specific markers (RSM) and absolute specific markers (ASM) were defined, which can be used to identify a specific body fluid/tissue out of two or six, respectively. A total of 5204 small RNAs were discovered including 1394 miRNAs (including 236 novel miRNA), 3157 piRNAs, 636 snoRNAs, and 17 snRNAs. RSMs for 15 pairwise body fluid/tissue groups were discovered by differential RNA analysis. In addition, 90 ASMs that were specifically expressed in a certain type of body fluid/tissue were screened, among them, snoRNAs were reported first in forensic genetics. In brief, our study deepened the understanding of small RNA profiles in forensic stains and offered potential BFID markers that can be applied in different forensic scenarios.
Collapse
|
11
|
Bamberg M, Bruder M, Dierig L, Kunz SN, Schmidt M, Wiegand P. Best of both: a simultaneous analysis of mRNA and miRNA markers for body fluid identification. Forensic Sci Int Genet 2022; 59:102707. [DOI: 10.1016/j.fsigen.2022.102707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
|
12
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
13
|
Rhodes C, Lewis C, Szekely J, Campbell A, Creighton MRA, Boone E, Seashols-Williams S. Developmental validation of a microRNA panel using quadratic discriminant analysis for the classification of seven forensically relevant body fluids. Forensic Sci Int Genet 2022; 59:102692. [DOI: 10.1016/j.fsigen.2022.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
|
14
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Li Z, Lv M, Peng D, Xiao X, Fang Z, Wang Q, Tian H, Zha L, Wang L, Tan Y, Liang W, Zhang L. Feasibility of using probabilistic methods to analyse microRNA quantitative data in forensically relevant body fluids: a proof-of-principle study. Int J Legal Med 2021; 135:2247-2261. [PMID: 34477924 DOI: 10.1007/s00414-021-02678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Several studies have confirmed that microRNAs (miRNAs) are promising markers for body fluid identification since they were introduced to this field. However, there is no consensus on the choice of reference genes and identification strategies. In this study, 13 potential candidate miRNAs were screened from three forensically relevant body fluid datasets, and the expression of 12 markers in five body fluids was determined using a real-time quantitative method. Two probabilistic approaches, Naive Bayes (NB) and partial least squares discriminant analysis (PLS-DA), were then applied to predict the origin of the samples to determine whether probabilistic methods are helpful in body fluid identification using miRNA quantitative data. Furthermore, 14 reference combinations were used to validate the influence of different reference choices on the predicted results simultaneously. Our results showed that in the NB model, leave-one-out cross-validation (LOOCV) achieved 100% accuracy and the prediction accuracy of the test set was 100% in most reference combinations. In the PLS-DA model, the first two components could interpret about 80% expression variance and LOOCV achieved 100% accuracy when miR-92a-3p was used as the reference. This study preliminarily proved that probabilistic approaches hold huge potential in miRNA-based body fluid identification, and the choice of references influences the prediction results to a certain extent.
Collapse
Affiliation(s)
- Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Meili Lv
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiao Xiao
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhuangyan Fang
- School of Mathematical Sciences, Peking University, Beijing, 10000, People's Republic of China
| | - Qian Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Huan Tian
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Li Wang
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yu Tan
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China. .,Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
16
|
Kupsco A, Prada D, Valvi D, Hu L, Petersen MS, Coull B, Grandjean P, Weihe P, Baccarelli AA. Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands. Sci Rep 2021; 11:5840. [PMID: 33712635 PMCID: PMC7970999 DOI: 10.1038/s41598-021-84809-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Human milk plays a critical role in infant development and health, particularly in cognitive, immune, and cardiometabolic functions. Milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs). We aimed to characterize milk EV-miRNA profiles in a human population cohort, assess potential pathways and ontology, and investigate associations with maternal characteristics. We conducted the first study to describe the EV miRNA profile of human milk in 364 mothers from a population-based mother-infant cohort in the Faroe Islands using small RNA sequencing. We detected 1523 miRNAs with ≥ one read in 70% of samples. Using hierarchical clustering, we determined five EV-miRNA clusters, the top three consisting of 15, 27 and 67 miRNAs. Correlation coefficients indicated that the expression of many miRNAs within the top three clusters was highly correlated. Top-cluster human milk EV-miRNAs were involved in pathways enriched for the endocrine system, cellular community, neurodevelopment, and cancers. miRNA expression was associated with time to milk collection post-delivery, maternal body mass index, and maternal smoking, but not maternal parity. Future studies investigating determinants of human EV-miRNAs and associated health outcomes are needed to elucidate the role of human milk EV-miRNAs in health and disease.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA.
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerologia, Universidad Nacional Autonoma de Mexico, 14080, Mexico City, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Hu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense C, Denmark
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| |
Collapse
|
17
|
Liu Y, He H, Xiao ZX, Ji A, Ye J, Sun Q, Cao Y. A systematic analysis of miRNA markers and classification algorithms for forensic body fluid identification. Brief Bioinform 2020; 22:6032627. [PMID: 33313714 DOI: 10.1093/bib/bbaa324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Identifying the types of body fluids left at the crime scene can be essential to reconstructing the crime scene and inferring criminal behavior. MicroRNA (miRNA) molecule extracted from the trace of body fluids is one of the most promising biomarkers for the identification due to its high expression, extreme stability and tissue specificity. However, the detection of miRNA markers is not the answer to a yes-no question but the probability of an assumption. Therefore, it is a crucial task to develop complicated methods combining multi-miRNAs as well as computational algorithms to achieve the goal. In this study, we systematically analyzed the expression of 10 most probable body fluid-specific miRNA markers (miR-451a, miR-205-5p, miR-203a-3p, miR-214-3p, miR-144-3p, miR-144-5p, miR-654-5p, miR-888-5p, miR-891a-5p and miR-124-3p) in 605 body fluids-related samples, including peripheral blood, menstrual blood, saliva, semen and vaginal secretion. We introduced the kernel density estimation (KDE) method and six well-established methods to classify the body fluids in order to find the most optimal combinations of miRNA markers as well as the corresponding classifying method. The results show that the combination of miR-451a, miR-891a-5p, miR-144-5p and miR-203a-3p together with KDE can achieve the most accurate and robust performance according to the cross-validation, independent tests and random perturbation tests. This systematic analysis suggests a reference scheme for the identification of body fluids in an accurate and stable manner.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Sciences, Sichuan University, China
| | - Hongxia He
- National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science
| | - Zhi-Xiong Xiao
- College of Life Sciences, Sichuan University, Director of the Center of Growth, Metabolism and Aging
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination
| | - Jian Ye
- People's Public Security University of China
| | - Qifan Sun
- Institute of Biophysics, Chinese Academy of Sciences
| | - Yang Cao
- Institute of Biophysics, Chinese Academy of Sciences
| |
Collapse
|
18
|
Wang S, Tao R, Ming T, Wang M, Liu J, He G, Zou X, Wang Z, Hou Y. Expression profile analysis and stability evaluation of 18 small RNAs in the Chinese Han population. Electrophoresis 2020; 41:2021-2028. [PMID: 32770750 DOI: 10.1002/elps.202000058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
In recent years, differentially expressed small RNAs have been widely used to identify the compositions of forensically relevant biological samples, and a vast number of such RNA candidates have been proposed. Nevertheless, when assessing the expression levels of target small RNAs using relative quantitative analysis methods, credible internal controls are usually required for reliable data normalization. Therefore, the identification of optimal reference genes is an important task. In this study, the expression profile of 18 small RNA reference genes was characterized in the Chinese Han population using TaqMan real-time quantitative PCR. Systematic evaluations of these candidate genes were performed based on their expression levels and stability in several common types of body fluids (i.e., venous blood, menstrual blood, saliva, semen, and vaginal secretions). Analysis results from the ΔCq method, BestKeeper, NormFinder, and geNorm were integrated by RefFinder for ranking and comparing the candidates in each type of body fluid. Among all the candidates, miR-191 was identified as the most suitable reference gene because it had a favorable ranking value in all tested samples. In addition, miR-423, miR-93, miR-484, and let-7i were also shown to be applicable reference genes. Overall, this study provides detailed assessment results of these candidate genes in different body fluids; thus, it could be used as a guide for the selection of reference genes according to their performance in the sample of choice.
Collapse
Affiliation(s)
- Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Ruiyang Tao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - Tianyue Ming
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
19
|
He H, Han N, Ji C, Zhao Y, Hu S, Kong Q, Ye J, Ji A, Sun Q. Identification of five types of forensic body fluids based on stepwise discriminant analysis. Forensic Sci Int Genet 2020; 48:102337. [PMID: 32693370 DOI: 10.1016/j.fsigen.2020.102337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/18/2023]
Abstract
Peripheral blood, menstrual blood, semen, saliva and vaginal secretions are the five most common body fluids found at crime scenes, and the identification of these five body fluids is of great significance to the reconstruction of a crime scene and resolution of the case. However, accurate identification of these five body fluids is still a challenge. To address this problem, a mathematical model for differentiating five types of forensic body fluids based on the differential expression characteristics of multiple miRNAs in five body fluids (peripheral blood, menstrual blood, semen, saliva and vaginal secretions) was developed. A total of 350 forensic body fluids (70 of each type) were collected and tested, and relative expression of 10 miRNAs (miR-451a, miR-205-5p, miR-203-3p, miR-214-3p, miR-144-3p, miR-144-5p, miR-654-5p, miR-888-5p, miR-891a-5p, miR-124a-3p) in all samples was detected by SYBR Green real-time qPCR. Three hundred samples (60 samples of each body fluid) were used as the training set to screen meaningful identification markers by stepwise discriminant analysis, and a discriminant function was established. Fifty samples (10 samples of each body fluid) were used as a validation set to examine the accuracy of the model, and 25 samples (the types of samples were unknown to the experimenter) were used for a blind test. Except for miR-144-3p, the other miRNAs were selected to construct discriminant analysis models. The self-validation accuracy of the model was 99.7 %, cross-validation accuracy was 99.3 %, accuracy of the identification validation set was 100 %, and accuracy of the blind test result was 100 %. This study provides a reliable and accurate identification strategy for five common body fluids (peripheral blood, menstrual blood, semen, saliva, and vaginal secretions) in forensic medicine.
Collapse
Affiliation(s)
- Hongxia He
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; Faculty of Forensic Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Na Han
- Chinese Center For Disease Control And Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, China
| | - Chengjie Ji
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yixia Zhao
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Sheng Hu
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Qinglan Kong
- Faculty of Mathematics and Statistics, Zaozhuang University, Zaozhuang 277160, Shandong, China
| | - Jian Ye
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence, Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| |
Collapse
|
20
|
Xu J, Liao K, Fu Z, Xiong Z. A new method for early detection of pancreatic cancer biomarkers: detection of microRNAs by nanochannels. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2634-2640. [PMID: 31220948 DOI: 10.1080/21691401.2019.1614594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To develop an effective new method for early detection of pancreatic cancer biomarkers and to aid early clinical diagnosis. Methods: A DNA probe (Probe) capable of specifically recognizing the target miRNA was designed. The specific probe of miRNA 21 is designed first, and then mixed with the miRNA 21 sample to form a complex molecule, and the complex molecule is added to the nanochannels to detect the received signal. The probe is designed to detect the electrical signal by means of pre-matching and post-matching and observe the stability of the signal. The miRNA 21, miRNA 155, miRNA 196a were added to the nano-single channel to detect the characteristic signals and blocking time. The miRNA 21·probe 21 mixture was mixed with other five cancer-associated microRNAs, and the signal results of the detection were collected and compared. Results: The signal of miRNA 21 was successfully detected. Whether the probe is designed at the front or the back, there are two signal results. The Probe should be designed to match the middle region of the miRNA. The three microRNA complex molecules have different characteristic signals and blocking times, which can be effectively distinguished. Conclusion: Nanochannels can effectively detect pancreatic cancer-related microRNAs.
Collapse
Affiliation(s)
- Jiasheng Xu
- a Department of Pathology, the First Affiliated Hospital of Nanchang University , Nanchang , China
| | - Kaili Liao
- b Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Zhonghua Fu
- c Department of Burns, the First Affiliated Hospital of Nanchang University , Nanchang , China
| | - Zhenfang Xiong
- a Department of Pathology, the First Affiliated Hospital of Nanchang University , Nanchang , China
| |
Collapse
|
21
|
A novel loop-mediated isothermal amplification method for identification of four body fluids with smartphone detection. Forensic Sci Int Genet 2019; 45:102195. [PMID: 31835180 DOI: 10.1016/j.fsigen.2019.102195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/04/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023]
Abstract
Messenger RNA profiling for body fluid identification (bfID) is a useful approach to collect contextual information associated with a crime. Current methods require costly fluorescent probes, lengthy amplification protocols and/or time-consuming sample preparation. To simplify this process, we developed a bfID method that has the potential to be rapid in analysis time, inexpensive and fluorescence-free, combining a universal operating procedure with a high-throughout (microwell plate) platform for simultaneous detection of mRNA markers from whole blood, semen, saliva, and vaginal fluid. Full bfID sample preparation and analysis of 23 samples was completed in under 3 h using smart phone optical detection and analysis and show efficacy of the method in a validated blind study. The results provide an efficient, sensitive and specific approach to supplement the current biochemical tests in a forensic laboratory.
Collapse
|
22
|
Fujimoto S, Manabe S, Morimoto C, Ozeki M, Hamano Y, Hirai E, Kotani H, Tamaki K. Distinct spectrum of microRNA expression in forensically relevant body fluids and probabilistic discriminant approach. Sci Rep 2019; 9:14332. [PMID: 31586097 PMCID: PMC6778116 DOI: 10.1038/s41598-019-50796-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/19/2019] [Indexed: 11/09/2022] Open
Abstract
MicroRNA is attracting worldwide attention as a new marker for the identification of forensically relevant body fluids. A probabilistic discriminant model was constructed to identify venous blood, saliva, semen, and vaginal secretion, based on microRNA expression assessed via RT-qPCR. We quantified 15 candidate microRNAs in four types of body fluids by RT-qPCR and found that miR-144-3p, miR-451a-5p, miR-888-5p, miR-891a-5p, miR-203a-3p, miR-223-3p and miR-1260b were helpful to discriminate body fluids. Using the relative expression of seven candidate microRNAs in each body fluid, we implemented a partial least squares-discriminant analysis (PLS-DA) as a probabilistic discriminant model and distinguished four types of body fluids. Of 14 testing samples, 13 samples were correctly identified with >90% posterior probability. We also investigated the effects of microRNA expression in skin, semen infertility, and vaginal secretion during different menstrual phases. Semen infertility and menstrual phases did not affect our body fluid identification system. Therefore, the selected microRNAs were effective in identifying the four types of body fluids, indicating that probabilistic evaluation may be practical in forensic casework.
Collapse
Affiliation(s)
- Shuntaro Fujimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sho Manabe
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chie Morimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Munetaka Ozeki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuya Hamano
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Forensic Science Laboratory, Kyoto Prefectural Police Headquaters, 85-3, 85-4, Yabunouchi-cho, Kamigyo-ku, Kyoto, 602-8550, Japan
| | - Eriko Hirai
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirokazu Kotani
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
23
|
Wang S, Wang Z, Tao R, Wang M, Liu J, He G, Yang Y, Xie M, Zou X, Hou Y. Expression profile analysis of piwi-interacting RNA in forensically relevant biological fluids. Forensic Sci Int Genet 2019; 42:171-180. [DOI: 10.1016/j.fsigen.2019.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
|
24
|
Courts C, Pfaffl MW, Sauer E, Parson W. Pleading for adherence to the MIQE-Guidelines when reporting quantitative PCR data in forensic genetic research. Forensic Sci Int Genet 2019; 42:e21-e24. [PMID: 31270013 DOI: 10.1016/j.fsigen.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Cornelius Courts
- University Hospital of Schleswig-Holstein, Institute of Forensic Medicine, Kiel, Germany.
| | - Michael W Pfaffl
- Technical University of Munich, Animal Physiology and Immunology, Freising, Germany
| | - Eva Sauer
- State Office of Criminal Investigation of Rhineland-Palatinate, Mainz, Germany
| | - Walther Parson
- Innsbruck Medical University, Institute of Legal Medicine, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
25
|
Layne TR, Green RA, Lewis CA, Nogales F, Dawson Cruz TC, Zehner ZE, Seashols-Williams SJ. microRNA Detection in Blood, Urine, Semen, and Saliva Stains After Compromising Treatments. J Forensic Sci 2019; 64:1831-1837. [PMID: 31184791 DOI: 10.1111/1556-4029.14113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Evaluation of microRNA (miRNA) expression as a potential method for forensic body fluid identification has been the subject of investigation over the past several years. Because of their size and encapsulation within proteins and lipids, miRNAs are inherently less susceptible to degradation than other RNAs. In this work, blood, urine, semen, and saliva were exposed to environmental and chemical conditions mimicking sample compromise at the crime scene. For many treated samples, including 100% of blood samples, miRNAs remained detectable, comparable to the untreated control. Sample degradation varied by body fluid and treatment, with blood remarkably resistant, while semen and saliva are more susceptible to environmental insult. Body fluid identification using relative miRNA expression of blood and semen of the exposed samples was 100% and 94%, respectively. Given the overall robust results herein, the case is strengthened for the use of miRNAs as a molecular method for body fluid identification.
Collapse
Affiliation(s)
- Tiffany R Layne
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Raquel A Green
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Carolyn A Lewis
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Francy Nogales
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Tracey C Dawson Cruz
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Zendra E Zehner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Box 980614, Richmond, Virginia, 23298-0614
| | - Sarah J Seashols-Williams
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| |
Collapse
|
26
|
Dørum G, Ingold S, Hanson E, Ballantyne J, Russo G, Aluri S, Snipen L, Haas C. Predicting the origin of stains from whole miRNome massively parallel sequencing data. Forensic Sci Int Genet 2019; 40:131-139. [DOI: 10.1016/j.fsigen.2019.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/24/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
|
27
|
The potential use of Piwi-interacting RNA biomarkers in forensic body fluid identification: A proof-of-principle study. Forensic Sci Int Genet 2019; 39:129-135. [DOI: 10.1016/j.fsigen.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
|
28
|
Characterization of tissue-specific biomarkers with the expression of circRNAs in forensically relevant body fluids. Int J Legal Med 2019; 133:1321-1331. [PMID: 30810820 DOI: 10.1007/s00414-019-02027-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Messenger RNA (mRNA) markers have been extensively investigated for the identification of forensically relevant body fluids and tissues based on their expression profiles among cell types. As products of the backsplicing of pre-mRNAs, circular RNAs (circRNAs) share exonic sequences with their linear counterparts. The inclusion of circRNAs in mRNA profiling is shown to facilitate the detection of biomarkers in the identification of body fluids. In this study, we identified the expression of circRNAs of 14 out of 45 biomarkers from five body fluid types using outward-facing primer sets and revealed the ratio of circular to total transcripts of biomarkers by RNase R treatment. Furthermore, our results of qPCR analysis show that the inclusion of circRNAs in the detection of biomarkers, including HBA and ALAS2 for blood; MMP7 and MMP10 for menstrual blood; HTN3 for saliva; SPINK5, SERPINB3, ESR1, and CYP2B7P1 for vaginal secretions; TGM4, KLK3, and PRM2 for semen; and SLC22A6 and MIOX for urine, does not impair the specificity of these biomarkers. Additionally, a high copy number of targets from linear transcripts could be employed to increase the detection sensitivity of TGM4 and KLK3 with a low expression level of circRNAs in urine samples. Altogether, these results will help with the development of robust multiplex assays for body fluid identification.
Collapse
|
29
|
miR-1260b, mediated by YY1, activates KIT signaling by targeting SOCS6 to regulate cell proliferation and apoptosis in NSCLC. Cell Death Dis 2019; 10:112. [PMID: 30737371 PMCID: PMC6368632 DOI: 10.1038/s41419-019-1390-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 01/16/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common aggressive malignancies. miRNAs have been identified as important biomarkers and regulators of NSCLC. However, the functional contributions of miR-1260b to NSCLC cell proliferation and apoptosis have not been studied. In this study, miR-1260b was upregulated in NSCLC plasma, tissues, and cell lines, and its high expression was correlated with tumor size and progression. Functionally, miR-1260b overexpression promoted cell proliferation and cell cycle, conversely inhibited cell apoptosis and senescence. Mechanically, miR-1260b negatively regulated SOCS6 by directly binding to its 3′-UTR. Furthermore, miR-1260b-mediated suppression of SOCS6 activated KIT signaling. Moreover, YY1 was an upstream regulator of miR-1260b. This study is the first to illustrate that miR-1260b, mediated by YY1, activates KIT signaling by targeting SOCS6 to regulate NSCLC cell proliferation and apoptosis, and is a potential biomarker and therapeutic target for NSCLC. In sum, our work provides new insights into the molecular mechanisms of NSCLC involved in cell proliferation and apoptosis.
Collapse
|
30
|
Kulstein G, Schacker U, Wiegand P. Old meets new: Comparative examination of conventional and innovative RNA-based methods for body fluid identification of laundered seminal fluid stains after modular extraction of DNA and RNA. Forensic Sci Int Genet 2018; 36:130-140. [DOI: 10.1016/j.fsigen.2018.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/05/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
|
31
|
Fujimoto S, Manabe S, Morimoto C, Ozeki M, Hamano Y, Tamaki K. Optimal small-molecular reference RNA for RT-qPCR-based body fluid identification. Forensic Sci Int Genet 2018; 37:135-142. [PMID: 30172170 DOI: 10.1016/j.fsigen.2018.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA) -based body fluid identification (BFID) plays a prominent role in a forensic practice, and the selected reference RNA is indispensable for a robust normalization in BFID performed using reverse transcription-quantitative PCR. In this study, we first examined sample quality using RNA integrity number, then evaluated the consistency of expression of candidate reference RNAs in 4 forensically relevant body fluids using NormFinder and BestKeeper, and lastly used each rank and index output from these tools for selecting the optimal reference RNA and the combination of the multiple RNAs using the RankAggreg package of R. We found that RNA integrity number was small in our samples, despite the use of pristine body fluids; 5S-rRNA was the optimal reference RNA for the identification of forensically relevant body fluids; and the combination of 5S-rRNA and miR-92a-3p and/or miR-484 enhanced the normalization quality. Our findings enable us to perform stringent normalization of the expression of body fluid-specific RNAs, and thus, can contribute to the development of small RNA-based BFID systems.
Collapse
Affiliation(s)
- Shuntaro Fujimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Manabe
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chie Morimoto
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Munetaka Ozeki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Hamano
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Forensic Science Laboratory, Kyoto Prefectural Police Headquaters, 85-3, 85-4, Yabunouchi-cho, Kamigyo-ku, Kyoto 602-8550, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
32
|
Semen-specific miRNAs: Suitable for the distinction of infertile semen in the body fluid identification? Forensic Sci Int Genet 2018; 33:161-167. [DOI: 10.1016/j.fsigen.2017.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/02/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
|
33
|
Effect of the absence of spermatozoa on microrna-based semen identification. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2017. [DOI: 10.1016/j.fsigss.2017.09.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Kulstein G, Wiegand P. Comprehensive examination of conventional and innovative body fluid identification approaches and DNA profiling of laundered blood- and saliva-stained pieces of cloths. Int J Legal Med 2017; 132:67-81. [DOI: 10.1007/s00414-017-1691-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/12/2017] [Indexed: 01/26/2023]
|
35
|
Evaluation of the inclusion of circular RNAs in mRNA profiling in forensic body fluid identification. Int J Legal Med 2017; 132:43-52. [PMID: 28948359 DOI: 10.1007/s00414-017-1690-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/12/2017] [Indexed: 01/16/2023]
Abstract
The use of messenger RNA (mRNA) profiling is considered a promising method in the identification of forensically relevant body fluids which can provide crucial information for reconstructing a potential crime. However, casework samples are usually of limited quantity or have been subjected to degradation, which requires improvement of body fluid identification. Circular RNAs (circRNAs), a class of products from the backsplicing of pre-mRNAs, are shown to have high abundance, remarkable stability, and cell type-specific expression in human cells. In this study, we investigated whether the inclusion of circRNAs in mRNA profiling improve the detection of biomarkers including δ-aminolevulinate synthase 2 (ALAS2) and matrix metallopeptidase 7 (MMP7) in body fluid identification. The major circRNAs of ALAS2 and MMP7 were first identified and primer sets for the simultaneous detection of linear and circular transcripts were developed. The inclusion of circRNAs in mRNA profiling showed improved detection sensitivity and stability of biomarkers revealed by using serial dilutions, mixed samples, and menstrual bloodstains as well as degraded and aged samples. Therefore, the inclusion of circRNAs in mRNA profiling should facilitate the detection of mRNA markers in forensic body fluid identification.
Collapse
|
36
|
Ye B, Hu B, Zheng Z, Zheng R, Shi Y. The long non-coding RNA AK023948 enhances tumor progression in hepatocellular carcinoma. Exp Ther Med 2017; 14:3658-3664. [PMID: 29042961 PMCID: PMC5639403 DOI: 10.3892/etm.2017.5019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The long non-coding RNAs (lncRNAs) have been demonstrated to play pivotal roles in a broad range of processes including tumor biology. However, the exact contributions of lncRNAs to hepatocellular carcinoma (HCC) remain poorly defined. In current study, we have unraveled a novel function of AK023948 in HCC. We found that AK023948 was substantially upregulated in tumor tissues. Meanwhile, higher AK023948 expression correlated with poor survival. Upregulation of AK023948 expression can promote HepG2 and Hep3B proliferation and invasion in in vitro experiments. Furthermore, AK023948 also decreased tumor growth in vivo. The tumorigenic role of AK023948 was partially ascribed to PI3K/Akt/mTOR signaling and AK023948 knockdown decreased pathway activation and tumor growth. These data collectively suggest an oncogenic role for AK023948 and may provide potential insight into therapeutic intervention.
Collapse
Affiliation(s)
- Bailiang Ye
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bingren Hu
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhihai Zheng
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ru Zheng
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yixiong Shi
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
37
|
Bavykin AS. Circulating microRNAs in the identification of biological fluids: A new approach to standardization of expression-based diagnostics. Mol Biol 2017. [DOI: 10.1134/s0026893317040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Li Z, Bai P, Peng D, Wang H, Guo Y, Jiang Y, He W, Tian H, Yang Y, Huang Y, Long B, Liang W, Zhang L. Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood. Forensic Sci Int Genet 2017; 30:24-33. [PMID: 28605652 DOI: 10.1016/j.fsigen.2017.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
The identification of menstrual blood (MB) and peripheral blood (PB) left at a crime scene is crucial for crime reconstruction, especially in sexual assaults. MicroRNAs (miRNAs), a class of non-protein coding molecules, have been demonstrated to be a viable tool for body fluid identification in forensic casework. Several groups have searched for miRNAs that are specific to different body fluids. Blood has been studied the most extensively. However, menstrual blood was only involved in five studies, and the results confirming the presence of specific miRNAs could not be reproduced in other studies. In this study, we attempted to screen new markers that can differentiate between menstrual blood and peripheral blood by using Exiqon's miRCURY™ LNA Array. Five miRNAs were selected based on the microarray results, namely, miR-141-3p, miR-373-3p, miR-497-5p, miR-143-5p, and miR-136-5p, whose expression levels exhibited 27.95-, 17.96-, 16.74-, 10.14-, and 9.21-fold changes, respectively, compared to the level in peripheral blood. Two classic quantitative methods, TaqMan hydrolysis probes (TaqMan for short) and SYBR Green fluorochrome (SYBR Green for short), were applied in the confirmation step to study the impact of different quantitative methods on the results. Three miRNAs (miR-141-3p, miR-497-5p, and miR-143-5p) were confirmed by TaqMan and one (miR-141-3p) by SYBR Green. Furthermore, bioinformatic methods were applied to interpret the candidate miRNAs. Our results established a multi-step procedure for body fluid identification and showed that the choice of quantitative method is important when miRNAs are used to identify the origin of blood samples.
Collapse
Affiliation(s)
- Zhilong Li
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hui Wang
- Institute of Forensic Science, Chengdu Public Security Bureau, Chengdu 610081, Sichuan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410000, Hunan, China
| | - Youjing Jiang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wang He
- Department of Criminal Science and Technology, Sichuan Police College, Luzhou 646000, Sichuan, China
| | - Huan Tian
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Yang
- Institute of Criminal Science and Technology, Shenzhen Public Security Bureau, Shenzhen518000, Shenzhen, China
| | - Yuan Huang
- Department of Biochemistry and Molecular Biology, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bing Long
- Department of Criminal Science and Technology, Sichuan Police College, Luzhou 646000, Sichuan, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lin Zhang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
39
|
Mostafa T, Rashed LA, Nabil NI, Osman I, Mostafa R, Farag M. Seminal miRNA Relationship with Apoptotic Markers and Oxidative Stress in Infertile Men with Varicocele. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4302754. [PMID: 28105423 PMCID: PMC5220416 DOI: 10.1155/2016/4302754] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/16/2016] [Indexed: 02/05/2023]
Abstract
Aim. This study aimed to assess seminal miRNA relationship with seminal apoptotic markers and oxidative stress (OS) in infertile men associated with varicocele (Vx). Methods. In all, 220 subjects were divided into the following groups: fertile normozoospermic men, fertile normozoospermic men with Vx, infertile oligoasthenoteratozoospermic (OAT) men without Vx, and infertile OAT men with Vx. They were subjected to history taking, clinical examination, and semen analysis. In their semen, the following were estimated: miRNA-122, miRNA-181a, and miRNA-34c5 using quantitative real-time PCR, apoptotic markers (BAX, BCL2) protein expression, and OS markers [malondialdehyde (MDA) and glutathione peroxidase (GPx)]. Results. The mean levels of seminal miRNA-122, miRNA-181a, and miRNA-34c5 were significantly reduced in infertile OAT men with Vx compared with other groups coupled with Vx grade and Vx bilaterality. Seminal miRNA-122, miRNA-181a, and miRNA-34c5 were positively correlated with sperm concentration, total sperm motility, sperm normal morphology, seminal GPx, and seminal BCL2 and negatively correlated with seminal MDA and seminal BAX. Conclusions. Seminal miRNA-122, miRNA-181a, and miRNA-34c5 are decreased in infertile OAT men with Vx associated with increased Vx grade and Vx bilaterality. In addition, they are positively correlated with sperm parameters and negatively correlated with OS, apoptotic markers.
Collapse
Affiliation(s)
- Taymour Mostafa
- Department of Andrology & Sexology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A. Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashaat I. Nabil
- Department of Andrology and Sexology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Ihab Osman
- Department of Andrology & Sexology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rashad Mostafa
- Department of Andrology and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Farag
- Department of Andrology and Sexology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
40
|
Seashols-Williams S, Lewis C, Calloway C, Peace N, Harrison A, Hayes-Nash C, Fleming S, Wu Q, Zehner ZE. High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids. Electrophoresis 2016; 37:2780-2788. [DOI: 10.1002/elps.201600258] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Carolyn Lewis
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Chelsea Calloway
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Nerissa Peace
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Ariana Harrison
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Christina Hayes-Nash
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Samantha Fleming
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Qianni Wu
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond VA USA
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
41
|
Hashemi‐Moghaddam H, Kashi M, Mowla SJ, Nouraee N. Separation of microRNA 21 as a cancer marker from glioblastoma cell line using molecularly imprinted polymer coated on silica nanoparticles. J Sep Sci 2016; 39:3564-70. [DOI: 10.1002/jssc.201600736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 01/31/2023]
Affiliation(s)
| | - Mansooreh Kashi
- Department of Chemistry, Damghan BranchIslamic Azad University Damghan Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares University Tehran Iran
| | - Nazila Nouraee
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares University Tehran Iran
| |
Collapse
|
42
|
Kulstein G, Marienfeld R, Miltner E, Wiegand P. Automation of DNA and miRNA co-extraction for miRNA-based identification of human body fluids and tissues. Electrophoresis 2016; 37:2742-2750. [PMID: 27540896 DOI: 10.1002/elps.201600365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/06/2022]
Abstract
In the last years, microRNA (miRNA) analysis came into focus in the field of forensic genetics. Yet, no standardized and recommendable protocols for co-isolation of miRNA and DNA from forensic relevant samples have been developed so far. Hence, this study evaluated the performance of an automated Maxwell® 16 System-based strategy (Promega) for co-extraction of DNA and miRNA from forensically relevant (blood and saliva) samples compared to (semi-)manual extraction methods. Three procedures were compared on the basis of recovered quantity of DNA and miRNA (as determined by real-time PCR and Bioanalyzer), miRNA profiling (shown by Cq values and extraction efficiency), STR profiles, duration, contamination risk and handling. All in all, the results highlight that the automated co-extraction procedure yielded the highest miRNA and DNA amounts from saliva and blood samples compared to both (semi-)manual protocols. Also, for aged and genuine samples of forensically relevant traces the miRNA and DNA yields were sufficient for subsequent downstream analysis. Furthermore, the strategy allows miRNA extraction only in cases where it is relevant to obtain additional information about the sample type. Besides, this system enables flexible sample throughput and labor-saving sample processing with reduced risk of cross-contamination.
Collapse
Affiliation(s)
| | | | - Erich Miltner
- Institute of Legal Medicine, Ulm University, Ulm, Germany
| | - Peter Wiegand
- Institute of Legal Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
43
|
Sauer E, Reinke AK, Courts C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci Int Genet 2016; 22:89-99. [DOI: 10.1016/j.fsigen.2016.01.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/26/2016] [Indexed: 01/19/2023]
|
44
|
Wang Z, Zhou D, Cao Y, Hu Z, Zhang S, Bian Y, Hou Y, Li C. Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine ® System (Ion PGM™ System). Forensic Sci Int Genet 2016; 20:140-146. [DOI: 10.1016/j.fsigen.2015.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 11/24/2022]
|
45
|
Sauer E, Reinke AK, Courts C. Validation of forensic body fluid identification based on empirically normalized miRNA expression data. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Luo X, Li Z, Peng D, Wang L, Zhang L, Liang W. MicroRNA markers for forensic body fluid identification obtained from miRCURY™ LNA array. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Bexon K, Williams G. Characterising the fluctuation of microRNA expression throughout a full menstrual cycle. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Xu L, Li L, Li J, Li H, Shen Q, Ping J, Ma Z, Zhong J, Dai L. Overexpression of miR-1260b in Non-small Cell Lung Cancer is Associated with Lymph Node Metastasis. Aging Dis 2015; 6:478-85. [PMID: 26618049 DOI: 10.14336/ad.2015.0620] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/20/2015] [Indexed: 12/13/2022] Open
Abstract
Lymph node (LN) metastasis is often an early event in the progression of malignant tumors and it contributes to the majority of cancer mortalities. MiRNAs play key roles in tumor metastasis. This study aimed to investigate the specific miRNAs as putative indicators of metastasis early diagnosis for non-small cell lung cancer (NSCLC). In this study, five NSCLC cases with LN metastasis and four cases without metastasis (NLN) were enrolled for Agilent Human miRNA array. The interested differentially expressed miRNA was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) in the LN metastasis (n = 46) and NLN (n = 39) groups. The microarray results revealed that three miRNAs (miR-1260b, miR-423-3p, miR-23a-5p) were differentially expressed in LN metastasis group compared with NLN group. The expression of miR-1260b was tested by qRT-PCR and the mean relative expression fold change (2(-ΔΔCt)) in LN metastasis was significantly higher than that in the NLN group (3.942, 1.743 respectively, P = 1.179E-04). The patients with tumor-node-metastasis (TNM) stage III were identified more frequently in LN metastasis group (P = 1.772E-11) and with a higher expression level of miR-1260b (5.126, P = 1.147E-06). In addition, the LN metastasis cases were associated with a poorly differentiated degree (P = 0.007). The overexpression of miR-1260b in NSCLC with LN metastasis can be regarded as a specific signature for early progression and prognosis of NSCLC.
Collapse
Affiliation(s)
- Limin Xu
- 1Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Liqin Li
- 1Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Jing Li
- 1Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Hongwei Li
- 2Department of Thoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Qibin Shen
- 2Department of Thoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Jinliang Ping
- 3Department of Pathology, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Zhihong Ma
- 1Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Jing Zhong
- 1Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| | - Licheng Dai
- 1Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
49
|
Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 2015; 18:21-32. [DOI: 10.1016/j.fsigen.2014.11.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
|
50
|
Majem B, Rigau M, Reventós J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int J Mol Sci 2015; 16:8676-98. [PMID: 25898412 PMCID: PMC4425103 DOI: 10.3390/ijms16048676] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 01/05/2023] Open
Abstract
Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information.
Collapse
Affiliation(s)
- Blanca Majem
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
| | - Marina Rigau
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
| | - Jaume Reventós
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
- IDIBELL-Bellvitge Biomedical Research Institute & Universitat Internacional de Catalunya, 08908 Barcelona, Spain.
| | - David T Wong
- Center for Oral/Head & Neck Oncology Research, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|