1
|
Song M, Zhou Y, Zhao C, Song F, Hou Y. YHP: Y-chromosome Haplogroup Predictor for predicting male lineages based on Y-STRs. Forensic Sci Int 2024; 361:112113. [PMID: 38936202 DOI: 10.1016/j.forsciint.2024.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/24/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
Human Y chromosome reflects the evolutionary process of males. Male lineage tracing by Y chromosome is of great use in evolutionary, forensic, and anthropological studies. Identifying the male lineage based on the specific distribution of Y haplogroups narrows down the investigation scope, which has been used in forensic scenarios. However, existing software aids in familial searching using Y-STRs (Y-chromosome short tandem repeats) to predict Y-SNP (Y-chromosome single nucleotide polymorphism) haplogroups, they often lack resolution. In this study, we developed YHP (Y Haplogroup Predictor), a novel software offering high-resolution haplogroup inference without requiring extensive Y-SNP sequencing. Leveraging existing datasets (219 haplogroups, 4064 samples in total), YHP predicts haplogroups with 0.923 accuracy under the highest haplogroup resolution, employing a random forest algorithm. YHP, available on Github (https://github.com/cissy123/YHP-Y-Haplogroup-Predictor-), facilitates high-resolution haplogroup prediction, haplotype mismatch analysis, and haplotype similarity comparison. Notably, it demonstrates efficacy in East Asian populations, benefiting from training data from eight distinct East Asian ethnic populations. Moreover, it enables seamless integration of additional training sets, extending its utility to diverse populations.
Collapse
Affiliation(s)
- Mengyuan Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chenxi Zhao
- College of Computer Science, Sichuan University, Chengdu, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yiping Hou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Fan H, Xu Y, Zhao Y, Feng K, Hong L, Zhao Q, Lu X, Shi M, Li H, Wang L, Wen S. Development and validation of YARN: A novel SE-400 MPS kit for East Asian paternal lineage analysis. Forensic Sci Int Genet 2024; 71:103029. [PMID: 38518712 DOI: 10.1016/j.fsigen.2024.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs. A total of 386 reactions were validated for the effectiveness and applicability of YARN according to SWGDAM validation guidelines, including sensitivity (with a minimum input gDNA of 0.125 ng), mixture identification (ranging from 1:1-1:10), PCR inhibitor testing (using substances such as 50 μM hematin, 100 μM hemoglobin, 100 μM humic acid, and 2.5 mM indigo dye), species specificity (successfully distinguishing humans from other animals), repeatability study (achieved 100% accuracy), and concordance study (with 99.91% accuracy for 1121 Y-STR alleles). Furthermore, we conducted a pilot study using YARN in a cohort of 484 Han Chinese males from Huaiji County, Zhaoqing City, Guangdong, China (GDZQHJ cohort). In this cohort, we identified 52 different Y-haplogroups and 73 different surnames. We found weak to moderate correlations between the Y-haplogroups, Chinese surnames, and geographical locations of the GDZQHJ cohort (with λ values ranging from 0.050 to 0.340). However, when we combined two different categories into a new independent variable, we observed stronger correlations (with λ values ranging from 0.617 to 0.754). Overall, the YARN panel, which combines Y-STR and Y-SNP genetic markers, meets forensic DNA quality assurance guidelines and holds potential for East Asian geographical origin inference and paternal lineage analysis.
Collapse
Affiliation(s)
- Haoliang Fan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China.
| | - Yutao Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Kai Feng
- Duanzhou Branch of Zhaoqing Public Security Bureau, Zhaoqing 526060, China.
| | - Liuxi Hong
- Sihui Public Security Bureau of Guangdong Province, Zhaoqing 526299, China.
| | - Qiancheng Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Xiaoyu Lu
- Deepreads Biotech Company Limited, Guangzhou 510663, China.
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Haiyan Li
- Criminal Technology Center of Guangdong Provincial Public Security Department, Guangzhou 510050, China.
| | - Lingxiang Wang
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| | - Shaoqing Wen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Institute of Archaeological Science, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Jia L, Wang M, Duan S, Chen J, Zhao M, Ji S, Lv B, Jiang X, He G, Yang J. Genetic history of esophageal cancer group in southwestern China revealed by Y-chromosome STRs and genomic evolutionary connection analysis. Heliyon 2024; 10:e29867. [PMID: 38720733 PMCID: PMC11076658 DOI: 10.1016/j.heliyon.2024.e29867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Genetic and environmental factors play crucial roles in the development of esophageal cancer (EC) and contribute uniquely or cooperatively to human cancer susceptibility. Sichuan is located in the interior of southwestern China, and the northern part of Sichuan is one of the regions with a high occurrence of EC. However, the factors influencing the high incidence rate of EC in the Sichuan Han Chinese population and its corresponding genetic background and origins are still poorly understood. Here, we utilized genome-wide single nucleotide polymorphisms (SNPs) and Y-chromosome short tandem repeats (Y-STRs) to characterize the genetic structure, connection, and origin of cancer groups and general populations. We generated Y-STR-based haplotype data from 214 Sichuan individuals, including the Han Chinese EC population and a control group of Han Chinese individuals. Our results, obtained from Y-STR-based population statistical methods (analysis of molecular variance (AMOVA), principal component analysis (PCA), and phylogenetic analysis), demonstrated that there was a genetic substructure difference between the EC population in the high-incidence area of northern Sichuan Province and the control population. Additionally, there was a strong genetic relationship between the EC population in the northern Sichuan high-incidence area and those at high risk in both the Fujian and Chaoshan areas. In addition, we obtained high-density SNP data from saliva samples of 60 healthy Han Chinese individuals from three high-prevalence areas of EC in China: Sichuan Nanchong, Fujian Quanzhou, and Henan Xinxiang. As inferred from the allele frequency of SNPs and sharing patterns of haplotype segments, the evolutionary history and admixture events suggested that the Han population from Nanchong in northern Sichuan Province shared a close genetic relationship with the Han populations from Xinxiang in Henan Province and Quanzhou in Fujian Province, both of which are regions with a high prevalence of EC. Our study illuminated the genetic profile and connection of the Northern Sichuan Han population and enriched the genomic resources and features of the Han Chinese populations in China, especially for the Y-STR genetic data of the Han Chinese EC population. Populations living in different regions with high incidences of EC may share similar genetic backgrounds, which offers new insights for further exploring the genetic mechanisms underlying EC.
Collapse
Affiliation(s)
- Lihua Jia
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal diagnosis, Affiliated Hospital of Northern Sichuan Medical College, Nanchong, Sichuan, 637007, China
| | - Mengge Wang
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Shuhan Duan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal diagnosis, Affiliated Hospital of Northern Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Jianghua Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal diagnosis, Affiliated Hospital of Northern Sichuan Medical College, Nanchong, Sichuan, 637007, China
| | - Mei Zhao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal diagnosis, Affiliated Hospital of Northern Sichuan Medical College, Nanchong, Sichuan, 637007, China
| | - Simeng Ji
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Bingbing Lv
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xiucheng Jiang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal diagnosis, Affiliated Hospital of Northern Sichuan Medical College, Nanchong, Sichuan, 637007, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Guanglin He
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Junbao Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal diagnosis, Affiliated Hospital of Northern Sichuan Medical College, Nanchong, Sichuan, 637007, China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
4
|
Li J, Song F, Lang M, Xie M. Comprehensive insights into the genetic background of Chinese populations using Y chromosome markers. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230814. [PMID: 37736526 PMCID: PMC10509572 DOI: 10.1098/rsos.230814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
China is located in East Asia. With a high genetic and cultural diversity, human migration in China has always been a hot topic of genetics research. To explore the origins and migration routes of Chinese males, 3333 Chinese individuals (Han, Hui, Mongolia, Yi and Kyrgyz) with 27 Y-STRs and 143 Y-SNPs from published literature were analysed. Our data showed that there are five dominant haplogroups (O2-M122, O1-F265, C-M130, N-M231, R-M207) in China. Combining analysis of haplogroup frequencies, geographical positions and time with the most recent common ancestor (TMRCA), we found that haplogroups C-M130, N-M231 and R1-M173 and O1a-M175 probably migrated into China via the northern route. Interestingly, we found that haplogroup C*-M130 in China may originate in South Asia, whereas the major subbranches C2a-L1373 and C2b-F1067 migrated from northern China. The results of BATWING showed that the common ancestry of Y haplogroup in China can be traced back to 17 000 years ago, which was concurrent with global temperature increases after the Last Glacial Maximum.
Collapse
Affiliation(s)
- Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Min Lang
- Sichuan University Law School, Sichuan University, Chengdu, People's Republic of China
| | - Mingkun Xie
- Department of Obstetrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
5
|
Halili B, Yang X, Wang R, Zhu K, Hai X, Wang CC. Inferring the population history of Kyrgyz in Xinjiang, Northwest China from genome-wide array genotyping. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:611-625. [PMID: 37310136 DOI: 10.1002/ajpa.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Xinjiang plays a vital role in the trans-Eurasian population migration, language diffusion, and culture and technology exchange. However, the underrepresentation of Xinjiang's genomes has hindered a more comprehensive understanding of Xinjiang's genetic structure and population history. MATERIALS AND METHODS We collected and genotyped 70 southern Xinjiang's Kyrgyz (SXJK) individuals and combined the data with modern and ancient Eurasians published. We used allele-frequency methods, including PCA, ADMIXTURE, f-statistics, qpWave/qpAdm, ALDER, Treemix, and haplotype-shared methods including shared-IBD segments, fineSTRUCTURE, and GLOBETROTTER to unveil the fine-scale population structure and reconstruct admixture history. RESULTS We identified genetic substructure within the SXJK population with subgroups showing different genetic affinities to West and East Eurasians. All SXJK subgroups were suggested to have close genetic relationships with surrounding Turkic-speaking groups that is, Uyghur, Kyrgyz from north Xinjiang and Tajikistan, and Chinese Kazakh, suggesting a shared ancestry among those populations. Outgroup-f3 and symmetrical f4 statistics showed a high genetic affinity of SXJK to present-day Tungusic, Mongolic-speaking populations and Ancient Northeast Asian (ANA) related groups. Allele sharing and haplotype sharing profiles revealed the east-west admixture pattern of SXJK. The qpAdm-based admixture models showed that SXJK derived ancestry from East Eurasian (ANA and East Asian, 42.7%-83.3%) and West Eurasian (Western Steppe herders and Central Asian, 16.7%-57.3%), the recent east-west admixture event could be traced to 1000 years ago based on ALDER and GLOBETROTTER analysis. DISCUSSION The high genetic affinity of SXJK to present-day Tungusic and Mongolic-speaking populations and short-shared IBD segments indicated their shared common ancestry. SXJK harbored a close genetic affinity to ANA-related populations, indicating the Northeast Asian origin of SXJK. The West and East Eurasian admixture models observed in SXJK further provided evidence of the dynamic admixture history in Xinjiang. The east-west admixture pattern and the identified ancestral makeup of SXJK suggested a genetic continuity from some Iron Age Xinjiang populations to present-day SXJK.
Collapse
Affiliation(s)
- Bubibatima Halili
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiangjun Hai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Fan GY. Assessing the factors influencing the performance of machine learning for classifying haplogroups from Y-STR haplotypes. Forensic Sci Int 2022; 340:111466. [PMID: 36150277 DOI: 10.1016/j.forsciint.2022.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion of the Y chromosome. Because of their different rates of mutation, Y-STRs and Y-SNPs play distinct roles in forensic and evolutionary genetics. Current approaches to infer haplogroup status rely on genotyping lots of Y-SNP loci. Given the relationship between haplotype and haplogroup of a Y chromosome, a cost-effective strategy of Y-STRs typing had an advantage in haplogroup prediction. Many machine learning algorithms have sprung up for assigning a Y-STR haplotype to a haplogroup. However, a series of issues must be solved before the using of machine learning method in practice. Thus, the k-nearest neighbor (kNN) classifier was built respectively based on different situations in this study. We assessed different factors which may influence the performance of the kNN prediction model for classifying haplogroups. The training set was based on a diverse ground-truth data set comprising Y-STR haplotypes and corresponding Y-SNP haplogroups. Our results showed that combining different levels of haplogroups into the observations or transracial prediction was impractical. Moreover, using more slow mutation Y-STR loci in the category is good for promoting classification accuracy. The preconditions for an effective and accurate haplogroup assignment by the kNN classifier were revealed.
Collapse
Affiliation(s)
- Guang-Yao Fan
- Forensic Center, College of Medicine, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
7
|
Song M, Wang Z, Lyu Q, Ying J, Wu Q, Jiang L, Wang F, Zhou Y, Song F, Luo H, Hou Y, Song X, Ying B. Paternal genetic structure of the Qiang ethnic group in China revealed by high-resolution Y-chromosome STRs and SNPs. Forensic Sci Int Genet 2022; 61:102774. [PMID: 36156385 DOI: 10.1016/j.fsigen.2022.102774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
The Qiang population mainly lived in Beichuan Qiang Autonomous County of Sichuan Province. It is one of the nomads in China, distributed along the Minjiang River. The Qiang population was assumed to have great affinity with the Han, the largest ethnic group in China, when it refers to the genetic origin. Whereas, it is deeply understudied, especially from the Y chromosome. Here in this study, we used validated high-resolution Y-chromosome single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) panels to study the Qiang ethnic group to unravel their paternal genetic, forensic and phylogenetic characteristics. A total of 422 male samples of the Qiang ethnic group were genotyped by 233 Y-SNPs and 29 Y-STRs. Haplogroup O-M175 (N = 312) was the most predominant haplogroup in the Qiang ethnic group, followed by D-M174 (N = 32) and C-M130 (N = 32), N-M231 (N = 27), and Q-M242 (N = 15). After further subdivision, O2a-M324 (N = 213) accounted for the majority of haplogroup O. Haplogroup C2b-Z1338 (N = 29), D1a-CTS11577 (N = 30). O2a2b1a1a1-F42 (N = 48), O2a1b1a1a1a-F11 (N = 35), and O2a2b1a1-M117 (N = 21) represented other large terminal haplogroups. The results unveiled that Qiang ethnic group was a population with a high percentage of haplogroup O2a2b1a1a1-F42 (48/422) and O2a1b1a1a1a-F11 (35/422), and O2a2b1a1-M117 (21/422), which has never been reported. Its haplogroup distribution pattern was different from any of the Han populations, implying that the Qiang ethnic group had its unique genetic pattern. Mismatch analysis indicated that the biggest mismatch number in haplogroup O2a2b1a1a1-F42 was 21, while that of haplogroup O2a1b1a1a1a-F11 was 20. The haplotype diversity of the Qiang ethnic group equaled 0.999788, with 392 haplotypes observed, of which 367 haplotypes were unique. The haplogroup diversity of the Qiang ethnic group reached 0.9767, and 53 terminal haplogroups were observed (The haplogroup diversity of the Qiang ethnic group was the highest among Qiang and all Han subgroups, indicating the larger genetic diversity of the Qiang ethnic group.). Haplogroup O2a2b1a1a1-F42 was the most predominant haplogroup, including 11.37 % of the Qiang individuals. Median-joining trees showed gene flow between the Qiang and Han individuals. Our results indicated that 1) the highest genetic diversity was observed in the Qiang ethnic group compared to any of the former studied Chinese population, suggesting that the Qiang might be an older paternal branch; 2) the haplogroup D-M174 individuals of Qiang, Tibetans and Japanese distributed in three different subclades, which was unable to identify through low-resolution Y-SNP panel; and 3) the Qiang had lower proportion of haplogroup D compared to Yi and Tibetan ethnic groups, showing that the Qiang had less genetic communication with them than with Han Chinese.
Collapse
Affiliation(s)
- Mengyuan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zefei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Lyu
- Department of Clinical Laboratory, People's Hospital of Beichuan Qiang Autonomous County, Beichuan 622750, Sichuan, China
| | - Jun Ying
- Department of Clinical Laboratory, Santai People's Hospital, Santai 621100, Sichuan, China
| | - Qian Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiping Hou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Wang H, Chen M, Chen C, Fang Y, Cui W, Lei F, Zhu B. Genetic Background of Kirgiz Ethnic Group From Northwest China Revealed by Mitochondrial DNA Control Region Sequences on Massively Parallel Sequencing. Front Genet 2022; 13:729514. [PMID: 35281833 PMCID: PMC8906502 DOI: 10.3389/fgene.2022.729514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
The mitochondrial DNA (mtDNA) has been used to trace population evolution and apply to forensic identification due to the characteristics including lack of recombination, higher copy number and matrilineal inheritance comparing with nuclear genome DNA. In this study, mtDNA control region sequences of 91 Kirgiz individuals from the Northwest region of China were sequenced to identify genetic polymorphisms and gain insight into the genetic background of the Kirgiz ethnic group. MtDNA control region sequences of Kirgiz individuals presented relatively high genetic polymorphisms. The 1,122 bp sequences of mtDNA control region could differ among unrelated Kirgiz individuals, which suggested the mtDNA control region sequences have a good maternal pedigree tracing capability among different Kirgiz individuals. The neutrality test, mismatch distribution, Bayesian phylogenetic inference, Bayesian skyline analysis, and the median network analyses showed that the Kirgiz group might occurred population expansion, and the expansion could be observed at about ∼53.41 kilo years ago (kya) when ancestries of modern humans began to thrive in Eurasia. The pairwise population comparisons, principal component analyses, and median network analyses were performed based on haplogroup frequencies or mtDNA control region sequences of 5,886 individuals from the Kirgiz group and the 48 reference populations all over the world. And the most homologous haplotypes were found between Kirgiz individuals and the East Asian individuals, which indicated that the Kirgiz group might have gene exchanges with the East Asian populations.
Collapse
Affiliation(s)
- Hongdan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Man Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei Cui
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Fanzhang Lei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|