1
|
Hata N, Takahashi S, Osada S, Katagiri S, Naruse M, Igarashi A, Sazawa K, Taguchi S, Kuramitz H. In Situ Formation of a Relatively Transparent Ion-Associate Liquid Phase from an Aqueous Phase and Its Application to Microextraction/High-Performance Liquid Chromatography-Fluorescence Detection of Bisphenol A in Water. Molecules 2023; 28:7525. [PMID: 38005251 PMCID: PMC10673447 DOI: 10.3390/molecules28227525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The design of a simple approach enabling the detection of bisphenol A (BPA) in water samples without the need for large amounts of solvents is of utmost importance. This paper reports a simple method for the separation, concentration, and quantification of BPA in water samples using high-performance liquid chromatography with fluorescence detection (HPLC-FLD) after its microextraction into an in situ formed organic ion-associate (IA) liquid phase (LP). Novel IA phase components without conjugated double bonds, such as benzene rings, were investigated. Ethylhexyloxypropylamine hydrochloride and sodium dodecyl sulfate solutions were added to the water samples to form IAs. The aqueous phase and ion-associate liquid phase (IALP) were separated by centrifugation. The aqueous phase was removed, and the liquid phase was recovered and measured using HPLC-FLD or HPLC-electrochemical detection (ECD). The concentrated phase (IALP) had a relatively low viscosity and could be injected directly into the chromatograph without dissolving it in organic solvents. The detection limits for BPA by HPLC-FLD and HPLC-ECD were 0.009 and 0.3 µg L-1, respectively.
Collapse
Affiliation(s)
- Noriko Hata
- Major of Earth, Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan (K.S.); (S.T.); (H.K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Li S, Shi B, He D, Zhou H, Gao Z. DNA origami-mediated plasmonic dimer nanoantenna-based SERS biosensor for ultrasensitive determination of trace diethylstilbestrol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131874. [PMID: 37379602 DOI: 10.1016/j.jhazmat.2023.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Diethylstilbestrol (DES) is a threatening factor to the human endocrine system. Here, we reported a DNA origami-assembled plasmonic dimer nanoantenna-based surface-enhanced Raman scattering (SERS) biosensor for measuring trace DES in foods. A critical factor influencing the SERS effect is interparticle gap modulation of SERS hotspots with nanometer-scale accuracy. DNA origami technology aims to generate naturally perfect structures with nano-scale precision. Exploiting the specificity of base-pairing and spatial addressability of DNA origami to form plasmonic dimer nanoantenna, the designed SERS biosensor generated electromagnetic-enhancement and uniform-enhancement hotspots to improve sensitivity and uniformity. Owing to their high target-binding affinity, aptamer-functionalized DNA origami biosensors transduced the target recognition into dynamic structural transformations of plasmonic nanoantennas, which were further converted to amplified Raman outputs. A broad linear range from 10-10 to 10-5 M was obtained with the detection limit of 0.217 nM. Our findings demonstrate the utility of aptamer-integrated DNA origami-based biosensors as a promising approach for trace analysis of environmental hazards.
Collapse
Affiliation(s)
- Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Naval Logistics Academy, Tianjin 300451, China
| | - Baodi Shi
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Defu He
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
3
|
Song Q, Shan X, Bu L, Dai A, Jiang D, Wang W, Shiigi H, Chen Z. An electrochemiluminescence resonance energy aptasensor based on Ag3PO4-UiO-66 for ultrasensitive detection of diethylstilbestrol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
USAEME-GC/MS Method for Easy and Sensitive Determination of Nine Bisphenol Analogues in Water and Wastewater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154977. [PMID: 35956929 PMCID: PMC9370219 DOI: 10.3390/molecules27154977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
A new, simple and sensitive method for isolating nine compounds from the bisphenol group (analogues: A, B, C, E, F, G, Cl2, Z, AP) based on one-step liquid-liquid microextraction with in situ acylation followed by gas chromatography-mass spectrometry was developed and validated using influent and effluent wastewaters. The chemometric approach based on the Taguchi method was used to optimize the main conditions of simultaneous extraction and derivatization. The recoveries of the proposed procedure ranged from 85 to 122%, and the repeatability expressed by the coefficient of variation did not exceed 8%. The method's limits of detection were in the range of 0.4-64 ng/L, and the method's limits of quantification ranged from 1.3 to 194 ng/L. The developed method was used to determine the presence of the tested compounds in wastewater from a municipal wastewater treatment plant located in northeastern Poland. From this sample, eight analytes were detected. Concentrations of bisphenol A of 400 ng/L in influent and 100 ng/L in effluent were recorded, whereas other bisphenols reached 67 and 50 ng/L for influent and effluent, respectively. The removal efficiency of bisphenol analogues in the tested wastewater treatment plant ranged from 7 to approximately 88%.
Collapse
|
5
|
Wu J, Zhao X, Zou Y, Wu X, Bai W, Zeng X. Electrochemical determination of diethylstilbestrol in livestock and poultry meats by L-cysteine/gold nanoparticles modified electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Mumcu T, Seyhan Bozkurt S. Simultaneous extraction of five phenolic acids in fruits using ultrasound assisted aqueous two phase system based on polyethylene glycol-ionic liquid-sodium carbonate. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1912765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Taşkın Mumcu
- Dokuz Eylul University, Graduate School of Natural and Applied Science, Tınaztepe Campus, Izmir, Turkey
| | | |
Collapse
|
7
|
Wu Y, Chen M, Wang X, Zhou Y, Xu M, Zhang Z. Development and validation of vortex-assisted dispersive liquid–liquid microextraction method based on solidification of floating hydrophobic deep eutectic solvent for the determination of endocrine disrupting chemicals in sewage. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Gubin A, Sukhanov P, Kushnir A, Sannikova N, Konopleva V, Nikulina A. Determination of phenols in natural and waste waters by capillary electrophoresis after preconcentration on magnetic nanoparticles coated with aminated hypercrosslinked polystyrene. J Sep Sci 2021; 44:1978-1988. [PMID: 33605527 DOI: 10.1002/jssc.202001177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/23/2022]
Abstract
An efficient sorbent for magnetic solid-phase extraction was developed from Fe3 O4 nanoparticles covered with aminated hypercrosslinked polystyrene. The sorbent has a saturation magnetization of 47 emu/g and a surface area of 509 mg/g and was tested for the extraction of 11 phenols from aqueous media. The optimum conditions were as follows: pH 3; adsorbent mass, 20.0 mg; adsorption time, 30 min; eluent (acetone) volume, 0.5 mL; and desorption time, 5 min. The enrichment factor after desorption reached 1595-1716 and the maximum adsorption capacity was 501-909 mg/g. Capillary electrophoresis was applied successively to separate 11 phenols after solid-phase extraction. The best separation was achieved using a fused silica capillary and borate buffer (pH 10.7) as a supporting electrolyte. After optimization, the linearity range was from 0.2 to 950 μg/L, and the limits of detection were 0.05-0.2 μg/L. The relative standard deviation varied from 6.1 to 8.7% (C = 1 μg/L) and from 2.9 to 3.5% (C = 500 μg/L). The determination of phenols is complicated in eutrophic water and spring water with a high content of humic and fulvic acids.
Collapse
Affiliation(s)
- Alexander Gubin
- Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia
| | - Pavel Sukhanov
- Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia
| | - Aleksei Kushnir
- Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia
| | - Natalia Sannikova
- Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia
| | - Victoria Konopleva
- Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia
| | - Alla Nikulina
- Faculty of Ecology and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia
| |
Collapse
|
9
|
Chaudhary K, Mogha NK, Lalwani S, Sharma RK, Masram DT. Ruthenium oxide nanoparticles immobilized over Citrus limetta waste derived carbon material for electrochemical detection of hexestrol. J Mater Chem B 2020; 8:7956-7965. [PMID: 32756674 DOI: 10.1039/d0tb00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hexestrol is a non-steroidal estrogen which causes carcinogenic effects in animals. It is therefore important to develop sensitive and selective test methods for its early detection. Herein, we report the development of an electrochemical sensor to detect hexestrol in ultralow concentrations. In order to devise a simple and cost-effective hexestrol sensing electrode, attention is paid to the development of biomass-derived porous carbon (PCB) with large surface area and suitable porosity to immobilize ruthenium oxide nanoparticles (RuO2 NPs, 3-4 nm). The leftover Citrus limetta pulp is chosen as waste biomass since it has N and O based chemical species. Structural, morphological and compositional analysis of PCB and RuO2@PCB revealed well-dispersed RuO2 NPs over the PCB surface. High loading (5.27 at%) of Ru content is achieved due to the large surface area of PCB. Cyclic voltammetry, chronoamperometry and differential pulse voltammetry results suggest that the RuO2@PCB/ITO electrode is capable of detecting hexestrol concentration (in the range of 1 × 10-7-2 × 10-5 M). The practical application of hexestrol detection in milk samples demonstrates the recovery from 96.28 to 101%.
Collapse
Affiliation(s)
- Karan Chaudhary
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | | | | | | | | |
Collapse
|
10
|
Preparation and application of a novel magnetic molecularly imprinted polymer for simultaneous and rapid determination of three trace endocrine disrupting chemicals in lake water and milk samples. Anal Bioanal Chem 2020; 412:1835-1846. [DOI: 10.1007/s00216-020-02431-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
|
11
|
Zhao GZ, Wei M, Wang YJ, Wang XW, Zhao H, Shen J, Zhao B. Detection of four phenolic oestrogens by a novel electrochemical immunosensor based on a hexestrol monoclonal antibody. RSC Adv 2020; 10:8677-8684. [PMID: 35496517 PMCID: PMC9050000 DOI: 10.1039/d0ra00006j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
A novel HEX monoclonal antibody/MACA/nanogold electrochemical immunosensor was constructed to detect four phenolic oestrogens by a nanosized effect, layer by layer self-assembly and antigen–antibody specific immune technology.
Collapse
Affiliation(s)
- Guo-zheng Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- The School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Meng Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Ya-juan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Xiu-wen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Hu Zhao
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
12
|
Advances in the Analysis of Veterinary Drug Residues in Food Matrices by Capillary Electrophoresis Techniques. Molecules 2019; 24:molecules24244617. [PMID: 31861089 PMCID: PMC6943715 DOI: 10.3390/molecules24244617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/03/2022] Open
Abstract
In the last years, the European Commission has adopted restrictive directives on food quality and safety in order to protect animal and human health. Veterinary drugs represent an important risk and the need to have sensitive and fast analytical techniques to detect and quantify them has become mandatory. Over the years, the availability of different modes, interfaces, and formats has improved the versatility, sensitivity, and speed of capillary electrophoresis (CE) techniques. Thus, CE represents a powerful tool for the analysis of a large variety of food matrices and food-related molecules with important applications in food quality and safety. This review focuses the attention of CE applications over the last decade on the detection of different classes of drugs (used as additives in animal food or present as contaminants in food products) with a potential risk for animal and human health. In addition, considering that the different sample preparation procedures have strongly contributed to CE sensitivity and versatility, the most advanced sample pre-concentration techniques are discussed here.
Collapse
|
13
|
Determination of environmental estrogens and bisphenol A in water samples by ultra-high performance liquid chromatography coupled to Q-Exactive high resolution mass spectrometry after magnetic solid-phase extraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Novel microporous β-cyclodextrin polymer as sorbent for solid-phase extraction of bisphenols in water samples and orange juice. Talanta 2018; 187:207-215. [DOI: 10.1016/j.talanta.2018.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
|
15
|
Gao F, Lu W, Liu H, Li J, Chen L. Dispersive liquid-liquid microextraction of five chlorophenols in water samples followed by determination using capillary electrophoresis. Electrophoresis 2018; 39:2431-2438. [PMID: 30004131 DOI: 10.1002/elps.201800205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
Dispersive liquid-liquid microextraction (DLLME) coupled with CE was developed for simultaneous determination of five types of chlorophenols (CPs), namely 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol (2,6-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) in water samples. Several parameters affecting DLLME and CE conditions were systematically investigated. Under the optimized DLLME-CE conditions, the five CPs were separated completely within 7.5 min and good enrichment factors were obtained of 40, 193, 102, 15, and 107 for 4-CP, 2,4,6-TCP, 2,4-DCP, 2-CP, and 2,6-DCP, respectively. Good linearity was attained in the range of 1-200 μg/L for 2,4,6-TCP, 2,4-DCP, 2-300 μg/L for 4-CP and 2-CP, and 1-300 μg/L for 2,6-DCP, with correlation coefficients (r) over 0.99. The LOD (S/N = 3) and the LOQ (S/N = 10) were 0.31-0.75 μg/L and 1.01-2.43 μg/L, respectively. Recoveries ranging from 60.85 to 112.36% were obtained with tap, lake, and river water spiked at three concentration levels and the RSDs (for n = 3) were 1.31-11.38%. With the characteristics of simplicity, cost-saving, and environmental friendliness, the developed DLLME-CE method proved to be potentially applicable for the rapid, sensitive, and simultaneous determination of trace CPs in complicated water samples.
Collapse
Affiliation(s)
- Fangfang Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Wenhui Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Lingxin Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| |
Collapse
|
16
|
Rebocho S, Cordas CM, Viveiros R, Casimiro T. Development of a ferrocenyl-based MIP in supercritical carbon dioxide: Towards an electrochemical sensor for bisphenol A. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Synthesis of a nanocomposite consisting of Cu2O and N-doped reduced graphene oxide with enhanced electrocatalytic activity for amperometric determination of diethylstilbestrol. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2452-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Pourreza N, Naghdi T. d -Limonene as a green bio-solvent for dispersive liquid–liquid microextraction of β-cyclodextrin followed by spectrophotometric determination. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Amiri A, Zonoz FM, Targhoo A, Saadati-Moshtaghin HR. Enrichment of phenolic compounds from water samples by using magnetic Fe3O4 nanoparticles coated with a Keggin type heteropoly acid of type H6[BFe(OH2)W11O39] as a sorbent. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2103-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Liquid-Phase Separation Methods for Environmental Analysis. Electrophoresis 2016; 37:2447-2448. [PMID: 27717076 DOI: 10.1002/elps.201670154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|