1
|
Ortiz Tena F, Bickel V, Steinweg C, Posten C. Continuous microalgae cultivation for wastewater treatment - Development of a process strategy during day and night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169082. [PMID: 38056654 DOI: 10.1016/j.scitotenv.2023.169082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Conventional wastewater treatment (WWT) is not able to recycle nutrients from the wastewater (WW) directly. Microalgae integrate the valuable nutrients nitrogen and phosphorus within their biomass very efficiently, making them predestined for an application in WWT. Nevertheless, microalgae-based processes are driven by natural sunlight as energy source, making a continuous process mode during day and night difficult. The aim of this study was therefore to investigate metabolic activities of the continuously cultivated microalgae Chlorella vulgaris at light and dark periods (16 h,8 h) with focus on nutrient uptake during night from a synthetic WW. Varying the dilution rate D (D = 0.0-1.0 d-1 in 0.1 d-1-steps) causes different limitations for algae growth. Nutrient limitations at low D's cause maximum accumulation of intracellular storage components (sum of carbohydrates and lipids) of ~70 % of dry biomass, starch is converted to lipids at the absence of light. From middle to high D's, the growth rate is determined by light limitation, reducing the intracellular storage components to ~20 % of dry biomass. Complete nutrient uptake is measurable up to D = 0.5 d-1, marking the maximum operating point for wastewater purification. At that point, cells are characterised by high protein (up to 57%DBM) and pigment (up to 6.9%DBM) quotas. During the night, the build-up of proteins at the degradation of intracellular storage components is furthermore visible. Applying the concept of active biomass (cells without storage components), a constant cellular protein (~68%ABM) and nitrogen quota (11.94%ABM) was revealed. A nitrogen spiking experiment clearly showed nitrogen uptake and proliferation during the night period. Based on the experimental data, a window of operation for a continuous WWT process was designed, allowing the hypothesis that continuous WWT using microalgae during day and night operation is possible without the supplementation of artificial light. This revealed the system's capacity to treat WW throughout 24 h applying cell recycling and storage of carbohydrate-rich biomass. At the end of the night, protein-rich biomass is available for further valorisation.
Collapse
Affiliation(s)
- Franziska Ortiz Tena
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | - Victoria Bickel
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Christian Steinweg
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Clemens Posten
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Borucinska E, Zamojski P, Grodzki W, Blaszczak U, Zglobicka I, Zielinski M, Kurzydlowski KJ. Degradation of Polymethylmethacrylate (PMMA) Bioreactors Used for Algal Cultivation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4873. [PMID: 37445187 DOI: 10.3390/ma16134873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
This paper depicts characteristics of degradation of walls of bioreactors made of polymethylmethacrylate (PMMA) which was used to culture algae. The degradation processes take place stimulated by lighting of external surface and interaction with cultured species on internal surface. Results presented are representative for degradation of a bioreactor tube after the 4-year cultivation of Chlorella sp. Microscopic observations, roughness and transmission tests showed that changes have occurred on the inner surface. The result of use is a decrease in transmission and an increase in roughness. Microscopic observations showed that particles remained after culture, especially in cracks.
Collapse
Affiliation(s)
- Ewa Borucinska
- Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Przemyslaw Zamojski
- Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Wojciech Grodzki
- Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Urszula Blaszczak
- Faculty of Electrical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Izabela Zglobicka
- Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Marcin Zielinski
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | | |
Collapse
|
3
|
Light map optimization via direct chlorophyll fluorescence imaging in algal photobioreactors. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Singh V, Mishra V. A review on the current application of light-emitting diodes for microalgae cultivation and its fiscal analysis. Crit Rev Biotechnol 2022:1-15. [PMID: 35658771 DOI: 10.1080/07388551.2022.2057274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microalgae are the promising source of products having a low and high economic value that include feedstock and vitamin supplements. Presently, their cultivation is being carried out by using sunlight in the open raceway ponds. However, this process has disadvantages like fluctuations in irradiance of the sunlight due to climatic changes and bad weather. Artificial lights, exploiting light-emitting diodes are beneficial in increasing the volumetric productivity of the microalgal biomass as it provides continuous illumination in the photobioreactors and assist in the external and internal design. However, the application of light-emitting diodes accrues high input costs. Though the cost of light-emitting diodes was estimated long ago, there is no recent economic analysis of the same. This study aims to enlist the applications of light-emitting diodes in microalgal cultivation with reference to internally illuminated photobioreactors coupled with the evaluation of the cost and energy balance of the artificial lights. The calculation shows that the electrical energy cost incurred during the application of light-emitting diodes for microalgae cultivation is approximately USD 15.19 kg-1 DW. The collective fraction of electrical energy transformed into chemical energy (microalgae biomass) is around 6-8%. The cost of the light-emitting diodes can be decreased by the application of an Arduino-based automated control system to control the power supply to LEDs, photovoltaic powered photobioreactors and additional light. These techniques of input cost reduction have also been explored deeply in the present study. As estimated, they can reduce the cost of light-emitting diodes by 50%.HighlightsDiscussion on the current application of light-emitting diodes for microalgae cultivationA broad discussion on internally illuminated photobioreactors and their modificationsMicroalgae cultivation cost exploiting LEDs' is around USD 15.19 kg-1 DWNet conservation of electrical energy during the cultivation process is 6-8%Photovoltaic powered PBRs and Arduino microcontrollers will decrease cultivation cost.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
5
|
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45:791-813. [PMID: 35303143 PMCID: PMC9033726 DOI: 10.1007/s00449-022-02711-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.
Collapse
Affiliation(s)
- Philipp Benner
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lisa Meier
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Annika Pfeffer
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Konstantin Krüger
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - José Enrique Oropeza Vargas
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany.
- Technical University of Munich, TUM-AlgaeTec Center, 85521, Taufkirchen, Germany.
| |
Collapse
|
6
|
Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production. Antioxidants (Basel) 2021; 10:antiox10091360. [PMID: 34572991 PMCID: PMC8468856 DOI: 10.3390/antiox10091360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgal biotechnology is gaining importance. However, key issues in the pipeline from species selection towards large biomass production still require improvements to maximize the yield and lower the microalgal production costs. This study explores a co-cultivation strategy to improve the bioactive compounds richness of the harvested microalgal biomass. Based on their biotechnological potential, two diatoms (Skeletonema marinoi, Cyclotella cryptica) and one eustigmatophyte (Nannochloropsis oceanica) were grown alone or in combination. Concentrations of ten vitamins (A, B1, B2, B6, B12, C, D2, D3, E and H), carotenoids and polyphenols, together with total flavonoids, sterols, lipids, proteins and carbohydrates, were compared. Moreover, antioxidant capacity and chemopreventive potential in terms inhibiting four human tumor-derived and normal cell lines proliferation were evaluated. Co-cultivation can engender biomass with emergent properties regarding bioactivity or bioactive chemical profile, depending on the combined species. The high vitamin content of C. cryptica or N. oceanica further enhanced (until 10% more) when co-cultivated, explaining the two-fold increase of the antioxidant capacity of the combined C. cryptica and N. oceanica biomass. Differently, the chemopreventive activity was valuably enhanced when coupling the two diatoms C. cryptica and S. marinoi. The results obtained in this pilot study promote microalgal co-cultivation as a valuable strategy aiming to boost their application in eco-sustainable biotechnology.
Collapse
|
7
|
Zavafer A, Bates H, Labeeuw L, Kofler JR, Ralph PJ. Normalized chlorophyll fluorescence imaging: A method to determine irradiance and photosynthetically active radiation in phytoplankton cultures. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Laboratory-scale reproduction of lighting conditions for an outdoor vertical column photobioreactor: Theoretical fundamentals and operation of a programmable LED module. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Effects of Monochromatic Illumination with LEDs Lights on the Growth and Photosynthetic Performance of Auxenochlorella protothecoides in Photo- and Mixotrophic Conditions. PLANTS 2021; 10:plants10040799. [PMID: 33921700 PMCID: PMC8073139 DOI: 10.3390/plants10040799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022]
Abstract
This study examined the effects of monochromatic illumination (blue, red, green and yellow) employing light-emitting diodes (LEDs), trophic conditions (photoautotrophic and mixotrophic), and nitrogen availability (high and low peptone concentration) on the growth and biochemical composition of Auxenochlorella protothecoides. The results revealed that mixotrophic conditions did not favor A. protothecoides, giving lower growth rates compared to heterotrophy (dark conditions). However, mixotrophy gave significantly higher growth rates compared to photoautotrophy. The best light wavelengths for mixotrophic cultivation were that of white and red. In all cases investigated in this study, high peptone concentration (4 g/L) resulted in decreased growth rates. Regarding the biochemical composition of A. protothecoides, the strongest effect, irrespective of trophic conditions, was caused by nitrogen availability (peptone concentration). Specifically, at nitrogen replete conditions (4 g/L peptone), biomass was rich in proteins (32-67%), whereas under deplete conditions (0.5 g/L peptone), A. protothecoides accumulated mainly carbohydrates (up to 56%). Mixotrophic conditions generally favored higher carbohydrate content, whereas photoautotrophic conditions favored higher protein content. The different illumination spectra did not have any clear effect on the biochemical composition (metabolites content), except that, in all trophic conditions, the use of the green spectrum resulted in higher chlorophyll b content. Chlorophyll a fluorescence studies revealed that the trophic conditions and the high peptone concentrations impacted the photosystem II (PSII) performance, and also affected plastoquinone re-oxidation kinetics and the heterogeneity of the PSII reaction centers.
Collapse
|
10
|
Ortseifen V, Viefhues M, Wobbe L, Grünberger A. Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications. Front Bioeng Biotechnol 2020; 8:589074. [PMID: 33282849 PMCID: PMC7691494 DOI: 10.3389/fbioe.2020.589074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Microfluidics and novel lab-on-a-chip applications have the potential to boost biotechnological research in ways that are not possible using traditional methods. Although microfluidic tools were increasingly used for different applications within biotechnology in recent years, a systematic and routine use in academic and industrial labs is still not established. For many years, absent innovative, ground-breaking and “out-of-the-box” applications have been made responsible for the missing drive to integrate microfluidic technologies into fundamental and applied biotechnological research. In this review, we highlight microfluidics’ offers and compare them to the most important demands of the biotechnologists. Furthermore, a detailed analysis in the state-of-the-art use of microfluidics within biotechnology was conducted exemplarily for four emerging biotechnological fields that can substantially benefit from the application of microfluidic systems, namely the phenotypic screening of cells, the analysis of microbial population heterogeneity, organ-on-a-chip approaches and the characterisation of synthetic co-cultures. The analysis resulted in a discussion of potential “gaps” that can be responsible for the rare integration of microfluidics into biotechnological studies. Our analysis revealed six major gaps, concerning the lack of interdisciplinary communication, mutual knowledge and motivation, methodological compatibility, technological readiness and missing commercialisation, which need to be bridged in the future. We conclude that connecting microfluidics and biotechnology is not an impossible challenge and made seven suggestions to bridge the gaps between those disciplines. This lays the foundation for routine integration of microfluidic systems into biotechnology research procedures.
Collapse
Affiliation(s)
- Vera Ortseifen
- Proteome and Metabolome Research, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Lutz Wobbe
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
11
|
Schediwy K, Trautmann A, Steinweg C, Posten C. Microalgal kinetics - a guideline for photobioreactor design and process development. Eng Life Sci 2019; 19:830-843. [PMID: 32624976 PMCID: PMC6999068 DOI: 10.1002/elsc.201900107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Kinetics generally describes bio‐(chemical) reaction rates in dependence on substrate concentrations. Kinetics for microalgae is often adapted from heterotrophs and lacks mechanistic foundation, e.g. for light harvesting. Using and understanding kinetic equations as the representation of intracellular mechanisms is essential for reasonable comparisons and simulations of growth behavior. Summarizing growth kinetics in one equation does not yield reliable models. Piecewise linear or rational functions may mimic photosynthesis irradiance response curves, but fail to represent the mechanisms. Our modeling approach for photoautotrophic growth comprises physical and kinetic modules with mechanistic foundation extracted from the literature. Splitting the light submodel into the modules for light distribution, light absorption, and photosynthetic sugar production with independent parameters allows the transfer of kinetics between different reactor designs. The consecutive anabolism depends among others on nutrient concentrations. The nutrient uptake kinetics largely impacts carbon partitioning in the reviewed stoichiometry range of cellular constituents. Consecutive metabolic steps mask each other and demand a maximum value understandable as the minimum principle of growth. These fundamental modules need to be clearly distinguished, but may be modified or extended based on process conditions and progress in research. First, discussion of kinetics helps to understand the physiological situation, for which ranges of parameter values are given. Second, kinetics should be used for photobioreactor design, but also for gassing and nutrient optimization. Numerous examples are given for both aspects. Finally, measuring kinetics more comprehensively and precisely will help in improved process development.
Collapse
Affiliation(s)
- Kira Schediwy
- Institute of Process Engineering in Life Sciences, Section III: Bioprocess Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | | | - Christian Steinweg
- Institute of Process Engineering in Life Sciences, Section III: Bioprocess Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences, Section III: Bioprocess Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
12
|
Nies F, Wörner S, Wunsch N, Armant O, Sharma V, Hesselschwerdt A, Falk F, Weber N, Weiß J, Trautmann A, Posten C, Prakash T, Lamparter T. Characterization of Phormidium lacuna strains from the North Sea and the Mediterranean Sea for biotechnological applications. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Morschett H, Schiprowski D, Rohde J, Wiechert W, Oldiges M. Comparative evaluation of phototrophic microtiter plate cultivation against laboratory-scale photobioreactors. Bioprocess Biosyst Eng 2017; 40:663-673. [DOI: 10.1007/s00449-016-1731-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
|
14
|
Wagner I, Posten C. Pressure reduction affects growth and morphology of Chlamydomonas reinhardtii. Eng Life Sci 2016; 17:552-560. [PMID: 32624800 DOI: 10.1002/elsc.201600131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
Cellular perception of pressure is a largely unknown field in microalgae research although it should be addressed for optimization of a photobioreactor design regarding typically occurring pressure cycles. Also for the purpose of using microalgae as basic modules for material cycles in controlled ecological life support systems, the absence of pressure in outer space or the low absolute pressures on other planets is an abiotic factor that needs to be considered for design of integrated microalgae-based modules. The aim of this work is to study the effects of lowered pressure and pressure changes on photosynthesis as well as morphology. Two Chlamydomonas reinhardtii wild-type strains were exposed to controlled pressure patterns during batch cultivations. Sudden pressure changes should test for existing threshold values for cell survival to mimic such events during space missions. Algae were grown inside a 2 L photobioreactor with an integrated vacuum pump ensuring constant pressures down to 700 mbar. Cultivation samples were analyzed for OD750, cell dry weight, and morphology via light microscope. Chlamydomonas reinhardtii CC-1690 cells showed decreased growth rates, higher carbon dioxide uptake rates, and unchanged oxygen production rates at lower pressures. For sudden pressures changes in the range of 300 mbar no fatal threshold was determined. This study shows that pressure reduction affects growth, gas exchange rates, and morphology. Within the tested pressure range no fatal threshold value was reached.
Collapse
Affiliation(s)
- Ines Wagner
- Department of Bioprocess Engineering KIT Karlsruhe Institute of Technology Karlsruhe Germany
| | - Clemens Posten
- Department of Bioprocess Engineering KIT Karlsruhe Institute of Technology Karlsruhe Germany
| |
Collapse
|
15
|
Schwerna P, Hübner H, Buchholz R. Quantification of oxygen production and respiration rates in mixotrophic cultivation of microalgae in nonstirred photobioreactors. Eng Life Sci 2016; 17:140-144. [PMID: 32624761 DOI: 10.1002/elsc.201600004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 11/05/2022] Open
Abstract
Online monitoring and controlling of different cellular parameters are key issues in aerobic bioprocesses. Since mixotrophic cultivation, in which we observe a mixture of cellular respiration and oxygen production has gained more popularity, there is a need for an on-process quantification of these parameters. The presented and adapted double gassing-out method applied to a mixotrophic cultivation of Galdieria sulphuraria, will be a tool for monitoring and further optimization of algal fermentation in nonstirred photobioreactors (PBR). We measured the highest net specific oxygen production rate (opr net) as 5.73 · 10-3 molO2 g-1 h-1 at the lowest oxygen uptake rate (OUR) of 1.00 · 10-4 molO2 L-1 h-1. Due to higher cell densities, we also demonstrated the increasing shading effect by a decrease of opr net, reaching the lowest value of 1.25 10-5 molO2 g-1 h-1. Nevertheless, with this on process measurement, we can predict the relation between the zone in which oxygen is net produced to the area where cell respiration dominates in a PBR, which has a major impact to optimize cell growth along with the formation of different products of interest such as pigments.
Collapse
Affiliation(s)
- Philipp Schwerna
- Institute of Bioprocess Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
| | - Holger Hübner
- Institute of Bioprocess Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
| | - Rainer Buchholz
- Institute of Bioprocess Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
| |
Collapse
|
16
|
Krujatz F, Fehse K, Jahnel M, Gommel C, Schurig C, Lindner F, Bley T, Weber J, Steingroewer J. MicrOLED-photobioreactor: Design and characterization of a milliliter-scale Flat-Panel-Airlift-photobioreactor with optical process monitoring. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
López-Rosales L, García-Camacho F, Sánchez-Mirón A, Martín Beato E, Chisti Y, Molina Grima E. Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. BIORESOURCE TECHNOLOGY 2016; 216:845-855. [PMID: 27318163 DOI: 10.1016/j.biortech.2016.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Production of biomass of the shear-sensitive marine algal dinoflagellate Karlodinium veneficum was successfully scaled-up to 80L using a bubble column photobioreactor. The scale factor exceeded 28,500. Light-emission diodes were used as the light source. The diel irradiance profile mimicked the outdoor profile of natural sunlight. The final cell concentration in the absence of nutrient limitation in the scaled-up photobioreactor was nearly 12×10(5)cellsmL(-1), or the same as in laboratory culture systems. The pH-controlled culture (pH=8.5) was always carbon-sufficient. The culture was mixed pneumatically by using a superficial air velocity of 1.9×10(-3)ms(-1) and the temperature was controlled at 21±1°C.
Collapse
Affiliation(s)
- L López-Rosales
- Chemical Engineering Area, University of Almería, 04120 Almería, Spain
| | - F García-Camacho
- Chemical Engineering Area, University of Almería, 04120 Almería, Spain.
| | - A Sánchez-Mirón
- Chemical Engineering Area, University of Almería, 04120 Almería, Spain
| | - E Martín Beato
- Chemical Engineering Area, University of Almería, 04120 Almería, Spain
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - E Molina Grima
- Chemical Engineering Area, University of Almería, 04120 Almería, Spain
| |
Collapse
|
18
|
Pawar SB. Process Engineering Aspects of Vertical Column Photobioreactors for Mass Production of Microalgae. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201600003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Schnurr PJ, Espie GS, Allen GD. The effect of photon flux density on algal biofilm growth and internal fatty acid concentrations. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Wagner I, Steinweg C, Posten C. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space. Biotechnol J 2016; 11:1060-71. [DOI: 10.1002/biot.201500357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/08/2016] [Accepted: 04/26/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Ines Wagner
- Dept. of Bioprocess Engineering; KIT, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Christian Steinweg
- Dept. of Bioprocess Engineering; KIT, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Clemens Posten
- Dept. of Bioprocess Engineering; KIT, Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
21
|
Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Appl Microbiol Biotechnol 2015; 100:1077-1088. [DOI: 10.1007/s00253-015-7144-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
|
22
|
Wagner I, Braun M, Slenzka K, Posten C. Photobioreactors in Life Support Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015. [PMID: 26206570 DOI: 10.1007/10_2015_327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Life support systems for long-term space missions or extraterrestrial installations have to fulfill major functions such as purification of water and regeneration of atmosphere as well as the generation of food and energy. For almost 60 years ideas for biological life support systems have been collected and various concepts have been developed and tested. Microalgae as photosynthetic organisms have played a major role in most of these concepts. This review deals with the potentials of using eukaryotic microalgae for life support systems and highlights special requirements and frame conditions for designing space photobioreactors especially regarding illumination and aeration. Mono- and dichromatic illumination based on LEDs is a promising alternative for conventional systems and preliminary results yielded higher photoconversion efficiencies (PCE) for dichromatic red/blue illumination than white illumination. Aeration for microgravity conditions should be realized in a bubble-free manner, for example, via membranes. Finally, a novel photobioreactor concept for space application is introduced being parameterized and tested with the microalga Chlamydomonas reinhardtii. This system has already been tested during two parabolic flight campaigns.
Collapse
Affiliation(s)
- Ines Wagner
- Department Bioprocess Engineering, KIT, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe, Germany
| | - Markus Braun
- OHB Ag Life Sciences, Universitätsallee 27-29, Bremen, Germany
| | - Klaus Slenzka
- Gravitational Biology, DLR, Königswinterer Str. 522-524, Bonn, Germany.
| | - Clemens Posten
- Department Bioprocess Engineering, KIT, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, Karlsruhe, Germany
| |
Collapse
|
23
|
|
24
|
The effect of light direction and suspended cell concentrations on algal biofilm growth rates. Appl Microbiol Biotechnol 2014; 98:8553-62. [DOI: 10.1007/s00253-014-5964-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
|
25
|
Improving the Effectiveness of a Nutrient Removal System Composed of Microalgae and Daphnia by an Artificial Illumination. SUSTAINABILITY 2014. [DOI: 10.3390/su6031346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Effect of Various Colors of Light-Emitting Diodes (LEDs) on the Biomass Composition of Arthrospira platensis Cultivated in Semi-continuous Mode. Appl Biochem Biotechnol 2014; 172:2758-68. [DOI: 10.1007/s12010-014-0727-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/02/2014] [Indexed: 11/25/2022]
|
27
|
Salazar-Peña R, Alcaraz-González V, González-Álvarez V, Snell-Castro R, Méndez-Acosta HO. Neural network modeling of the light profile in a novel photobioreactor. Bioprocess Biosyst Eng 2013; 37:1031-42. [PMID: 24146282 DOI: 10.1007/s00449-013-1073-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/01/2013] [Indexed: 11/25/2022]
Abstract
An artificial neural network (ANN) was implemented to model the light profile pattern inside a photobioreactor (PBR) that uses a toroidal light arrangement. The PBR uses Tequila vinasses as culture medium and purple non-sulfur bacteria Rhodopseudomonas palustris as biocatalyzer. The performance of the ANN was tested for a number of conditions and compared to those obtained by using deterministic models. Both ANN and deterministic models were validated experimentally. In all cases, at low biomass concentration, model predictions yielded determination coefficients greater than 0.9. Nevertheless, ANN yielded the more accurate predictions of the light pattern, at both low and high biomass concentration, when the bioreactor radius, the depth, the rotational speed of the stirrer and the biomass concentration were incorporated in the ANN structure. In comparison, most of the deterministic models failed to correlate the empirical data at high biomass concentration. These results show the usefulness of ANNs in the modeling of the light profile pattern in photobioreactors.
Collapse
Affiliation(s)
- R Salazar-Peña
- Chemical Engineering Department, Universidad de Guadalajara, CUCEI , Calz. Marcelino García Barragán 1421, 44430, Guadalajara, Jalisco, Mexico,
| | | | | | | | | |
Collapse
|
28
|
A Linear Programming Approach for Modeling and Simulation of Growth and Lipid Accumulation of Phaeodactylum tricornutum. ENERGIES 2013. [DOI: 10.3390/en6105333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Dillschneider R, Steinweg C, Rosello-Sastre R, Posten C. Biofuels from microalgae: photoconversion efficiency during lipid accumulation. BIORESOURCE TECHNOLOGY 2013; 142:647-54. [PMID: 23777817 DOI: 10.1016/j.biortech.2013.05.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 05/04/2023]
Abstract
The accumulation of storage lipids in oleaginous microalgae can be induced by a targeted nutrient limitation. Experiments with varying concentrations of nitrate in the culture medium showed differing volumetric productivities of Phaeodactylum tricornutum in batch experiments. This was partially attributable to the differentiated ability of cultures to absorb light. Apart from that, it was demonstrated that storage molecule accumulation follows kinetics that show saturation at high photon flux densities. The measurement of the photoconversion efficiency (PCE) based on a rigorous balancing of absorbed light energy and changes in the enthalpy of combustion of biomass during nutrient depletion. In batch experiments the PCE was increased more than twofold, from 2.48% at low nitrate concentrations to a maximum value of 5.65%, by increase of the nitrogen availability.
Collapse
Affiliation(s)
- Robert Dillschneider
- Department of Bioprocess Engineering, Institute of Engineering in Life Sciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | | | | | | |
Collapse
|