1
|
Habibi SC, Bradford VR, Baird SC, Lucas SW, Chouinard CD, Nagy G. Development of a cyclic ion mobility spectrometry-mass spectrometry-based collision cross-section database of permethylated human milk oligosaccharides. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5076. [PMID: 39041358 PMCID: PMC11283840 DOI: 10.1002/jms.5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Human milk oligosaccharides (HMOs) are an important class of biomolecules responsible for the healthy development of the brain-gut axis of infants. Unfortunately, their accurate characterization is largely precluded due to a variety of reasons - there are over 200 possible HMO structures whereas only 10s of these are available as authentic analytical standards. Furthermore, their isomeric heterogeneity stemming from their many possible glycosidic linkage positions and corresponding α/β anomericities further complicates their analyses. While liquid chromatography coupled to tandem mass spectrometry remains the gold standard for HMO analyses, it often times cannot resolve all possible isomeric species and thus warrants the development of other orthogonal approaches. High-resolution ion mobility spectrometry coupled to mass spectrometry has emerged as a rapid alternative to condensed-phase separations but largely has remained limited to qualitative information related to the resolution of isomers. In this work, we have assessed the use of permethylation to improve both the resolution and sensitivity of HMO analyses with cyclic ion mobility separations coupled with mass spectrometry. In addition to this, we have developed the first-ever high-resolution collision cross-section database for permethylated HMOs using our previously established calibration protocol. We envision that this internal reference database generated from high-resolution cyclic ion mobility spectrometry-mass spectrometry will greatly aid in the accurate characterization of HMOs and provide a valuable, orthogonal, approach to existing liquid chromatography-tandem mass spectrometry-based methods.
Collapse
Affiliation(s)
- Sanaz C. Habibi
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Victoria R. Bradford
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Sophie C. Baird
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | | | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Liew CY, Chen JL, Lin YT, Luo HS, Hung AT, Magoling BJA, Nguan HS, Lai CPK, Ni CK. Chromatograms and Mass Spectra of High-Mannose and Paucimannose N-Glycans for Rapid Isomeric Identifications. J Proteome Res 2024; 23:939-955. [PMID: 38364797 PMCID: PMC10913092 DOI: 10.1021/acs.jproteome.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
N-Linked glycosylation is one of the most essential post-translational modifications of proteins. However, N-glycan structural determination remains challenging because of the small differences in structures between isomers. In this study, we constructed a database containing collision-induced dissociation MSn mass spectra and chromatograms of high-performance liquid chromatography for the rapid identification of high-mannose and paucimannose N-glycan isomers. These N-glycans include isomers by breaking of arbitrary numbers of glycosidic bonds at arbitrary positions of canonical Man9GlcNAc2 N-glycans. In addition, some GlcMannGlcNAc2 N-glycan isomers were included in the database. This database is particularly useful for the identification of the N-glycans not in conventional N-glycan standards. This study demonstrated the application of the database to structural assignment for high-mannose N-glycans extracted from bovine whey proteins, soybean proteins, human mammary epithelial cells, and human breast carcinoma cells. We found many N-glycans that are not expected to be generated by conventional biosynthetic pathways of multicellular eukaryotes.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 106216, Taiwan
- Molecular
Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 106216, Taiwan
| | - Jien-Lian Chen
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Yen-Ting Lin
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Hong-Sheng Luo
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Taiwan Normal University, Taipei 116059, Taiwan
| | - An-Ti Hung
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bryan John Abel Magoling
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Institute
of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106216, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115201, Taiwan
| | - Hock-Seng Nguan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Charles Pin-Kuang Lai
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115201, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 106216, Taiwan
| | - Chi-Kung Ni
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Molecular
Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
4
|
Zhong P, Yang Y, Han T, Huang W, Liu Y, Gong G, Huang L, Lu Y, Wang Z. Comparative Analysis of Free and Glycoconjugates Oligosaccharide Content in Milk from Different Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:670-678. [PMID: 38135877 DOI: 10.1021/acs.jafc.3c06317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Human milk is important for infant growth, and oligosaccharides are one of its main functional nutrients. To enable a systematic comparison of free oligosaccharide and glycoconjugate content in milk from different species, the phenol-sulfuric acid and resorcinol assays were combined to determine the content. Using real samples, the method revealed that human milk contained the highest amount of total, neutral (9.84 ± 0.31 g/L), and sialylated (3.21 ± 0.11 g/L) free oligosaccharides, followed by goat milk, with neutral (0.135 ± 0.015 g/L) and sialylated (0.192 ± 0.016 g/L) free oligosaccharides and at a distance by bovine and yak milk. The highest total glycoconjugate content was detected in yak milk (0.798 ± 0.011 g/L), followed by human, bovine, and goat milk. These findings suggest that goat milk is the best source of free oligosaccharides in infant formula and functional dairy products and yak milk is the best source of glycoconjugates.
Collapse
Affiliation(s)
- Peiyun Zhong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuerong Yang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
5
|
Zhang L, Lin Q, Zhang J, Shi Y, Pan L, Hou Y, Peng X, Li W, Wang J, Zhou P. Qualitative and Quantitative Changes of Oligosaccharides in Human and Animal Milk over Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15553-15568. [PMID: 37815401 DOI: 10.1021/acs.jafc.3c03181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The aim of this study was to investigate the changes in human and animal milk oligosaccharides over lactation. In total, 89, 97, 115, and 71 oligosaccharides were identified in human, bovine, goat, and camel milk. The number of common oligosaccharides between camel and human milk was the highest (16 and 17 in transitional and mature milk). With respect to the absolute concentration of eight oligosaccharides (2'-FL, 3-FL, α3'-GL, LNT, LNnT, 3'-SL, 6'-SL, and DSL), 2'-FL, 3'-FL, LNT, and LNnT were much higher in human than three animal species. 3'-SL had a similar concentration in bovine colostrum (322.2 μg/mL) and human colostrum (321.0 μg/mL), followed by goat colostrum (105.1 μg/mL); however, it had the highest concentration in camel mature milk (304.5 μg/mL). The ratio of 6'-SL and 3'-SL (1.77) in goat colostrum was similar to that in human colostrum (1.68), followed by bovine colostrum (0.13). In terms of changes of eight oligosaccharides over lactation, they all decreased with the increase of lactation in bovine and goat milk; however, α3'-GL, 2'-FL, and 3-FL increased in camel species, and LNT increased first and then decreased over lactation in human milk. This study provides a better understanding of the variation of milk oligosaccharides related to lactation and species.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qiaran Lin
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jinyue Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yue Shi
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lina Pan
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, People's Republic of China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Company, Limited, Changsha, Hunan 410011, People's Republic of China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Wei Li
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
6
|
Wang J, Yu A, Cho BG, Mechref Y. Assessing the hydrophobicity of glycopeptides using reversed-phase liquid chromatography and tandem mass spectrometry. J Chromatogr A 2023; 1706:464237. [PMID: 37523904 DOI: 10.1016/j.chroma.2023.464237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Retention time is one of the most important parameters that has been widely used to demonstrate the separation results obtained from liquid chromatography (LC) platforms. However, retention time can shift when samples are tested with different instruments and laboratories, which hinders the identification process of analytes when comparing data collected from different LC systems. To address this problem, hydrophobicity index was introduced for retention time normalization of the glycopeptides separated by reversed-phase LC (RPLC). Tandem MS was used for the detection and identification of glycopeptides. In addition, the influence of different types of glycans on the hydrophobicity of peptide backbones was studied by comparing the retention time of glycopeptides with their non-glycosylated counterparts. The hydrophobicity of tryptic digested glycopeptides derived from model glycoproteins, including bovine fetuin, α1-acid glycoprotein, and haptoglobin from human plasma, were evaluated based on the hydrophobicity index of the standard peptides from a peptide retention time calibration mixture. The reduction of hydrophobicity of multiple peptide backbones was observed due to the hydrophilic glycan structures. By comparing the hydrophobicity index of glycopeptides collected from different time and instruments, the day-to-day and lab-to-lab comparisons suggested high reliability and reproducibility of this approach. The RSD% of hydrophobicity index from inter-lab experiments was 1.2%, while the RSD% of retention time was 5.1%. Then, the applications of this method were demonstrated on complex glycopeptide samples extracted from human blood serum. The hydrophobicity index can be applied to address the retention time shift when using different instruments, thereby boosting confidence of the characterization of glycopeptides.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, United States
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, United States
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, United States.
| |
Collapse
|
7
|
Durham SD, Wei Z, Lemay DG, Lange MC, Barile D. Creation of a milk oligosaccharide database, MilkOligoDB, reveals common structural motifs and extensive diversity across mammals. Sci Rep 2023; 13:10345. [PMID: 37365203 DOI: 10.1038/s41598-023-36866-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The carbohydrate fraction of most mammalian milks contains a variety of oligosaccharides that encompass a range of structures and monosaccharide compositions. Human milk oligosaccharides have received considerable attention due to their biological roles in neonatal gut microbiota, immunomodulation, and brain development. However, a major challenge in understanding the biology of milk oligosaccharides across other mammals is that reports span more than 5 decades of publications with varying data reporting methods. In the present study, publications on milk oligosaccharide profiles were identified and harmonized into a standardized format to create a comprehensive, machine-readable database of milk oligosaccharides across mammalian species. The resulting database, MilkOligoDB, includes 3193 entries for 783 unique oligosaccharide structures from the milk of 77 different species harvested from 113 publications. Cross-species and cross-publication comparisons of milk oligosaccharide profiles reveal common structural motifs within mammalian orders. Of the species studied, only chimpanzees, bonobos, and Asian elephants share the specific combination of fucosylation, sialylation, and core structures that are characteristic of human milk oligosaccharides. However, agriculturally important species do produce diverse oligosaccharides that may be valuable for human supplementation. Overall, MilkOligoDB facilitates cross-species and cross-publication comparisons of milk oligosaccharide profiles and the generation of new data-driven hypotheses for future research.
Collapse
Affiliation(s)
- Sierra D Durham
- Department of Food Science and Technology, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Zhe Wei
- Department of Food Science and Technology, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Danielle G Lemay
- Agricultural Research Service, U.S. Department of Agriculture, Western Human Nutrition Research Center, 430 West Health Sciences Dr., Davis, CA, 95616, USA
| | - Matthew C Lange
- International Center for Food Ontology Operability Data and Semantics, 216 F Street Ste. 139, Davis, CA, 95616, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
- Foods for Health Institute, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Liew CY, Luo HS, Yang TY, Hung AT, Magoling BJA, Lai CPK, Ni CK. Identification of the High Mannose N-Glycan Isomers Undescribed by Conventional Multicellular Eukaryotic Biosynthetic Pathways. Anal Chem 2023. [PMID: 37235553 DOI: 10.1021/acs.analchem.2c05599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
N-linked glycosylation is one of the most important post-translational modifications of proteins. Current knowledge of multicellular eukaryote N-glycan biosynthesis suggests high mannose N-glycans are generated in the endoplasmic reticulum and Golgi apparatus through conserved biosynthetic pathways. According to conventional biosynthetic pathways, four Man7GlcNAc2 isomers, three Man6GlcNAc2 isomers, and one Man5GlcNAc2 isomer are generated during this process. In this study, we applied our latest mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to re-examine high mannose N-glycans extracted from various multicellular eukaryotes which are not glycosylation mutants. LODES/MSn identified many high mannose N-glycan isomers previously unreported in plantae, animalia, cancer cells, and fungi. A database consisting of retention time and CID MSn mass spectra was constructed for all possible MannGlcNAc2 (n = 5, 6, 7) isomers that include the isomers by removing arbitrary numbers and positions of mannose from canonical N-glycan, Man9GlcNAc2. Many N-glycans in this database are not found in current N-glycan mass spectrum libraries. The database is useful for rapid high mannose N-glycan isomeric identification.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
| | - Hong-Sheng Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ting-Yi Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - An-Ti Hung
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bryan John Abel Magoling
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Kayili HM, Barlas N, Demirhan DB, Yaman ME, Atakay M, Güler Ü, Kara M, Tekgunduz KS, Salih B. Utilizing linkage-specific ethyl-esterification approach to perform in-depth analysis of sialylated N-glycans present on milk whey glycoproteins. Food Chem 2023; 421:136166. [PMID: 37086518 DOI: 10.1016/j.foodchem.2023.136166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
Glycosylation of milk whey proteins, specifically the presence of sialic acid-containing glycan residues, causes functional changes in these proteins. This study aimed to analyze the N-glycome of milk whey glycoproteins from various milk sources using a linkage-specific ethyl esterification approach with MALDI-MS (matrix-assisted laser desorption/ionization-mass spectrometry). The results showed that the N-glycan profiles of bovine and buffalo whey mostly overlapped. Acetylated N-glycans were only detected in donkey milk whey at a rate of 16.06%. a2,6-linked N-Acetylneuraminic acid (a2,6-linked NeuAc, E) was found to be the predominant sialylation type in human milk whey (65.16%). The amount of a2,6-linked NeuAc in bovine, buffalo, goat, and donkey whey glycoproteomes was 42.33%, 44.16%, 39.00%, and 34.86%, respectively. The relative abundances of a2,6-linked N-Glycolylneuraminic acid (a2,6-linked NeuGc, Ge) in bovine, buffalo, goat, and donkey whey were 7.52%, 5.41%, 28.24%, and 17.31%, respectively. Goat whey exhibited the highest amount of a2,3-linked N-Glycolylneuraminic acid (a2,3-linked NeuGc, Gl, 8.62%), while bovine and donkey whey contained only 2.14% and 1.11%, respectively.
Collapse
Affiliation(s)
- Haci Mehmet Kayili
- Karabuk University, Faculty of Engineering, Department of Biomedical Engineering, Karabük, Turkey.
| | - Nazire Barlas
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Deniz Baran Demirhan
- Karabuk University, Faculty of Engineering, Department of Biomedical Engineering, Karabük, Turkey
| | - Mehmet Emrah Yaman
- Atatürk University, Faculty of Pharmacy, Department of Analytical Chemistry, Erzurum, Turkey
| | - Mehmet Atakay
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Ülkü Güler
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Mustafa Kara
- Atatürk University, Faculty of Medicine, Department of Neonatology, Erzurum, Turkey
| | | | - Bekir Salih
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
10
|
Han T, Wang X, Cao H, Song J, Deng X, Gong G, Huang L, Lu Y, Wang Z. Novel Method for Adulterated Identification of Saneen Goat Milk Based on Free Oligosaccharides α3'-Galactosyllactose and N-Acetylhexaminyllactose as Marker Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5667-5673. [PMID: 36995191 DOI: 10.1021/acs.jafc.2c08649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methods for the detection of adulterated milk are essential for assessing the quality of goat milk products. We hypothesized that goat milk oligosaccharides could provide a basis for this purpose and compared the levels of α3'-galactosyllactose (α3'-GL) and N-acetylhexaminyllactose (NHL) between goat milk and bovine milk oligosaccharides using reverse-phase high-performance liquid chromatography. The α3'-GL was detected to be three times more abundant in goat milk than in bovine milk, whereas NHL showed the opposite trend. Linear relationships were established between the relative proportions of α3'-GL and NHL levels for different ratios of bovine and goat milk, with a minimum detection limit of 2% bovine milk. The new method was validated by analyses of adulterants in eight commercially available goat dairy products. Overall, the degree of adulteration in goat milk products can be determined based on the relative proportions of α3'-GL and NHL.
Collapse
Affiliation(s)
- Tianjiao Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xinyi Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Haige Cao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiansen Song
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoli Deng
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
11
|
Tsai ST, Hsu HC, Ni CK. A simple tandem mass spectrometry method for structural identification of pentose oligosaccharides. Analyst 2023; 148:1712-1731. [PMID: 36929945 DOI: 10.1039/d3an00068k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Differentiation of stereoisomers that are only dissimilar in the orientation of chemical bonds in space by mass spectrometry remains challenging. Structural determination of carbohydrates by mass spectrometry is difficult, mainly due to the large number of stereoisomers in carbohydrates. Arabinose and xylose are pentose stereoisomers typically present in plant polysaccharides and exist in α- and β-anomeric configurations of furanose and pyranose forms. Conventional methods used to determine the structures of polysaccharides include hydrolysis of polysaccharides into oligosaccharides followed by identification of these oligosaccharides' structures individually through nuclear magnetic resonance spectroscopy (NMR). Although the sensitivity of mass spectrometry is much higher than that of NMR, conventional mass spectrometry provides only limited useful information on oligosaccharide structure determination, only the linkage positions of glycosidic bonds. In this study, we demonstrated a mass spectrometry method for the identification of linkage positions, anomeric configurations, and monosaccharide stereoisomers of intact oligosaccharides consisting of arabinose and xylose. We separated arabinose and xylose monosaccharides into α-furanose, β-furanose, α-pyranose, and β-pyranose forms through high-performance liquid chromatography and obtained the corresponding collision-induced dissociation mass spectra. Using these monosaccharide spectra and a flow chart consisting of the proper CID sequences derived from the dissociation mechanisms of pentose, a simple multi-stage tandem mass spectrometry method for structural identification of intact oligosaccharides consisting of arabinose and xylose was developed. The new mass spectrometry method provides a simple method for determining the structure of polysaccharides consisting of arabinose and xylose. The flow chart can be used in computer coding for automation, an ultimate goal for oligosaccharide structure determination.
Collapse
Affiliation(s)
- Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan.
| | - Hsu-Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan.
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan. .,Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
12
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
13
|
Analysis of milk with liquid chromatography–mass spectrometry: a review. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-022-04197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractAs a widely consumed foodstuff, milk and dairy products are increasingly studied over the years. At the present time, milk profiling is used as a benchmark to assess the properties of milk. Modern biomolecular mass spectrometers have become invaluable to fully characterize the milk composition. This review reports the analysis of milk and its components using liquid chromatography coupled with mass spectrometry (LC–MS). LC–MS analysis as a whole will be discussed subdivided into the major constituents of milk, namely, lipids, proteins, sugars and the mineral fraction.
Collapse
|
14
|
An Efficient and Economical N-Glycome Sample Preparation Using Acetone Precipitation. Metabolites 2022; 12:metabo12121285. [PMID: 36557323 PMCID: PMC9786591 DOI: 10.3390/metabo12121285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the critical role of the glycome in organisms and its close connections with various diseases, much time and effort have been dedicated to glycomics-related studies in the past decade. To achieve accurate and reliable identification and quantification of glycans extracted from biological samples, several analysis methods have been well-developed. One commonly used methodology for the sample preparation of N-glycomics usually involves enzymatic cleavage by PNGase F, followed by sample purification using C18 cartridges to remove proteins. PNGase F and C18 cartridges are very efficient both for cleaving N-glycans and for protein removal. However, this method is most suitable for a limited quantity of samples. In this study, we developed a sample preparation method focusing on N-glycome extraction and purification from large-scale biological samples using acetone precipitation. The N-glycan yield was first tested on standard glycoprotein samples, bovine fetuin and complex biological samples, and human serum. Compared to C18 cartridges, most of the sialylated N-glycans from human serum were detected with higher abundance after acetone precipitation. However, C18 showed a slightly higher efficiency for protein removal. Using the unfiltered human serum as the baseline, around 97.7% of the proteins were removed by acetone precipitation, while more than 99.9% of the proteins were removed by C18 cartridges. Lastly, the acetone precipitation was applied to N-glycome extraction from egg yolks to demonstrate large-scale glycomics sample preparation.
Collapse
|
15
|
Guan B, Zhang Z, Chai Y, Amantai X, Chen X, Cao X, Yue X. N-glycosylation of milk proteins: A review spanning 2010–2022. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Heat Stress of Algal Partner Hinders Colonization Success and Alters the Algal Cell Surface Glycome in a Cnidarian-Algal Symbiosis. Microbiol Spectr 2022; 10:e0156722. [PMID: 35639004 PMCID: PMC9241721 DOI: 10.1128/spectrum.01567-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corals owe their ecological success to their symbiotic relationship with dinoflagellate algae (family Symbiodiniaceae). While the negative effects of heat stress on this symbiosis are well studied, how heat stress affects the onset of symbiosis and symbiont specificity is less explored. In this work, we used the model sea anemone, Exaiptasia diaphana (commonly referred to as Aiptasia), and its native symbiont, Breviolum minutum, to study the effects of heat stress on the colonization of Aiptasia by algae and the algal cell-surface glycome. Heat stress caused a decrease in the colonization of Aiptasia by algae that were not due to confounding variables such as algal motility or oxidative stress. With mass spectrometric analysis and lectin staining, a thermally induced enrichment of glycans previously found to be associated with free-living strains of algae (high-mannoside glycans) and a concomitant reduction in glycans putatively associated with symbiotic strains of algae (galactosylated glycans) were identified. Differential enrichment of specific sialic acid glycans was also identified, although their role in this symbiosis remains unclear. We also discuss the methods used to analyze the cell-surface glycome of algae, evaluate current limitations, and provide suggestions for future work in algal-coral glycobiology. Overall, this study provided insight into how stress may affect the symbiosis between cnidarians and their algal symbionts by altering the glycome of the symbiodinian partner. IMPORTANCE Coral reefs are under threat from global climate change. Their decline is mainly caused by the fragility of their symbiotic relationship with dinoflagellate algae which they rely upon for their ecological success. To better understand coral biology, researchers used the sea anemone, Aiptasia, a model system for the study of coral-algal symbiosis, and characterized how heat stress can alter the algae's ability to communicate to the coral host. This study found that heat stress caused a decline in algal colonization success and impacted the cell surface molecules of the algae such that it became more like that of nonsymbiotic species of algae. This work adds to our understanding of the molecular signals involved in coral-algal symbiosis and how it breaks down during heat stress.
Collapse
|
17
|
Weng WC, Liao HE, Huang SP, Tsai ST, Hsu HC, Liew CY, Gannedi V, Hung SC, Ni CK. Unusual free oligosaccharides in human bovine and caprine milk. Sci Rep 2022; 12:10790. [PMID: 35750794 PMCID: PMC9232581 DOI: 10.1038/s41598-022-15140-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Free oligosaccharides are abundant macronutrients in milk and involved in prebiotic functions and antiadhesive binding of viruses and pathogenic bacteria to colonocytes. Despite the importance of these oligosaccharides, structural determination of oligosaccharides is challenging, and milk oligosaccharide biosynthetic pathways remain unclear. Oligosaccharide structures are conventionally determined using a combination of chemical reactions, exoglycosidase digestion, nuclear magnetic resonance spectroscopy, and mass spectrometry. Most reported free oligosaccharides are highly abundant and have lactose at the reducing end, and current oligosaccharide biosynthetic pathways in human milk are proposed based on these oligosaccharides. In this study, a new mass spectrometry technique, which can identify linkages, anomericities, and stereoisomers, was applied to determine the structures of free oligosaccharides in human, bovine, and caprine milk. Oligosaccharides that do not follow the current biosynthetic pathways and are not synthesized by any discovered enzymes were found, indicating the existence of undiscovered biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Wei-Chien Weng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Molecular Science and Technology, International Graduate Program, Academia Sinica and National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung-En Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shih-Pei Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Hsu-Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University and Taiwan International Graduate Program of Molecular Science and Technology, Academia Sinica, Taipei, 10617, Taiwan
| | | | | | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
- Molecular Science and Technology, International Graduate Program, Academia Sinica and National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
18
|
Molnarova K, Cokrtova K, Tomnikova A, Krizek T, Kozlik P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. MONATSHEFTE FUR CHEMIE 2022; 153:659-686. [PMID: 35754790 PMCID: PMC9212196 DOI: 10.1007/s00706-022-02938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Glycosylation is one of the most significant and abundant post-translational modifications in cells. Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycomic and glycoproteomic analysis is highly challenging because of the large diversity of structures, low abundance, site-specific heterogeneity, and poor ionization efficiency of glycans and glycopeptides in mass spectrometry (MS). MS is a key tool for characterization of glycans and glycopeptides. However, MS alone does not always provide full structural and quantitative information for many reasons, and thus MS is combined with some separation technique. This review focuses on the role of separation techniques used in glycomic and glycoproteomic analyses, liquid chromatography and capillary electrophoresis. The most important separation conditions and results are presented and discussed. Graphical abstract
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Cokrtova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Wang J, Dong X, Yu A, Huang Y, Peng W, Mechref Y. Isomeric separation of permethylated glycans by extra-long reversed-phase liquid chromatography (RPLC)-MS/MS. Analyst 2022; 147:2048-2059. [PMID: 35311852 PMCID: PMC9117491 DOI: 10.1039/d2an00010e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Glycosylation is known as a critical biological process that can largely affect the properties and the functions of proteins. Glycan isomers have been shown to be involved in a variety of disease progressions. However, the separation and identification of glycan isomers has been a challenge for years due to the microheterogeneity of glycan isomeric structures. Therefore, effective and stable techniques have been investigated over the last few decades to improve isomeric separations of glycans. RPLC has been widely used in biomolecule analysis because of its extraordinary reproducibility and reliability in retention time and separation resolution. However, so far, no studies have achieved high resolution of glycan isomers using this technique. In this study, we focused on further boosting the isomeric separation of permethylated glycans using a 500 mm reversed-phase LC column. To achieve better resolutions on permethylated glycans, different LC conditions were optimized using glycan standards, including core- and branch-fucosylated N-glycan isomers and sialic acid linked isomers, which were both successfully separated. Then, the optimal separation strategy was applied to achieve separations of N- and O-glycan isomers derived from model glycoproteins, including bovine fetuin, ribonuclease B and κ-casein. Baseline separations were observed on multiple sialylated linkage isomers. However, the separation performance of high-mannose isomers needs further improvement. The reproducibility and stability of this long C18 column was also tested by doing run-to-run, day-to-day and month-to-month comparisons of retention times on multiple glycans and the %RSD was found less than 0.92%. Finally, we applied this approach to separate glycan isomers derived from complex biological samples, including blood serum and cell lines, where baseline separations were attained on several isomeric structures. Compared to the separation efficiency of PGC and MGC columns, the RPLC C18 column provides lower resolution but more robust reproducibility, which makes it a good complementary alternative for isomeric separations of glycans.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, USA.
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, USA.
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, USA.
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, USA.
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, USA.
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, USA.
| |
Collapse
|
20
|
Devlin JR, Santus W, Mendez J, Peng W, Yu A, Wang J, Alejandro-Navarreto X, Kiernan K, Singh M, Jiang P, Mechref Y, Behnsen J. Salmonella enterica serovar Typhimurium chitinases modulate the intestinal glycome and promote small intestinal invasion. PLoS Pathog 2022; 18:e1010167. [PMID: 35482787 PMCID: PMC9049507 DOI: 10.1371/journal.ppat.1010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - William Santus
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jorge Mendez
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Xiomarie Alejandro-Navarreto
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn Kiernan
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Manmeet Singh
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
21
|
Food glycomics: Dealing with unexpected degradation of oligosaccharides during sample preparation and analysis. J Food Drug Anal 2022; 30:62-76. [PMID: 35647723 PMCID: PMC9931006 DOI: 10.38212/2224-6614.3393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
This study reveals that unexpected degradation of food oligosaccharides can occur during conventional glycomics workflows, including sample preparation and analysis by liquid chromatography-mass spectrometry (LC-MS). With the present investigation, we aim to alert the scientific community of the susceptibility of specific glycosidic linkages to degradation induced by heat and acid. Key standard oligosaccharides representing the major types found in foods (3'-sialyllactose and 6'-sialyl-N-acetyllactosamine for milk, raffinose and stachyose for legumes) were selected as model systems and underwent each of the following treatments independently: (1) labeled with the derivatizing agent 1-aminopyrene-3,6,8-trisulfonic (APTS) (followed by analysis with a capillary electrophoresis system coupled with a fluorescence detector), (2) dried from an acetonitrile-water mixture containing 0.1% trifluoroacetic acid, and (3) injected into an LC-MS system. We demonstrated that both raffinose and stachyose degraded during APTS-labeling by the acid in the labeling reagents. We also discovered that during centrifugal evaporation at 37 °C, all of the four nonderivatized oligosaccharides tested were partially degraded. Additionally, when the LC-MS eluent contained 0.1% formic acid, 3'-sialyllactose, raffinose, and stachyose underwent extensive in-source fragmentation during analysis. Lastly, we identified a simple strategy that can reduce the probability of incorrect oligosaccharide identification resulting from extensive in-source fragmentation.
Collapse
|
22
|
Yang Y, Lu Y, Liu Y, Pan Y, Ma H, Huang L, Wang Z. Comparative analysis of yak milk and bovine milk glycoprotein N/O-glycome by online HILIC-UV-ESI-MS/MS. Carbohydr Polym 2022; 278:118918. [PMID: 34973737 DOI: 10.1016/j.carbpol.2021.118918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/02/2022]
Abstract
Yak milk (YM) has higher protein content than other bovine milk (BM) varieties. The bioactivity of milk glycoproteins is related to N/O-glycans. We qualitatively and quantitatively compared the N/O-glycome of YM and BM glycoproteins using stable isotope labeling combined with hydrophilic interaction chromatography and electrospray ionization mass spectrometry. We identified 79 and 78 N-glycans in YM and BM, respectively. Two N-glycans (H4N5F1A1; H5N4F1) were exclusive to YM. The content ratios of different types of N-glycans differed significantly between YM and BM, with sialylated N-glycans 2.33 times more abundant in YM. Five and seven O-glycans were detected in YM and BM, respectively. Two O-glycans (H1N2; H1N2A1) were exclusive to BM. The bi-sialylated O-glycan, H1N1A2, accounted for 56.1% of O-glycans in YM; it was 5.97 times more abundant in YM than in BM (equal volume basis). This study provides a theoretical basis for the future utilization of YM as a functional food.
Collapse
Affiliation(s)
- Yuerong Yang
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yinchuan Liu
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yu Pan
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hongjuan Ma
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- The College of Life Sciences, Northwest University, Xi'an 710069, China; Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- The College of Life Sciences, Northwest University, Xi'an 710069, China; Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
23
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
24
|
Yu A, Zhao J, Yadav SPS, Molitoris BA, Wagner MC, Mechref Y. Changes in the Expression of Renal Brush Border Membrane N-Glycome in Model Rats with Chronic Kidney Diseases. Biomolecules 2021; 11:1677. [PMID: 34827675 PMCID: PMC8616023 DOI: 10.3390/biom11111677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| | - Shiv Pratap S. Yadav
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Bruce A. Molitoris
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Mark C. Wagner
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| |
Collapse
|
25
|
Jia Y, Lu Y, Wang X, Yang Y, Zou M, Liu J, Jin W, Wang X, Pang G, Huang L, Wang Z. Mass spectrometry based quantitative and qualitative analyses reveal N-glycan changes of bovine lactoferrin at different stages of lactation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry. Commun Chem 2021; 4:92. [PMID: 36697781 PMCID: PMC9814355 DOI: 10.1038/s42004-021-00532-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 01/28/2023] Open
Abstract
N-linked glycosylation is one of the most important protein post-translational modifications. Despite the importance of N-glycans, the structural determination of N-glycan isomers remains challenging. Here we develop a mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to determine the structures of N-glycan isomers that cannot be determined using conventional mass spectrometry. In LODES/MSn, the sequences of successive collision-induced dissociation are derived from carbohydrate dissociation mechanisms and apply to N-glycans in an ion trap for structural determination. We validate LODES/MSn using synthesized N-glycans and subsequently applied this method to N-glycans extracted from soybean, ovalbumin, and IgY. Our method does not require permethylation, reduction, and labeling of N-glycans, or the mass spectrum databases of oligosaccharides and N-glycan standards. Moreover, it can be applied to all types of N-glycans (high-mannose, hybrid, and complex), as well as the N-glycans degraded from larger N-glycans by any enzyme or acid hydrolysis.
Collapse
|
27
|
Wang Y, Zhao H, Tao J, Li M, Liu G, Dong W. A new method for purifying N-Glycans released from milk glycoprotein. J Proteomics 2021; 245:104283. [PMID: 34102345 DOI: 10.1016/j.jprot.2021.104283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/30/2021] [Indexed: 10/24/2022]
Abstract
Human milk is the first source of nutrition for infants, which delivers an array of unique bioactive components to offspring. Modern bovine-milk-based infant formulas are good substitutes when mother's milk is not available. As the third most abundant component in human milk, human free oligosaccharides (HMOs) may interference the analysis of total N-glycans on the glycoproteins in human milk. Herein, we combined acetone precipitation protein with the filter aided sample preparation method (FASP) to thoroughly remove HMOs and purify N-glycans. Furthermore, we also compared both N-glycosylation and glycoproteins between human and bovine milk, which may provide new ideas for the composition adjustment of infant formula in the food industry. SIGNIFICANCE: We described a new method, which can successfully remove HMOs, further extract and purify the N-glycans on glycoproteins from pooled human milk for MALDI-TOF MS analysis by applying acetone precipitation and FASP together. We applied the new method to purify the N-glycans from whey proteins in pooled bovine milk and compared the N-glycosylation differences between pooled human and bovine milk by MALDI-TOF MS. We first reported the difference of N-glycan pattern of glycoproteins between pooled bovine and human milk by lectin blotting, and found significant differences in types and abundance of glycoproteins between the two sourced milk.
Collapse
Affiliation(s)
- Yue Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Henan Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Jia Tao
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Gang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
28
|
Duman H, Kaplan M, Arslan A, Sahutoglu AS, Kayili HM, Frese SA, Karav S. Potential Applications of Endo-β- N-Acetylglucosaminidases From Bifidobacterium longum Subspecies infantis in Designing Value-Added, Next-Generation Infant Formulas. Front Nutr 2021; 8:646275. [PMID: 33898500 PMCID: PMC8063050 DOI: 10.3389/fnut.2021.646275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Human milk is the optimal source of infant nutrition. Among many other health benefits, human milk can stimulate the development of a Bifidobacterium-rich microbiome through human milk oligosaccharides (HMOs). In recent years, the development of novel formulas has placed particular focus on incorporating some of the beneficial functional properties of human milk. These include adding specific glycans aimed to selectively stimulate the growth of Bifidobacterium. However, the bifidogenicity of human milk remains unparalleled. Dietary N-glycans are carbohydrate structures conjugated to a wide variety of glycoproteins. These glycans have a remarkable structural similarity to HMOs and, when released, show a strong bifidogenic effect. This review discusses the biocatalytic potential of the endo-β-N-acetylglucosaminidase enzyme (EndoBI-1) from Bifidobacterium longum subspecies infantis (B. infantis), in releasing N-glycans inherently present in infant formula as means to increase the bifidogenicity of infant formula. Finally, the potential implications for protein deglycosylation with EndoBI-1 in the development of value added, next-generation formulas are discussed from a technical perspective.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Merve Kaplan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ayşenur Arslan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | | | - Haci Mehmet Kayili
- Department of Biomedical Engineering, Karabuk University, Karabük, Turkey
| | - Steven A Frese
- Department of Nutrition, University of Nevada, Reno, NV, United States.,Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, United States
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
29
|
Prosser CG. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci 2021; 86:257-265. [DOI: 10.1111/1750-3841.15574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Colin G Prosser
- Dairy Goat Co‐operative (N.Z.) Ltd. 18 Gallagher Drive Hamilton 3240 New Zealand
| |
Collapse
|
30
|
Gallier S, Van den Abbeele P, Prosser C. Comparison of the Bifidogenic Effects of Goat and Cow Milk-Based Infant Formulas to Human Breast Milk in an in vitro Gut Model for 3-Month-Old Infants. Front Nutr 2020; 7:608495. [PMID: 33363198 PMCID: PMC7759547 DOI: 10.3389/fnut.2020.608495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Human milk contains prebiotic components, such as human milk oligosaccharides (HMOs), which stimulate the growth of specific members of the infant gut microbiota (e.g., Bifidobacteria). Plant-based or synthetic oligosaccharides are often added to infant formulas to simulate the bifidogenic effect of HMOs. Cow milk, the most common source of protein in infant formula, and goat milk, used increasingly in the manufacture of infant formula, contain naturally-occurring prebiotics. This study compared the upper gastrointestinal digestion and subsequent colonic fermentation of human milk vs. goat and cow milk-based infant formulas (goat IF and cow IF, respectively), without additional oligosaccharides using an in vitro model for 3-month-old infants based on the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). First, a dialysis approach using 3.5 kDa membranes was demonstrated to simulate small intestinal absorption of carbohydrates in conditions similar to those in vivo. During the in vitro digestion experiment, oligosaccharides were detected in human milk and goat IF but barely detected in the cow IF. Further, all three milk matrices decreased colonic pH by boosting acetate, lactate, and propionate production, which related to increased abundances of acetate/lactate-producing Bifidobacteriaceae for human milk (+25.7%) and especially goat IF (33.8%) and cow IF (37.7%). Only cow IF stimulated butyrate production which correlated with an increase in Lachnospiraceae and Clostridiaceae. Finally, Enterobacteriaceae and Acidaminococcaceae also increased with all three milk matrices, while production of proteolytic metabolites (branched-chain fatty acids) was only detected for the cow IF. Overall, goat and cow milk-based formulas without added oligosaccharides impacted gut microbial activity and composition similarly to human milk. This suggests that even without supplementation of formula with oligosaccharides, whole goat milk, whole cow milk and cow milk ingredients already supply compounds in formulas that exert beneficial bifidogenic effects. Further clinical research is warranted to elucidate the effect of whole goat milk-based formulas on the infant gut microbiome.
Collapse
Affiliation(s)
| | | | - Colin Prosser
- Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| |
Collapse
|
31
|
Gutierrez Reyes CD, Jiang P, Donohoo K, Atashi M, Mechref YS. Glycomics and glycoproteomics: Approaches to address isomeric separation of glycans and glycopeptides. J Sep Sci 2020; 44:403-425. [PMID: 33090644 DOI: 10.1002/jssc.202000878] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022]
Abstract
Changes in the glycome of human proteins and cells are associated with the progression of multiple diseases such as Alzheimer's, diabetes mellitus, many types of cancer, and those caused by viruses. Consequently, several studies have shown essential modifications to the isomeric glycan moieties for diseases in different stages. However, the elucidation of extensive isomeric glycan profiles remains challenging because of the lack of analytical techniques with sufficient resolution power to separate all glycan and glycopeptide iso-forms. Therefore, the development of sensitive and accurate approaches for the characterization of all the isomeric forms of glycans and glycopeptides is essential to tracking the progression of pathology in glycoprotein-related diseases. This review describes the isomeric separation achievements reported in glycomics and glycoproteomics in the last decade. It focuses on the mass spectrometry-based analytical strategies, stationary phases, and derivatization techniques that have been developed to enhance the separation mechanisms in liquid chromatography systems and the detection capabilities of mass spectrometry systems.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia S Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
32
|
van Leeuwen SS, te Poele EM, Chatziioannou AC, Benjamins E, Haandrikman A, Dijkhuizen L. Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13469-13485. [PMID: 33141570 PMCID: PMC7705968 DOI: 10.1021/acs.jafc.0c03766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human milk is considered the golden standard in infant nutrition. Free oligosaccharides in human milk provide important health benefits. These oligosaccharides function as prebiotics, immune modulators, and pathogen inhibitors and were found to improve barrier function in the gut. Infant formulas nowadays often contain prebiotics but lack the specific functions of human milk oligosaccharides (hMOS). Milk from domesticated animals also contains milk oligosaccharides but at much lower levels and with less diversity. Goat milk contains significantly more oligosaccharides (gMOS) than bovine (bMOS) or sheep (sMOS) milk and also has a larger diversity of structures. This review summarizes structural studies, revealing a diversity of up to 77 annotated gMOS structures with almost 40 structures fully characterized. Quantitative studies of goat milk oligosaccharides range from 60 to 350 mg/L in mature milk and from 200 to 650 mg/L in colostrum. These levels are clearly lower than in human milk (5-20 g/L) but higher than in other domesticated dairy animals, e.g., bovine (30-60 mg/L) and sheep (20-40 mg/L). Finally, the review focuses on demonstrated and potential functionalities of gMOS. Some studies have shown anti-inflammatory effects of mixtures enriched in gMOS. Goat MOS also display prebiotic potential, particularly in stimulating growth of bifidobacteria preferentially. Although functional studies of gMOS are still limited, several structures are also found in human milk and have known functions as immune modulators and pathogen inhibitors. In conclusion, goat milk constitutes a promising alternative source for milk oligosaccharides, which can be used in infant formula.
Collapse
Affiliation(s)
- Sander S. van Leeuwen
- Department
of Laboratory Medicine, Cluster Human Nutrition and Health, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, Netherlands
- E-mail:
| | | | | | | | | | - Lubbert Dijkhuizen
- CarbExplore
Research BV, 9747 AN Groningen, Netherlands
- Department
of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, 9700 AB Groningen, Netherlands
| |
Collapse
|
33
|
Cho BG, Peng W, Mechref Y. Separation of Permethylated O-Glycans, Free Oligosaccharides, and Glycosphingolipid-Glycans Using Porous Graphitized Carbon (PGC) Column. Metabolites 2020; 10:metabo10110433. [PMID: 33121051 PMCID: PMC7692250 DOI: 10.3390/metabo10110433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
Glycosylation is one of the most common and complex post-translational modifications of proteins. However, there are other carbohydrates such as free oligosaccharides and glycosphingolipids-glycans that are associated with important biological and clinical roles. To analyze these molecules using liquid chromatography coupled with mass spectrometry (LC-MS), the permethylation approach was utilized. Although permethylation is a commonly utilized glycan derivatization technique, separation of permethylated glycans released from glycosphingolipid (GSL) by LC-MS has never been previously demonstrated. Here, a nanoflow porous graphitized carbon (PGC) column coupled with a high-resolution mass spectrometer was used to achieve isomeric separation of these permethylated glycans. We demonstrate the separation of free reducing end and reduced end O-glycans, free oligosaccharides derived from human milk, and GSL glycans derived from the MDA-MB-231BR cancer cell line using PGC-LC-MS.
Collapse
|
34
|
Gautam S, Peng W, Cho BG, Huang Y, Banazadeh A, Yu A, Dong X, Mechref Y. Glucose unit index (GUI) of permethylated glycans for effective identification of glycans and glycan isomers. Analyst 2020; 145:6656-6667. [PMID: 32804173 PMCID: PMC7554265 DOI: 10.1039/d0an00314j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retention time is the most common and widely used criterion to report the separation of glycans using Liquid Chromatography (LC), but it varies widely across different columns, instruments and laboratories. This variation is problematic when inter-laboratory data is compared. Furthermore, it influences reproducibility and hampers efficient data interpretation. In our endeavor to overcome this variance, we propose the use of the Glucose Unit Index (GUI) on C18 and PGC column-based separation of reduced and permethylated glycans. GUI has previously been utilized for retention time normalization of native and labeled glycans. We evaluated this method with reduced and permethylated glycans derived from model glycoproteins fetuin and ribonuclease B (RNase B), and then implemented it to human blood serum to generate C18 and PGC column-based isomeric glycan libraries. GUI values for glycan compositions were calculated with respect to the glucose units derived from dextrin, which was employed as an elution standard. The GUI values were validated on three different LC systems (UltiMate 3000 Nano UHPLC systems) in two laboratories to ensure the reliability and reproducibility of the method. Applicability on real samples was demonstrated using human breast cancer cell lines. A total of 116 permethylated N-glycans separated on a C18 column and 134 glycans separated on a PGC column were compiled in a library. Overall, the established GUI method and the demonstration of reproducible inter- and intra-laboratory GUI values would aid the future development of automated glycan and isomeric glycan identification methods.
Collapse
Affiliation(s)
- Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ndukwe IE, Black I, Heiss C, Azadi P. Evaluating the Utility of Permethylated Polysaccharide Solution NMR Data for Characterization of Insoluble Plant Cell Wall Polysaccharides. Anal Chem 2020; 92:13221-13228. [PMID: 32794693 DOI: 10.1021/acs.analchem.0c02379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plant cell wall polysaccharide analysis encompasses the utilization of a variety of analytical tools, including gas and liquid chromatography, mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy. These methods provide complementary data, which enable confident structural proposals of the many complex polysaccharide structures that exist in the complex matrices of plant cell walls. However, cell walls contain fractions of varying solubilities, and a few techniques are available that can analyze all fractions simultaneously. We have discovered that permethylation affords the complete dissolution of both soluble and insoluble polysaccharide fractions of plant cell walls in organic solvents such as chloroform or acetonitrile, which can then be analyzed by a number of analytical techniques including MS and NMR. In this work, NMR structure analysis of 10 permethylated polysaccharide standards was undertaken to generate chemical shift data providing insights into spectral changes that result from permethylation of polysaccharide residues. This information is of especial relevance to the structure analysis of insoluble polysaccharide materials that otherwise are not easily investigated by solution-state NMR methodologies. The preassigned NMR chemical shift data is shown to be vital for NMR structure analysis of minor polysaccharide components of plant cell walls that are particularly difficult to assign by NMR correlation data alone. With the assigned chemical shift data, we analyzed the permethylated samples of destarched, alcohol-insoluble residues of switchgrass and poplar by two-dimensional NMR spectral profiling. Thus, we identified, in addition to the major polysaccharide components, two minor polysaccharides, namely, <5% 3-linked arabinoxylan (switchgrass) and <2% glucomannan (poplar). In particular, the position of the arabinose residue in the arabinoxylan of the switchgrass sample was confidently assigned based on chemical shift values, which are highly sensitive to local chemical environments. Furthermore, the high resolution afforded by the 1H NMR spectra of the permethylated switchgrass and poplar samples allowed facile relative quantitative analysis of their polysaccharide composition, utilizing only a few milligrams of the cell wall material. The concepts herein developed will thus facilitate NMR structure analysis of insoluble plant cell wall polysaccharides, more so of minor cell wall components that are especially challenging to analyze with current methods.
Collapse
Affiliation(s)
- Ikenna E Ndukwe
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
36
|
Purification of natural neutral N-glycans by using two-dimensional hydrophilic interaction liquid chromatography × porous graphitized carbon chromatography for glycan-microarray assay. Talanta 2020; 221:121382. [PMID: 33076051 DOI: 10.1016/j.talanta.2020.121382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022]
Abstract
Glycan microarray for studying carbohydrate-protein interactions requires diverse classes of well-defined glycan standards. In this study, a purification strategy was established based on two-dimensional hydrophilic interaction liquid chromatography and porous graphitized carbon chromatography (HILIC × PGC) for the acquisition of neutral N-glycan standards from natural source. A total of thirty-one N-glycan compounds including seven pairs of isomers with the amounts from 0.7 to 230.0 nmol were isolated from ovalbumin as the model glycoconjugate. The purified N-glycans covered high-mannose, hybrid as well as multi-antenna asymmetric complex types. The purity of majority of these N-glycans was higher than 90%. Detailed structures of the N-glycan compounds were verified via negative ion tandem MS analysis, in which specific diagnostic ions including D- and E-ions were used to identify isomeric and terminal fine structures. The tag-free glycan compounds with well-defined structures, purity and amounts were finally assembled on the glass slide through neoglycolipid technology. Microarray binding assay of purified glycans with WGA lectin indicated the potential of the established strategy in glycan library expansion and functional glycomics.
Collapse
|
37
|
Zhu R, Huang Y, Zhao J, Zhong J, Mechref Y. Isomeric Separation of N-Glycopeptides Derived from Glycoproteins by Porous Graphitic Carbon (PGC) LC-MS/MS. Anal Chem 2020; 92:9556-9565. [PMID: 32544320 PMCID: PMC7815195 DOI: 10.1021/acs.analchem.0c00668] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein glycosylation is involved in many biological processes and physiological functions. Despite the recent advances in LC-MS/MS methodologies, the profiling of site-specific glycosylation is one of the major analytical challenges of glycoprotein analysis. Herein, we report that the separation of glycopeptide isomers on porous graphitic carbon (PGC)-LC was significantly improved by elevating the separation temperature under basic mobile phases. These findings permitted the isomeric separation of glycopeptides resulting from highly specific enzymatic digestions. The selectivity for different glycan types was studied using bovine fetuin, asialofetuin, IgG, ribonuclease B, and alpha-1 acid glycoprotein (AGP) by PGC-LC-MS. Comprehensive structural isomeric separation of glycopeptides was observed by high-resolution MS and confirmed by MS/MS. The specific structures of the glycopeptide isomers were identified and confirmed through exoglycosidase digestions. Glycosylation analysis of human AGP revealed the potential use of PGC-LC-MS for extensive glycoprotein analysis for biomarker discovery. This newly developed separation technique was shown as a reproducible and useful analytical method to study site-specific isomeric glycosylation.
Collapse
Affiliation(s)
| | | | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| |
Collapse
|
38
|
Yue H, Han Y, Yin B, Cheng C, Liu L. Comparison of the antipathogenic effect toward Staphylococcus aureus of N-linked and free oligosaccharides derived from human, bovine, and goat milk. J Food Sci 2020; 85:2329-2339. [PMID: 32662089 DOI: 10.1111/1750-3841.15150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
N-linked oligosaccharides (N-glycans) derived from milk were recently found to be antipathogenic. This study compares the antimicrobial activity of N-linked glycans and free oligosaccharides from human, bovine, and goat milk against Staphylococcus aureus. Milk N-glycans showed a bactericidal/bacteriostatic effect on the pathogen when compared to free milk oligosaccharides, evidenced by the clear zone from the halo assay, with the order of human milk >goat milk >bovine milk. None of the free milk oligosaccharide samples were bactericidal/bacteriostatic, despite its positive results in growth curve and minimum inhibitory concentration (MIC) assays which are believed to be related to hyperosmosis. Both N-glycans and free milk oligosaccharides can reduce the adhesion of Staphylococcus aureus to Caco-2 cells, however, N-glycans worked significantly more effective than free milk oligosaccharides. Structural analysis of all free oligosaccharide and N-glycan samples showed the obvious interspecies differences, and the structure/function relationship of the respected N-glycans is of interest for future study. The significant bactericidal/bacteriostatic activity possessed by human, bovine, and goat milk N-linked glycans holds great potential as a novel substitute for antibiotics.
Collapse
Affiliation(s)
- Haiyun Yue
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanyuan Han
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Binru Yin
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Cheng Cheng
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Tivey TR, Parkinson JE, Mandelare PE, Adpressa DA, Peng W, Dong X, Mechref Y, Weis VM, Loesgen S. N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis. MICROBIAL ECOLOGY 2020; 80:223-236. [PMID: 31982929 DOI: 10.1007/s00248-020-01487-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.
Collapse
Affiliation(s)
- Trevor R Tivey
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.
- Department of Entomology, Cornell University, Ithaca, NY, USA.
| | - John Everett Parkinson
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Paige E Mandelare
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Whitney Laboratory for Marine Bioscience and Department of Chemistry, University of Florida, St. Augustine, FL, USA
| | - Donovon A Adpressa
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Analytical Research & Development, Merck & Co. Inc., Boston, MA, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR, USA.
- Whitney Laboratory for Marine Bioscience and Department of Chemistry, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
40
|
Dong X, Mondello S, Kobeissy F, Ferri R, Mechref Y. Serum Glycomics Profiling of Patients with Primary Restless Legs Syndrome Using LC–MS/MS. J Proteome Res 2020; 19:2933-2941. [DOI: 10.1021/acs.jproteome.9b00549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98122, Italy
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute—IRCCS, Troina 94018, Italy
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute—IRCCS, Troina 94018, Italy
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
41
|
Porfirio S, Archer-Hartmann S, Moreau GB, Ramakrishnan G, Haque R, Kirkpatrick BD, Petri WA, Azadi P. New strategies for profiling and characterization of human milk oligosaccharides. Glycobiology 2020; 30:774-786. [PMID: 32248230 PMCID: PMC7526734 DOI: 10.1093/glycob/cwaa028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Human breast milk is an incredibly rich and complex biofluid composed of proteins, lipids and complex carbohydrates, including a diverse repertoire of free human milk oligosaccharides (HMOs). Strikingly, HMOs are not digested by the infant but function as prebiotics for bacterial strains associated with numerous benefits. Considering the broad variety of beneficial effects of HMOs, and the vast number of factors that affect breast milk composition, the analysis of HMO diversity and complexity is of utmost relevance. Using human milk samples from a cohort of Bangladeshi mothers participating in a study on malnutrition and stunting in children, we have characterized breast milk oligosaccharide composition by means of permethylation followed by liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS) analysis. This approach identified over 100 different glycoforms and showed a wide diversity of milk composition, with a predominance of fucosylated and sialylated HMOs over nonmodified HMOs. We observed that these samples contain on average 80 HMOs, with the highest permethylated masses detected being >5000 mass units. Here we report an easily implemented method developed for the separation, characterization and relative quantitation of large arrays of HMOs, including higher molecular weight sialylated HMOs. Our ultimate goal is to create a simple, high-throughput method, which can be used for full characterization of sialylated and/or fucosylated HMOs. These results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.
Collapse
Affiliation(s)
- Sara Porfirio
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | | | - G Brett Moreau
- Department of Medicine/Infectious Diseases, University of Virginia, Charlottesville, VA 22903, USA
| | - Girija Ramakrishnan
- Department of Medicine/Infectious Diseases, University of Virginia, Charlottesville, VA 22903, USA
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Beth D Kirkpatrick
- Department of Medicine, University of Vermont, Burlington, VT 05401, USA
| | - William A Petri
- Department of Medicine/Infectious Diseases, University of Virginia, Charlottesville, VA 22903, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
42
|
Lu Y, Jin W, Yang Y, Jia Y, Sun L, Liu J, Wang L, Zhang F, Ge W, Wang J, Huang L, Wang Z. Online LC-UV-ESI-MS/MS Comparative Analysis of Changes in Goat Colostrum N/ O-Glycopatterns at Different Parities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2174-2182. [PMID: 31985220 DOI: 10.1021/acs.jafc.9b07075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Goat milk oligosaccharides are complex carbohydrates with a variety of biological functions. Free oligosaccharides from goat milk show more similarity to human milk than cow milk. At present, changes in goat milk glycoconjugates at different parities remain poorly studied. Herein, we qualitatively and quantitatively compared the goat milk glycoprotein N/O-glycome at different parities using a stable isotope labeling followed by electrospray ionization mass spectrometry and online hydrophilic interaction chromatography. N-Glycans were mainly fucosylated and nonfucosylated nonsialylated, and both fucosylation and sialylation gradually increased with parity, amounting (at the third parity) to 1.25 times and 3.3 times those of the first parity, respectively. O-Glycans were mostly nonfucosylated and nonsialylated, and sialylation increased with increasing parity, and Neu5Ac-sialylated was up to 9 times higher in the third parity than in the first parity, whereas Neu5Gc-sialylated was 5.5 times higher. This study provides a reference for exploring an alternative milk source closest to human milk and for the development of humanized formula milk.
Collapse
Affiliation(s)
- Yu Lu
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Wanjun Jin
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yuerong Yang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yue Jia
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Lujia Sun
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Jie Liu
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Langhong Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| | - Fuxing Zhang
- College of Food Engineering and Nutritional Science , Shaanxi Normal University , Xi'an 710119 , China
| | - Wupeng Ge
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jiansheng Wang
- Shaanxi Hongxing Meiling Dairy Co., Ltd. , Fuping 711700 , China
| | - Linjuan Huang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| | - Zhongfu Wang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| |
Collapse
|
43
|
Lu J, Zhang Y, Song B, Zhang S, Pang X, Sari RN, Liu L, Wang J, Lv J. Comparative analysis of oligosaccharides in Guanzhong and Saanen goat milk by using LC-MS/MS. Carbohydr Polym 2020; 235:115965. [PMID: 32122499 DOI: 10.1016/j.carbpol.2020.115965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022]
Abstract
Human milk oligosaccharides play an important role in promoting healthy growth of infants. Goat milk was one of the alternative sources for producing oligosaccharides. An in-depth understanding the composition and the quantity of oligosaccharides in goat milk was needed for its better utilization. In the present study, oligosaccharides were identified and quantified by using UPLC-MS/MS. The elution condition of UPLC was optimized leading to successful identification of 64 oligosaccharides in goat milk. Furthermore, the method to absolutely quantify 6 oligosaccharides in goat milk had been developed. The oligosaccharides in Guanzhong, local breed in China and Saanen goat milk, were compared by using this method. Five oligosaccharides were significantly different between two breeds. The amount of 6'-sialyllactose was 3.3 times higher in Guanzhong goat milk than that in Saanen goat milk. Guanzhong goat milk could be a potential good source for producing sialylated oligosaccharides, especially 6'-sialyllactose.
Collapse
Affiliation(s)
- Jing Lu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| | - Yan Zhang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China; College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Bo Song
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Shuwen Zhang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Ratna Nurmalita Sari
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Liu Liu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Junhui Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jiaping Lv
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
44
|
Christensen AS, Skov SH, Lendal SE, Hornshøj BH. Quantifying the human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose in different food applications by high-performance liquid chromatography with refractive index detection. J Food Sci 2020; 85:332-339. [PMID: 31968133 PMCID: PMC7027475 DOI: 10.1111/1750-3841.15005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023]
Abstract
In recent years, production of biosynthesized human milk oligosaccharides (HMOs) has become scalable to industrial standards. As a result, infant formula fortified with 2'-fucosyllactose (2'-FL), the most abundant HMO in human breast milk, is now commercially available. 2'-FL and 3-fucosyllactose (3-FL), another abundant HMO, are thought to be beneficial for infant health and development. Products containing HMOs are projected to expand in the future, showing the need for robust, easily applicable analytical methods for the quantitative assessment of HMOs in different food applications. We present here a validated high-performance liquid chromatography method for the quantification of 2'-FL and 3-FL in whole milk, infant formula, and cereal bars. The sample preparation was simple dispersion and extraction of the sample. The samples were analyzed by hydrophilic interaction liquid chromatography with refractive index detection and a runtime of 19 min. The method had a high degree of linearity (R2 > 0.9995) in the range 0.2 to 12 mg/mL. The recovery for 2'-FL was 88% to 105% and for 3-FL 94% to 112%. The limit of detection (LOD) for whole milk was 0.1 mg/mL for 2'-FL and 0.2 mg/mL for 3-FL. In infant formula and cereal bars, the LOD was 0.6 mg/g for both 2'-FL and 3-FL. To show the practical application of this method, it was successfully utilized in stability studies of 2'-FL and 3-FL in whole milk, UHT milk, and yoghurt. The method provides a means of simultaneous and robust quantification of 2'-FL and 3-FL in various food matrices with high accuracy and high reproducibility. PRACTICAL APPLICATION: 2'-Fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) are two of the most abundant human milk oligosaccharides (HMOs) present in human breast milk. We present a fast HPLC method for the robust quantification of these two compounds in infant formula, whole milk, UHT milk, cereal bars, and yoghurt. This method can easily be set up by food producers and researchers to analyze the dosage of 2'-FL and 3-FL in their product or perform shelf life studies in different food applications.
Collapse
Affiliation(s)
| | - Sabina Holm Skov
- DuPont Nutrition Biosciences ApS, Edwin Rahrs Vej 38, 8220, Brabrand, Denmark
| | - Sara Eun Lendal
- DuPont Nutrition Biosciences ApS, Edwin Rahrs Vej 38, 8220, Brabrand, Denmark
| | | |
Collapse
|
45
|
Maity S, Bhat AH, Giri K, Ambatipudi K. BoMiProt: A database of bovine milk proteins. J Proteomics 2020; 215:103648. [PMID: 31958638 DOI: 10.1016/j.jprot.2020.103648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022]
Abstract
Bovine milk has become an important biological fluid for proteomic research due to its nutritional and immunological benefits. To date, over 300 publications have reported changes in bovine milk protein composition based on seasons, lactation stages, breeds, health status and milk fractions while there are no reports on consolidation or overlap of data between studies. Thus, we have developed a literature-based, manually curated open online database of bovine milk proteome, BoMiProt (http://bomiprot.org), with over 3100 proteins from whey, fat globule membranes and exosomes. Each entry in the database is thoroughly cross-referenced including 397 proteins with well-defined information on protein function, biochemical properties, post-translational modifications and significance in milk from different publications. Of 397 proteins, over 199 have been reported with a structural gallery of homology models and crystal structures in the database. The proteome data can be retrieved using several search parameters such as protein name, accession IDs, FASTA sequence. Furthermore, the proteome data can be filtered based on milk fractions, post-translational modifications and/or structures. Taken together, BoMiProt represents an extensive compilation of bovine milk proteins from literature, providing a foundation for future studies to identify specific milk proteins which may be linked to mammary gland pathophysiology. BIOLOGICAL SIGNIFICANCE: Protein data identified from different previously published proteomic studies on bovine milk samples (21 publications) were gathered in the BoMiProt database. Unification of the identified proteins will give researchers an initial reference database on bovine milk proteome to understand the complexities of milk as a biological fluid. BoMiProt has a user-friendly interface with several useful features, including different search criteria for primary and secondary information of proteins along with cross-references to external databases. The database will provide insights into the existing literature and possible future directions to investigate further and improve the beneficial effects of bovine milk components and dairy products on human health.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Aadil Hussain Bhat
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kuldeep Giri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
46
|
Glycan reductive amino acid coded affinity tagging (GRACAT) for highly specific analysis of N-glycome by mass spectrometry. Anal Chim Acta 2019; 1089:90-99. [DOI: 10.1016/j.aca.2019.08.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
|
47
|
Integrated Transcriptomics, Proteomics, and Glycomics Reveals the Association between Up-regulation of Sialylated N-glycans/Integrin and Breast Cancer Brain Metastasis. Sci Rep 2019; 9:17361. [PMID: 31758065 PMCID: PMC6874669 DOI: 10.1038/s41598-019-53984-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer brain metastasis has been recognized as one of the central issues in breast cancer research. The elucidation of the processes and pathways that mediate this step will provide important clues for a better understanding of breast cancer metastasis. Increasing evidence suggests that aberrant glycosylation patterns greatly contribute to cell invasion and cancer metastasis. Herein, we combined next-generation RNA sequencing with liquid chromatography-tandem mass spectrometry-based proteomic and N-glycomic analysis from five breast cancer cell lines and one brain cancer cell line to investigate the possible mechanisms of breast cancer brain metastasis. The genes/proteins associated with cell movement were highlighted in breast cancer brain metastasis. The integrin signaling pathway and the up-regulation of α-integrin (ITGA2, ITGA3) were associated with the brain metastatic process. 12 glycogenes showed unique expression in 231BR, which could result in an increase of sialylation during brain metastasis. In agreement with the changes of glycogenes, 60 out of 63 N-glycans that were identified exhibited differential expression among cell lines. The correlation between glycogenes and glycans revealed the importance of sialylation and sialylated glycans in breast cancer brain metastasis. Highly sialylated N-glycans, which were up-regulated in brain-seeking cell line 231BR, likely play a role in brain metastasis.
Collapse
|
48
|
Dong X, Peng W, Yu CY, Zhou S, Donohoo KB, Tang H, Mechref Y. 8-plex LC-MS/MS Analysis of Permethylated N-Glycans Achieved by Using Stable Isotopic Iodomethane. Anal Chem 2019; 91:11794-11802. [PMID: 31356052 PMCID: PMC7412976 DOI: 10.1021/acs.analchem.9b02411] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosylation is an important post-translational modification of proteins. Many diseases, such as cancer, have proved to be related to aberrant glycosylation. High throughput quantitative methods have gained attention recently in the study of glycomics. With the development of high-resolution mass spectrometry, the sensitivity of detection in glycomics has largely improved; however, most of the commonly used MS-based techniques are focused on relative quantitative analysis, which can hardly provide direct comparative glycomic quantitation results. In this study, we developed a novel multiplex glycomic analysis method on an LC-ESI-MS platform. Reduced glycans were stable isotopic labeled during the permethylation procedure, with the use of iodomethane reagents CH2DI, CHD2I, CD3I, 13CH3I, 13CH2DI, 13CHD2I, 13CD3I, and CH3I. Up to 8-plex glycomic profiling was possible in a single analysis by LC-MS, and a 100 k mass resolution was sufficient to allow a baseline resolution of the mass differences among the 8-plex labeled glycans. The major advantages of this method are that it overcomes quantitative fluctuations caused by nanoESI, it facilitates a level of comparative quantitative glycomic analysis that accurately reflects the quantitative information in samples, and it dramatically shortens analysis time. Quantitation validation was tested on glycans released from bovine fetuin and model glycoprotein mixtures (RNase B, bovine fetuin, and IgG) with good linearity (R2 = 0.9884) and a dynamic range from 0.1 to 10. The 8-plex strategy was successfully applied to a comparative glycomic study of cancer cell lines. The results demonstrate that different distributions of sialylated glycans are related to the metastatic properties of cell lines and provide important clues for a better understanding of breast cancer brain metastasis.
Collapse
Affiliation(s)
- Xue Dong
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Wenjing Peng
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Chuan-Yih Yu
- School of Informatics & Computing, Indiana University, Bloomington, Indiana, 47408, United States
| | - Shiyue Zhou
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Kaitlyn B. Donohoo
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Haixu Tang
- School of Informatics & Computing, Indiana University, Bloomington, Indiana, 47408, United States
| | - Yehia Mechref
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| |
Collapse
|
49
|
Peng W, Goli M, Mirzaei P, Mechref Y. Revealing the Biological Attributes of N-Glycan Isomers in Breast Cancer Brain Metastasis Using Porous Graphitic Carbon (PGC) Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). J Proteome Res 2019; 18:3731-3740. [PMID: 31430160 DOI: 10.1021/acs.jproteome.9b00429] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a leading cancer in women and is considered to be the second-most common metastatic cancer following lung cancer. An estimated 10-16% of breast cancer patients are suffering from brain metastasis, and the diagnostic cases of breast cancer brain metastasis are increasing. Nevertheless, the mechanisms behind this process are still unclear. Aberrant glycosylation has been proved to be related to many diseases and cancer metastasis. However, studies of N-glycan isomer function in breast cancer brain metastasis are limited. In this study, the expressions of N-glycan isomers derived from five breast cancer cell lines and one brain cancer cell line were investigated and compared to a brain-seeking cell line, 231BR, to acquire a better understanding of the role glycan isomers play in breast cancer brain metastasis. The high temperature nanoPGC-LC-MS/MS achieved an efficient isomeric separation and permitted the identification and quantitation of 144 isomers from 50 N-glycan compositions. There were significant expression alterations of these glycan isomers among the different breast cancer cell lines. The increase of total glycan abundance and sialylation level were observed to be associated with breast cancer invasion. With regard to individual isomers, the greatest number of sialylated isomers was observed along with significant expression alterations in 231BR, suggesting a relationship between glycan sialylation and breast cancer brain metastasis. Furthermore, the increase of the α2,6-sialylation level in 231BR likely contributes to the passage of breast cancer cells through the blood-brain barrier, thus facilitating breast cancer brain metastasis. Meanwhile, the upregulation of highly sialylated glycan isomers with α2,6-linked sialic acids were found to be associated with breast cancer metastasis. This investigation of glycan isomer expressions, especially the unique isomeric expression in brain-seeking cell line 231BR, provides new information toward understanding the potential roles glycan isomers play during breast cancer metastasis and more clues for a deeper insight of this bioprocess.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Mona Goli
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| |
Collapse
|
50
|
Cao X, Zheng Y, Wu S, Yang N, Wu J, Liu B, Ye W, Yang M, Yue X. Characterization and comparison of milk fat globule membrane N-glycoproteomes from human and bovine colostrum and mature milk. Food Funct 2019; 10:5046-5058. [PMID: 31359016 DOI: 10.1039/c9fo00686a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human and bovine milk fat globule membrane (MFGM) proteins have been identified and characterized; however, their glycosylation during lactation remains unclear. We adopted a glycoproteomics approach to profile and compare MFGM N-glycoproteomes in human and bovine milk during lactation. A total of 843, 718, 614, and 273 N-glycosite peptides corresponding to 465, 423, 334, and 176 glycoproteins were identified in human colostrum, human mature milk, bovine colostrum, and bovine mature milk, respectively. The biological functions of these MFGM N-glycoproteins were revealed through bioinformatics. Substantial differences were observed between human and bovine milk, and immune-related MFGM N-glycoproteins varied between colostrum and mature milk from both species. Our results expand current knowledge of MFGM N-glycoproteomes, and further demonstrate the complexity and biological functions of MFGM N-glycosylation. These data can provide references for the application of bovine MFGM N-glycoproteins in infant formula to resemble human milk and in functional foods.
Collapse
Affiliation(s)
- Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|