1
|
Dini S, Oz F, Bekhit AEDA, Carne A, Agyei D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13394. [PMID: 38925624 DOI: 10.1111/1541-4337.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, Erzurum, Turkey
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
3
|
Ammar AB, Bouassida M, Bouallegue A, Fourati N, Gerardi G, Muñiz P, Benito JM, Ghribi D. Isolation and characterization of two glycolipopeptids biosurfactants produced by a Lactiplantibacillus plantarum OL5 strain isolated from green olive curing water. World J Microbiol Biotechnol 2023; 39:308. [PMID: 37715930 DOI: 10.1007/s11274-023-03744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/28/2023] [Indexed: 09/18/2023]
Abstract
Microbial surfactants are natural amphiphilic compounds with high surface activities and emulsifying properties. Due to their structural diversity, low toxicity, biodegradability, and chemical stability in different conditions, these molecules are potential substitutes for chemical surfactants; their interest has grown significantly over the last decade. The current study focuses on the isolation, identification, and characterization of a lactic acid bacteria that produce two forms of biosurfactants. The OL5 strain was isolated from green olive fermentation and identified using MALDI/TOF and DNAr16S amplification. Emulsification activity and surface tension measurements were used to estimate biosurfactant production. The two biosurfactants derived from Lactiplantibacillus plantarum OL5 presented good emulsification powers in the presence of various oils. They were also shown to have the potential to reduce water surface tension from 69 mN/m to 34 mN/m and 37 mN/m within a critical micelle concentration (CMC) of 7 mg/ml and 1.8 mg/ml, respectively, for cell bound and extracellular biosurfactants. Thin layer chromatography (TLC) and FT-IR were used to analyze the composition of the two biosurfactants produced. the obtained data revealed that the two biomolecules consist of a mixture of carbohydrates, lipids and proteins. We demonstrated that they are two anionic biosurfactants with glycolipopeptide nature which are stable in extreme conditions of temperature, pH and salinity.
Collapse
Affiliation(s)
- Ameni Ben Ammar
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie.
- Bioréacteur couplé à un ultra-filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie.
| | - Mouna Bouassida
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
| | - Amir Bouallegue
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
- Bioréacteur couplé à un ultra-filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
| | - Nada Fourati
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
| | - Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Jose Manuel Benito
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Dhouha Ghribi
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
- Bioréacteur couplé à un ultra-filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
4
|
Ghazala I, Chiab N, Saidi MN, Gargouri-Bouzid R. The Plant Growth-Promoting Bacteria Strain Bacillus mojavensis I4 Enhanced Salt Stress Tolerance in Durum Wheat. Curr Microbiol 2023; 80:178. [PMID: 37036517 DOI: 10.1007/s00284-023-03288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/25/2023] [Indexed: 04/11/2023]
Abstract
Plant growth and production are adversely affected by soil salinity. A plant growth-promoting bacteria (PGPB) designated as the "I4 strain" of Bacillus mojavensis was isolated from Tunisian soil (Sfax, Tunisia) and showed the ability to be grown in the presence of NaCl concentrations ranging from 0 to 10% in Luria Bertani (LB) medium. The PGPB-mediated salt tolerance in durum wheat was evaluated. The physiological parameters such as growth, shoot and root length, dry and fresh weight were higher in I4-inoculated wheat plants in comparison with non-treated plants under salt stress. Results showed that this strain promoted wheat growth and preserved the membrane damage by notably lowering the electrolytes leakage and malondialdehyde content in contrast to non-inoculated plants. Moreover, leaf chlorophyll content, biochemical parameters and antioxidant enzyme activities measurement showed a better salt and heavy metal stress adaptation of the I4-inoculated plants. Due to these outcomes, it could be suggested that the inoculation of the PGPB I4 strain enhanced the wheat plant's growth, especially under salt stress conditions. This study confirms the ameliorative role played by PGPB in tolerating salt stress in wheat and their potential use as biofertilizers to enhance its growth in saline soil and help in promoting this plant's culture to provide food security under these perturbed global circumstances.
Collapse
Affiliation(s)
- Imen Ghazala
- Laboratory of Plant Improvement and Valorization of Agricultural Resources, National Engineering School of Sfax, Sfax, Tunisia.
| | - Nour Chiab
- Laboratory of Plant Improvement and Valorization of Agricultural Resources, National Engineering School of Sfax, Sfax, Tunisia
| | - Mohamed Najib Saidi
- Biotechnology and Plant Improvement Laboratory, Biotechnology Center of Sfax, Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Laboratory of Plant Improvement and Valorization of Agricultural Resources, National Engineering School of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
de Andrade Bustamante R, de Oliveira JS, Dos Santos BF. Modeling biosurfactant production from agroindustrial residues by neural networks and polynomial models adjusted by particle swarm optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6466-6491. [PMID: 35997874 DOI: 10.1007/s11356-022-22481-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Biosurfactants are molecules with wide application in several industrial processes. Their production is damaged due to inefficient bioprocessing and expensive substrates. The latest developments of strategies to improve and economize the biosurfactant production process use alternative substrates, optimization techniques, and different scales. This paper presents a study to compare the performances of classical (polynomial models) and modern tools, such as artificial intelligence to aid optimization of the alternative substrate concentration (alternative based on beet peel and glycerol) and process parameters (agitation and aeration). The evaluation was developed in two different scales: Erlenmeyer flask (100 mL) and bioreactor (7 L). The intelligent models were implemented to verify the ability to predict the emulsification index and biosurfactant concentration in smaller scale and the biosurfactant concentration and the superficial tension reduction (STR) in bigger scale, resulting in four different situations. The overall results of the predictions led to artificial neural networks as the best performing modeling tool in all four situations studied, with R2 values ranging from 0.9609 to 0.9974 and error indices close to 0. Also, four different models (Wu, Contois, Megee, and Ghose-Tyagi) were adjusted by particle swarm optimization (PSO) in order to describe the kinetics of biosurfactant production. Contois model was the only one to present R2 ≥ 0.97 for all monitored variables. The findings described in this work present an adjusted model for the prediction of biosurfactant production and also state that the most adjusted kinetic model for further studies on this process is Contois model, leading to the conclusion that biomass growth is limited by a single substrate, considering only glucose.
Collapse
Affiliation(s)
- Rodrigo de Andrade Bustamante
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro, RJ, 22430-060, Brazil
| | - Juan Santos de Oliveira
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro, RJ, 22430-060, Brazil
| | - Brunno Ferreira Dos Santos
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro, RJ, 22430-060, Brazil.
| |
Collapse
|
6
|
Ciurko D, Czyżnikowska Ż, Kancelista A, Łaba W, Janek T. Sustainable Production of Biosurfactant from Agro-Industrial Oil Wastes by Bacillus subtilis and Its Potential Application as Antioxidant and ACE Inhibitor. Int J Mol Sci 2022; 23:ijms231810824. [PMID: 36142732 PMCID: PMC9505973 DOI: 10.3390/ijms231810824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/02/2023] Open
Abstract
The microbial conversion of agro-industrial oil wastes into biosurfactants shows promise as a biomass refinery approach. In this study, Bacillus subtilis #309 was applied to produce surfactin using rapeseed and sunflower cakes, the most common oil processing side products in Europe. Studies of the chemical composition of the substrates were performed, to determine the feasibility of oil cakes for surfactin production. Initially, screening of proteolytic and lipolytic activity was performed to establish the capability of B. subtilis #309 for substrate utilization and hence effective surfactin production. B. subtilis #309 showed both proteolytic and lipolytic activity. The process of surfactin production was carefully analyzed by measurement of the surfactin concentration, pH, surface tension (ST) and emulsification index (E24). The maximal surfactin concentration in the sunflower and rapeseed cake medium reached 1.19 ± 0.03 and 1.45 ± 0.09 g/L, respectively. At the same time, a progressive decrease in the surface tension and increase in emulsification activity were observed. The results confirmed the occurrence of various surfactin homologues, while the surfactin C15 was the dominant one. Finally, the analysis of surfactin biological function exhibited antioxidant activity and significant angiotensin-converting enzyme (ACE)-inhibitory activity. The half-maximal inhibitory concentration (IC50) value for ACE inhibition was found to be 0.62 mg/mL for surfactin. Molecular docking of the surfactin molecule to the ACE domains confirmed its inhibitory activity against ACE. Several interactions, such as hydrophobic terms, hydrogen bonds and van der Waals interactions, were involved in the complex stabilization. To the best of our knowledge, this is the first report describing the effect of a lipopeptide biosurfactant, surfactin, produced by B. subtilis for multifunctional properties in vitro, namely the ACE-inhibitory activity and the antioxidant properties, using different assays, such as 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). Thus, the ACE-inhibitory lipopeptide biosurfactant shows promise to be used as a natural antihypertensive agent.
Collapse
Affiliation(s)
- Dominika Ciurko
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wrocław, Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Wojciech Łaba
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-320-7734
| |
Collapse
|
7
|
Antifungal Activity and Plant Growth-Promoting Properties of Bacillus mojovensis B1302 against Rhizoctonia Cerealis. Microorganisms 2022; 10:microorganisms10081682. [PMID: 36014099 PMCID: PMC9413849 DOI: 10.3390/microorganisms10081682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rhizoctonia cerealis is a worldwide soil-borne pathogenic fungus that significantly infects wheat and causes sharp eyespot in China. However, the biocontrol strains used for the control of Rhizoctonia cerealis are insufficient. In the present study, antagonistic strain B1302 from the rhizosphere of wheat were isolated and identified as Bacillus mojovensis based on their morphological, physiological, and biochemical characteristics, and their 16S rDNA sequence. Culture filtrate of strain B1302 had a broad antifungal spectrum. In order to improve the antifungal activity of B1302, response surface methodology (RSM) was used to optimize the culture conditions. The final medium composition and culture conditions were 13.2 g/L of wheat bran, 14.1 g/L of soybean meal, 224 r/min of rotation speed, 7.50 of initial pH, and 1.5 × 108 CFU/mL of inoculation amount at 35 °C for a culture duration of 72 h. B. mojavensis B1302 inhibited the hyphae growth of R.cerealis and produced hydrolytic enzymes (protease, chitinase, and glucanase), IAA, and had N-fixing potentiality and P-solubilisation capacity. It can also promote wheat seedling growth in potted plants. The disease incidence and index of wheat seedlings were consistent with the effect of commercial pesticides under treatment with culture filtrate. The biocontrol efficacy of culture filtrate was significant—up to 65.25%. An animal toxicological safety analysis suggested that culture filtrate was safe for use and could be developed into an effective microbial fungicide to control wheat sharp eyespot.
Collapse
|
8
|
Ghazala I, Charfeddine S, Charfeddine M, Gargouri-Bouzid R, Ellouz-Chaabouni S, Haddar A. Antimicrobial and antioxidant activities of Bacillus mojavensis I4 lipopeptides and their potential application against the potato dry rot causative Fusarium solani. Arch Microbiol 2022; 204:484. [PMID: 35834024 DOI: 10.1007/s00203-022-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Lipopeptides are diverse metabolites produced by various bacterial and fungal genera. They are known for their antimicrobial and surfactant activities with diverse environmental, pharmaceutical, and also agronomic applications as biocontrol agents. In this study, a PCR was used to confirm the presence of NRPS genes in Bacillus mojavensis I4. This bacterial strain could produce diverse lipopeptides which belong to the fengycin, and surfactin families. The antioxidant activity of I4 biosurfactants was determined through four different in vitro assays. Furthermore, antimicrobial activity assays indicated that I4 lipopeptides exhibited marked inhibitory activity against several bacterial and fungal strains. Further treatment of potato dry rot causative pathogen Fusarium solani with I4 lipopeptides demonstrated a remarkable reduction in the fungal penetration by almost 80% after 15 days of incubation. The findings suggest that I4 lipopeptide is a potential biocontrol agent during potato tuber storage.
Collapse
Affiliation(s)
- Imen Ghazala
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia.
| | - Safa Charfeddine
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Mariam Charfeddine
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Semia Ellouz-Chaabouni
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| | - Anissa Haddar
- Laboratory of Plant Improvement and Valorization of Agricultural Resources (LR16ES20), National School of Engineering, Sfax University, P.O. Box 1173, 3038, Sfax, Tunisia
| |
Collapse
|
9
|
Ley-López N, Basilio Heredia J, San Martín-Hernández C, Ibarra-Rodríguez JR, Angulo-Escalante MÁ, García-Estrada RS. [Induced biosynthesis of fengycin and surfactin in a strain of Bacillus amyloliquefaciens with oomyceticidal activity on zoospores of Phytophthora capsici]. Rev Argent Microbiol 2022; 54:181-191. [PMID: 35597695 DOI: 10.1016/j.ram.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/04/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
A potential alternative to the use of chemical products with oomyceticidal action for the control of Phytophthora capsici in vegetables is the use of antimicrobial metabolites, biosynthesized in Bacillus species. The objective of this study was to induce the biosynthesis of lipopeptides in Bacillus amyloliquefaciens KX953161.1 by using glutamic acid, iron, cellulose, chitin, or inactive Colletotrichum spp. cells. The in vitro oomyceticidal effect of the bacterial lipopeptides on zoospores of Phytophthora capsici was evaluated. The lipopeptides identified and quantified in the crude extracts by high performance thin layer chromatography (HPTLC) were fengycin and surfactin. The bacterial culture with inactive fungal cells yielded the greatest biosynthesis of lipopeptides, at 1847.02± 11.8 and 2563.45± 18.4 μg/ml of fengycin and surfactin, respectively and the treatments that obtained lower production of these lipopeptides, were those to which iron and cellulose were added with 608.05 ± 22.6 and 903.74± 22.1; 563.31± 11.9 and 936.96± 41.1 μg/ml for fengicin and surfactin, respectively. The lipopeptide extracted showed 100% germination inhibition on zoospores of P. capsici, revealing encystment, malformations in the germ tube and cellular degradation. Lipopeptides have the potential to control P. capsici; however, the biosynthesis of these lipopeptides requires further study to determine their biological mode of action and optimize lipopeptide performance and profile.
Collapse
Affiliation(s)
- Nancy Ley-López
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán (CIAD), Culiacán, Sinaloa, México
| | - José Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán (CIAD), Culiacán, Sinaloa, México
| | | | - J Ramón Ibarra-Rodríguez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán (CIAD), Culiacán, Sinaloa, México
| | | | - Raymundo Saúl García-Estrada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán (CIAD), Culiacán, Sinaloa, México.
| |
Collapse
|
10
|
Valorization of date juice by the production of lipopeptide biosurfactants by a Bacillus mojavensis BI2 strain: bioprocess optimization by response surface methodology and study of surface activities. Bioprocess Biosyst Eng 2021; 44:2315-2330. [PMID: 34241696 DOI: 10.1007/s00449-021-02606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Lipopeptides biosurfactants (BioS) are natural surface-active compounds produced by a variety of microorganisms. They have great interest in environmental, biomedical and agro-industrial fields. However their large-scale application and production is limited by the cost of culture media and the low yield of production. Therefore, the improvement of the production yields and the development of efficient and cost-effective bioprocess became of a great interest. In this aim, we applied the response surface method to optimize an economic BioS production by a newly isolated strain Bacillus mojavensis BI2 on date Juice called "Luegmi" as unique carbon and nitrogen source. Using a Box-Bhenken design, we studied the effect of three independent variables on lipopeptide production; Leugmi concentration, Na2HPO4 and incubation time. The results of this study showed that Leugmi concentration at 25%, Na2HPO4 at 0.1% and incubation time of 24 h were optimal conditions for BioS production, with a maximum Surface Tension (ST) decreasing capacity of 55% corresponding to 27 mN/m and an Oil Dispersing Activity (ODA) of 30 cm2 corresponding to a diameter of 6 cm. Preliminary characterization of the BioS produced on Luegmi by UV-Spectra and Thin Layer Chromatography showed its lipopeptide nature. Physic-chemical characterization of the produced lipopeptide on Leugmi showed its great surface activities and stabilities at different pH, temperature and salts concentration. The results of this study suggested that Leugmi, an agricultural byproducts can be used as a low-cost substrate to enhance the yield of lipopeptide BioS with great surface activities for potential environmental application.
Collapse
|
11
|
Antifungal Properties, Abiotic Stress Resistance, and Biocontrol Ability of Bacillus mojavensis PS17. Curr Microbiol 2021; 78:3124-3132. [PMID: 34173840 DOI: 10.1007/s00284-021-02578-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Plant-protecting Bacillus sp. strains used as biocontrol agents frequently produce metabolites inhibiting phytopathogenic fungi. Recently, the search for a novel biocontrol agent with a wide spectrum of disease control drew attention to Bacillus subtilis and their related species, including Bacillus mojavensis. In this study, we determined the antifungal properties of the endophytic B. mojavensis PS17 isolated from wheat seeds. Metabolites produced by B. mojavensis PS-17 inhibit the growth of Fusarium graminearum, Fusarium oxysporum, Fusarium chlamydosporum, Ascochyta pisi, Alternaria alternate, Sclerotinia sclerotiorum, Verticillium dahliaee, and Epicoccum nigrum strains. B. mojavensis strain PS17 produces several hydrolytic enzymes, such as chitinase, β-glucanase, cellulase, lipase, and protease. Additionally, strain B. mojavensis PS17 demonstrates drought tolerance under osmotic pressure of -2.2 MPa and a moderate halotolerance in 5% (w/v) of NaCl. B. mojavensis PS17 on tomato seedlings was able to reduce lesions of Forl ZUM2407 by 48.11% ± 1.07, showing the potentials of B. mojavensis PS17 to be adapted as a biocontrol agent for agricultural use.
Collapse
|
12
|
Daverey A, Dutta K. COVID-19: Eco-friendly hand hygiene for human and environmental safety. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104754. [PMID: 33200069 PMCID: PMC7657077 DOI: 10.1016/j.jece.2020.104754] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 11/06/2020] [Indexed: 05/05/2023]
Abstract
The Coronavirus disease-2019 (COVID-19) outbreak is caused by a highly pathogenic novel coronavirus (SARS-CoV-2). To date, there is no prescribed medicine for COVID-19. Frequent handwashing with soap and the use of alcohol-based hand sanitizers is recommended by WHO for hand hygiene and to prevent the spread of COVID-19. However, there are safety concerns associated with the use of soaps and alcohol-based hand sanitizers. Therefore, the review aims to highlight the health and environmental concerns associated with the frequent use of soaps/detergents and alcohol-based hand sanitizers amid COVID-19. The potential of some of the natural detergents and sanitizing agents as eco-friendly alternatives to petrochemical-based soaps and alcohol-based hand rubs for hand hygiene are discussed. The market of soaps and hand sanitizers is expected to grow in the coming years and therefore, future research should be directed to develop eco-friendly soaps and hand sanitizers for human and environmental safety.
Collapse
Affiliation(s)
- Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand 248012, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
13
|
Ravi A, Rajan S, Khalid NK, Jose MS, Aravindakumar CT, Krishnankutty RE. Impact of Supplements on Enhanced Activity of Bacillus amyloliquefaciens BmB1 Against Pythium aphanidermatum Through Lipopeptide Modulation. Probiotics Antimicrob Proteins 2020; 13:367-374. [PMID: 33000419 DOI: 10.1007/s12602-020-09707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
The present study has been designed to improve the activity of endophytic Bacillus amyloliquefaciens BmB1 against Pythium aphanidermatum through the culture supplementation with carbon sources, nitrogen sources and zinc oxide nanoparticles (ZnONPs). From the results of the study, supplementation with glucose (45 g/L), yeast extract (7.5 g/L) and ZnONPs (5 mg/L) were found to enhance the antifungal activity of B. amyloliquefaciens BmB1. This was also confirmed by comparative statistical analysis with experimental control. Further LC-Q-TOF-MS analysis of extracts of B. amyloliquefaciens BmB1 cultured with supplements showed a remarkable modulation of its lipopeptide profile. The blend of lipopeptides enhanced during the culture supplementation of B. amyloliquefaciens BmB1 as evidenced by the mass spectrometric analysis can consider to be the basis of its increased activity against P. aphanidermatum. As Bacillus spp. are well known for their biocontrol activities, the results of the study offer ways to improve its agricultural applications.
Collapse
Affiliation(s)
- Aswani Ravi
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sukanya Rajan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | | | | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | | |
Collapse
|
14
|
Abdelli F, Jardak M, Elloumi J, Stien D, Cherif S, Mnif S, Aifa S. Antibacterial, anti-adherent and cytotoxic activities of surfactin(s) from a lipolytic strain Bacillus safensis F4. Biodegradation 2019; 30:287-300. [PMID: 30600423 DOI: 10.1007/s10532-018-09865-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/22/2018] [Indexed: 01/03/2023]
Abstract
The bacterial strain F4, isolated from olive oil-contaminated soil, has been found to produce biosurfactants as confirmed by oil displacement test and the emulsification index results. The identification of the strain F4, by 16S ribosomal RNA gene, showed a close similarity to Bacillus safensis, therefore the strain has been termed Bacillus safensis F4. The Thin Layer Chromatography (TLC) and the High Pressure Liquid Chromatography-Mass Spectrometry (HPLC-MS/MS) demonstrated that the biosurfactant had a lipopeptide structure and was classified as surfactin. The present study showed also that the produced biosurfactant has an important antibacterial activity against several pathogen strains as monitored with minimum inhibitory concentration (MIC) micro-assays. In particular, it presented an interesting anti-planktonic activity with a MIC of 6.25 mg mL-1 and anti-adhesive activity which exceeded 80% against the biofilm-forming Staphylococcus epidermidis S61 strain. Moreover, the produced lipopeptide showed an antitumor activity against T47D breast cancer cells and B16F10 mouse melanoma cells with IC50 of 0.66 mg mL-1 and 1.17 mg mL-1, respectively. Thus, our results demonstrated that Bacillus safensis F4 biosurfactant exhibited a polyvalent activity via a considerable antibiofilm and antitumoral potencies.
Collapse
Affiliation(s)
- Faten Abdelli
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Marwa Jardak
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Jihene Elloumi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Didier Stien
- UPMC UNIV PARIS 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universities, Observatoire Oceanologique, 66650, Banyuls-Sur-Mer, France
| | - Slim Cherif
- Faculty of Sciences, Gafsa, University of Gafsa, University Campus Sidi Ahmed Zarrouk, 2112, Gafsa, Tunisia
| | - Sami Mnif
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
15
|
Chaprão MJ, da Silva RDCFS, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Production of a biosurfactant from Bacillus methylotrophicus UCP1616 for use in the bioremediation of oil-contaminated environments. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1310-1322. [PMID: 30392032 DOI: 10.1007/s10646-018-1982-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to produce a microbial biosurfactant for use in the bioremediation of environments contaminated with petroleum products. Bacillus methylotrophicus was isolated from seawater taken from a port area and cultivated using industrial waste as substrate (corn steep liquor and sugarcane molasses [both at 3%]). Surface tension measurements and motor oil emulsification capacity were used for the evaluation of the production of the biosurfactant, which demonstrated stability in a broad range of pH and temperature as well as a high concentration of saline, with the reduction of the surface tension of water to 29 mN/m. The maximum concentration of biosurfactant (10.0 g/l) was reached after 144 h of cultivation. The biosurfactant was considered to be a lipopeptide based on the results of proton nuclear magnetic resonance and Fourier transformed infrared spectroscopy. The tests demonstrated that the biosurfactant is innocuous and has potential for the bioremediation of soil and water contaminated by petroleum products. Thus, the biosurfactant described herein has a low production cost and can be used in environmental processes.
Collapse
Affiliation(s)
- Marco José Chaprão
- Northeast Biotechnology Network (RENORBIO), Federal Rural University of Pernambuco, Rua Dom, Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, 52171-900, Brazil
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
| | - Rita de Cássia F Soares da Silva
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil
| | - Raquel D Rufino
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil
| | - Juliana M Luna
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil
| | - Valdemir A Santos
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil
| | - Leonie A Sarubbo
- Advanced Institute of Technology and Innovation - IATI, Rua Joaquim de Brito, n 216, Boa Vista, Recife, Pernambuco, 50070-280, Brazil.
- Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife, Pernambuco, 50050-900, Brazil.
| |
Collapse
|
16
|
Microbial assisted (Bacillus mojavensis) production of bio-surfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MS analysis. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Characterization and production optimization of biosurfactants by Bacillus mojavensis I4 with biotechnological potential for microbial enhanced oil recovery. Biodegradation 2018; 30:235-245. [DOI: 10.1007/s10532-018-9844-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/14/2018] [Indexed: 10/28/2022]
|