1
|
Varriale L, Geib D, Ulber R. Short-term adaptation as a tool to improve bioethanol production using grass press-juice as fermentation medium. Appl Microbiol Biotechnol 2024; 108:393. [PMID: 38916650 PMCID: PMC11199226 DOI: 10.1007/s00253-024-13224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Grass raw materials collected from grasslands cover more than 30% of Europe's agricultural area. They are considered very attractive for the production of different biochemicals and biofuels due to their high availability and renewability. In this study, a perennial ryegrass (Lolium perenne) was exploited for second-generation bioethanol production. Grass press-cake and grass press-juice were separated using mechanical pretreatment, and the obtained juice was used as a fermentation medium. In this work, Saccharomyces cerevisiae was utilized for bioethanol production using the grass press-juice as the sole fermentation medium. The yeast was able to release about 11 g/L of ethanol in 72 h, with a total production yield of 0.38 ± 0.2 gEthanol/gsugars. It was assessed to improve the fermentation ability of Saccharomyces cerevisiae by using the short-term adaptation. For this purpose, the yeast was initially propagated in increasing the concentration of press-juice. Then, the yeast cells were re-cultivated in 100%(v/v) fresh juice to verify if it had improved the fermentation efficiency. The fructose conversion increased from 79 to 90%, and the ethanol titers reached 18 g/L resulting in a final yield of 0.50 ± 0.06 gEthanol/gsugars with a volumetric productivity of 0.44 ± 0.00 g/Lh. The overall results proved that short-term adaptation was successfully used to improve bioethanol production with S. cerevisiae using grass press-juice as fermentation medium. KEY POINTS: • Mechanical pretreatment of grass raw materials • Production of bioethanol using grass press-juice as fermentation medium • Short-term adaptation as a tool to improve the bioethanol production.
Collapse
Affiliation(s)
- Ludovica Varriale
- Department of Mechanical and Process Engineering, Division of Bioprocess Engineering, Rhein-Palatinate Technical University Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Doris Geib
- Department of Mechanical and Process Engineering, Division of Bioprocess Engineering, Rhein-Palatinate Technical University Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Roland Ulber
- Department of Mechanical and Process Engineering, Division of Bioprocess Engineering, Rhein-Palatinate Technical University Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| |
Collapse
|
2
|
Bekker NS, Toor SS, Sharma K, Pedersen TH, Pedersen LH. Optimizing monosaccharide production from liquid hot water pretreatment and enzymatic hydrolysis of grass-clover press cake. Heliyon 2023; 9:e18448. [PMID: 37534002 PMCID: PMC10391941 DOI: 10.1016/j.heliyon.2023.e18448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
In the present study, clover-grass press cake was treated by liquid hot water at temperatures of 180-200 °C for a reaction time of 5-10 min. Evaluation of pretreatments was based on the monosaccharide yield after enzymatic hydrolysis of the pretreated slurry and solid fraction, respectively. Extraction of up to 48% hemicellulose and 4% cellulose was observed during pretreatment. The optimal pretreatment conditions were identified as 190 °C and 10 min resulting in monosaccharide yields of 90% and 73% of the theoretical maximum by slurry and solid conversion, respectively. At optimal conditions, the C6 monosaccharide yield (83-90%) was fairly equal compared to the C5 monosaccharide yield (56-89%), which increased by slurry conversion due to near-complete monomerization of soluble xylo-oligosaccharides. In this study, we showed that clover-grass press cake possesses considerable potential as feedstock for production of fermentable sugars in a biorefinery context.
Collapse
Affiliation(s)
- Nicolai Sundgaard Bekker
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Saqib Sohail Toor
- Department of Energy, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark
| | - Kamaldeep Sharma
- Department of Energy, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark
| | | | - Lars Haastrup Pedersen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
3
|
Langsdorf A, Volkmar M, Holtmann D, Ulber R. Material utilization of green waste: a review on potential valorization methods. BIORESOUR BIOPROCESS 2021; 8:19. [PMID: 38650228 PMCID: PMC10991214 DOI: 10.1186/s40643-021-00367-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/03/2021] [Indexed: 01/09/2023] Open
Abstract
Considering global developments like climate change and the depletion of fossil resources, the use of new and sustainable feedstocks such as lignocellulosic biomass becomes inevitable. Green waste comprises heterogeneous lignocellulosic biomass with low lignin content, which does not stem from agricultural processes or purposeful cultivation and therefore mainly arises in urban areas. So far, the majority of green waste is being composted or serves as feedstock for energy production. Here, the hitherto untapped potential of green waste for material utilization instead of conventional recycling is reviewed. Green waste is a promising starting material for the direct extraction of valuable compounds, the chemical and fermentative conversion into basic chemicals as well as the manufacturing of functional materials like electrodes for electro-biotechnological applications through carbonization. This review serves as a solid foundation for further work on the valorization of green waste.
Collapse
Affiliation(s)
- Alexander Langsdorf
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Marianne Volkmar
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Strasse 49, 67663, Kaiserslautern, Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany.
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Strasse 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
4
|
Weiermüller J, Akermann A, Sieker T, Ulber R. Bioraffinerien auf Basis schwach verholzter Biomasse. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jens Weiermüller
- Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrgebiet für Bioverfahrenstechnik Gottlieb-Daimler-Straße 49 67663 Kaiserslautern Deutschland
| | - Alexander Akermann
- Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrgebiet für Bioverfahrenstechnik Gottlieb-Daimler-Straße 49 67663 Kaiserslautern Deutschland
| | - Tim Sieker
- Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrgebiet für Bioverfahrenstechnik Gottlieb-Daimler-Straße 49 67663 Kaiserslautern Deutschland
| | - Roland Ulber
- Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrgebiet für Bioverfahrenstechnik Gottlieb-Daimler-Straße 49 67663 Kaiserslautern Deutschland
| |
Collapse
|
5
|
Rinne M, Winquist E, Pihlajaniemi V, Niemi P, Seppälä A, Siika-Aho M. Fibrolytic enzyme treatment prior to ensiling increased press-juice and crude protein yield from grass silage. BIORESOURCE TECHNOLOGY 2020; 299:122572. [PMID: 31869630 DOI: 10.1016/j.biortech.2019.122572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Grass is a versatile raw material for green biorefineries and preserving it as silage provides a year-round feedstock. The objective of the current study was to evaluate the effect of fibrolytic enzyme application on silage as a feedstock for a biorefinery. Two batches of grass (mixture of timothy and meadow fescue) silages were ensiled in pilot scale after fibrolytic enzyme was applied to them at four levels. Enzyme application increased fibre degradation linearly during ensiling and increased lactic and acetic acid concentrations in the silage. Simultaneously, silage fermentation quality improved as indicated by decreasing pH and ammonia values. Press-juice and crude protein yields increased in response to the fibrolytic enzyme application, which is beneficial in a biorefinery concept for retrieving valuable nutrients from grass matrix. Optimized ensiling methodology can be considered as a pretreatment for a biorefinery process.
Collapse
Affiliation(s)
- Marketta Rinne
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| | - Erika Winquist
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Ville Pihlajaniemi
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Piritta Niemi
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Arja Seppälä
- Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland; Current address: Eastman, Typpitie 1, FI-90620 Oulu, Finland
| | - Matti Siika-Aho
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo, Finland
| |
Collapse
|
6
|
Pihlajaniemi V, Ellilä S, Poikkimäki S, Nappa M, Rinne M, Lantto R, Siika-aho M. Comparison of pretreatments and cost-optimization of enzymatic hydrolysis for production of single cell protein from grass silage fibre. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Schwarz D, Schoenenwald AKJ, Dörrstein J, Sterba J, Kahoun D, Fojtíková P, Vilímek J, Schieder D, Zollfrank C, Sieber V. Biosynthesis of poly-3-hydroxybutyrate from grass silage by a two-stage fermentation process based on an integrated biorefinery concept. BIORESOURCE TECHNOLOGY 2018; 269:237-245. [PMID: 30179757 DOI: 10.1016/j.biortech.2018.08.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Grass silage as a renewable feedstock for an integrated biorefinery includes nutrients and carbon sources directly available in the press juice (PJ) and in lignocellulosic saccharides from the plant framework. Here, a novel two-stage fed-batch fermentation process for biosynthesis of poly-3-hydroxybutyrate (PHB) by Cupriavidus necator DSM 531 is presented. For bacterial growth, nutrient-rich PJ was employed as a fermentation medium, without any supplements. Saccharides derived from the mechano-enzymatic hydrolysis of the press cake (PC) were subjected to a lactic acid fermentation process, before the fermentation products were fed into the polymer accumulation phase. By combination of pH-stat feeding and cell recycling, the PHB content in 22 g L-1 total-dry cells reached 39% after 32 h of cultivation. Using mimicked hydrolyzate of diluted PJ artificially supplemented with glucose and xylose, the resulting cell dry weight of 21 g L-1 contained 42% PHB.
Collapse
Affiliation(s)
- Dominik Schwarz
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Amelie K J Schoenenwald
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Jörg Dörrstein
- Technical University of Munich, Biogenic Polymers, Schulgasse 16, 94315 Straubing, Germany
| | - Jan Sterba
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - David Kahoun
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Pavla Fojtíková
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Josef Vilímek
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Doris Schieder
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany.
| | - Cordt Zollfrank
- Technical University of Munich, Biogenic Polymers, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| |
Collapse
|
8
|
Logistics of Lignocellulosic Feedstocks: Preprocessing as a Preferable Option. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 166:43-68. [PMID: 29934794 DOI: 10.1007/10_2017_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material. Graphical Abstract.
Collapse
|
9
|
Hohagen H, Schwarz D, Schenk G, Guddat LW, Schieder D, Carsten J, Sieber V. Deacidification of grass silage press juice by continuous production of acetoin from its lactate via an immobilized enzymatic reaction cascade. BIORESOURCE TECHNOLOGY 2017; 245:1084-1092. [PMID: 28946391 DOI: 10.1016/j.biortech.2017.08.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/27/2023]
Abstract
An immobilized enzymatic reaction cascade was designed and optimized for the deacidification of grass silage press juice (SPJ), thus facilitating the production of bio-based chemicals. The cascade involves a three-step process using four enzymes immobilized in a Ca-alginate gel and uses lactic acid to form acetoin, a value-added product. The reaction is performed with a continuous, pH-dependent substrate feed under oxygenation. With titrated lactic acid yields of up to 91% and reaction times of ca. 6h was achieved. Using SPJ as titrant yields of 49% were obtained within 6h. In this deacidification process, with acetoin one value-added bio-based chemical is produced while simultaneously the remaining press juice can be used in applications that require a higher pH. Such, this system can be applied in a multi-product biorefinery concept to take full advantage of nutrient-rich SPJ, which is a widely available and easily storable renewable resource.
Collapse
Affiliation(s)
- Hendrik Hohagen
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Dominik Schwarz
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Gerhard Schenk
- The University of Queensland, School of Chemistry and Molecular Biosciences, 68 Cooper Road, St. Lucia 4072, Australia
| | - Luke W Guddat
- The University of Queensland, School of Chemistry and Molecular Biosciences, 68 Cooper Road, St. Lucia 4072, Australia
| | - Doris Schieder
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Jörg Carsten
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany; Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Volker Sieber
- Technical University of Munich, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany; The University of Queensland, School of Chemistry and Molecular Biosciences, 68 Cooper Road, St. Lucia 4072, Australia; Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany; Fraunhofer IGB, Straubing Branch Bio, Electro, and Chemocatalysis BioCat, 94315 Straubing, Germany.
| |
Collapse
|
10
|
Schwarz D, Dörrstein J, Kugler S, Schieder D, Zollfrank C, Sieber V. Integrated biorefinery concept for grass silage using a combination of adapted pulping methods for advanced saccharification and extraction of lignin. BIORESOURCE TECHNOLOGY 2016; 216:462-470. [PMID: 27262721 DOI: 10.1016/j.biortech.2016.05.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 06/05/2023]
Abstract
An integrated refining and pulping process for ensiled biomass from permanent grassland was established on laboratory scale. The liquid phase, containing the majority of water-soluble components, including 24% of the initial dry matter (DM), was first separated by mechanical pressing. The fiber fraction was subjected to high solid load saccharification (25% DM) to enhance the lignin content in the feed for subsequent organosolvation. The saccharification enzymes were pre-selected applying experimental design approaches. Cellulose convertibility was improved by a secondary pressing step during liquefaction. Combined saccharification and organosolvation showed high degree of saccharide solubilization with recovery of 98% of the glucan and 73% of the xylan from the fiber fraction in the hydrolysates, and enabled the recovery of 41% of the grass silage lignin. The effects of the treatment were confirmed by XRD and SEM tracking of cellulose crystallinity and fiber morphology throughout the pulping procedure.
Collapse
Affiliation(s)
- Dominik Schwarz
- Technische Universität München, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| | - Jörg Dörrstein
- Technische Universität München, Biogenic Polymers, Schulgasse 16, 94315 Straubing, Germany
| | - Sabine Kugler
- Technische Universität München, Biogenic Polymers, Schulgasse 16, 94315 Straubing, Germany
| | - Doris Schieder
- Technische Universität München, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany.
| | - Cordt Zollfrank
- Technische Universität München, Biogenic Polymers, Schulgasse 16, 94315 Straubing, Germany
| | - Volker Sieber
- Technische Universität München, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315 Straubing, Germany
| |
Collapse
|
11
|
Cerrone F, Davis R, Kenny ST, Woods T, O'Donovan A, Gupta VK, Tuohy M, Babu RP, O'Kiely P, O'Connor K. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. BIORESOURCE TECHNOLOGY 2015; 191:45-52. [PMID: 25978856 DOI: 10.1016/j.biortech.2015.04.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
This study demonstrates the use of a mannitol rich ensiled grass press juice (EGPJ) as a renewable carbon substrate for polyhydroxyalkanoates (PHA) production in shaking flask experiments and fed-batch stirred tank reactor cultivations. Fed-batch cultivations of Burkholderia sacchari IPT101 using EGPJ as sole carbon source produced 44.5 g/L CDW containing 33% polyhydroxybutyrate (PHB) in 36 h, while Pseudomonas chlororaphis IMD555 produced a CDW of 37 g/L containing 10% of medium chain length polyhydroxyalkanoates (mcl-PHA) in 34 h. PHB and mcl-PHA extracted from B. sacchari IPT101 and P. chlororaphis IMD555, grown on EGPJ, had a molecular weight of 548 kg/mol and 115.4 kg/mol, respectively. While mcl-PHA can be produced from EGPJ, PHB production is more interesting as there is a 4-fold higher volumetric productivity compared to mcl-PHA.
Collapse
Affiliation(s)
- Federico Cerrone
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland
| | - Reeta Davis
- Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland; Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland
| | - Shane T Kenny
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trevor Woods
- Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland; School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Anthonia O'Donovan
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Vijai Kumar Gupta
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Maria Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Ramesh P Babu
- Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland; Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland; School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Padraig O'Kiely
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Kevin O'Connor
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland.
| |
Collapse
|
12
|
Dhiman SS, Haw JR, Kalyani D, Kalia VC, Kang YC, Lee JK. Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. BIORESOURCE TECHNOLOGY 2015; 179:50-57. [PMID: 25514402 DOI: 10.1016/j.biortech.2014.11.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Two different biomasses were subjected to simultaneous pretreatment and saccharification (SPS) using a cocktail of hydrolytic and oxidizing enzymes. Application of a novel laccase as a detoxifying agent caused the removal of 49.8% and 32.6% of phenolic contents from the soaked rice straw and willow, respectively. Hydrolysis of soaked substrates using a newly developed fungal consortium resulted in saccharification yield of up to 74.2% and 63.6% for rice straw and willow, respectively. A high saccharification yield was obtained with soaked rice straw and willow without using any hazardous chemicals. The efficiency of each step related to SPS was confirmed by atomic force microscopy. The suitability of the developed SPS process was further confirmed by converting the hydrolysate from the process into bioethanol with 72.4% sugar conversion efficiency. To the best of our knowledge, this is the first report on the development of a less tedious, single-pot, and eco-friendly SPS methodology.
Collapse
Affiliation(s)
- Saurabh Sudha Dhiman
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea; Institute of SK-KU Biomaterials, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Jung-Rim Haw
- Institute of SK-KU Biomaterials, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Dayanand Kalyani
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Vipin C Kalia
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea; Institute of SK-KU Biomaterials, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
13
|
Hauck B, Gallagher JA, Morris SM, Leemans D, Winters AL. Soluble phenolic compounds in fresh and ensiled orchard grass (Dactylis glomerata L.), a common species in permanent pastures with potential as a biomass feedstock. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:468-75. [PMID: 24341797 DOI: 10.1021/jf4040749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High-value coproducts can greatly improve the feasibility of utilizing plant feedstocks for biorefining and biofuel production. Plant polyphenolics have potential application in the pharmaceutical and cosmetic industries. Orchard grass varieties have been noted for accumulation of polyphenolic compounds, and the current study determined the soluble phenol profile and content in the orchard grass variety 'Abertop'. Hydroxycinnamates and flavonoids were monitored during the transition from vegetative to flowering stage at maximum crop yield. Caffeic acid derivatives, related to bioactives in the Asian medicinal herb Salvia miltiorrhiza , and novel hydroxycinnamate-flavone conjugates were also identified in extracts. Harvest yields of hydroxycinnamates and flavonoids ranged from 2.6 to 4.0 kg/ha and from 2.1 to 5.1 kg/ha, respectively. Abundant compounds showed high levels of antioxidant activity comparable with that of trolox. Minimal changes in soluble phenol content and composition were observed after ensiling with the exception of increases in caffeic acid, a caffeic acid derivative, and a caffeic acid breakdown product, dihydroxystyrene.
Collapse
Affiliation(s)
- Barbara Hauck
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University , Gogerddan, Aberystwyth, Ceredigion SY23 3EE, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Bley T. Editorial: Bioprocess-oriented plant design - turning basic research into practical applications. Eng Life Sci 2011. [DOI: 10.1002/elsc.201190024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|