1
|
Reynolds-Brandão P, Quintas-Nunes F, D F Bertrand C, Martins RM, Crespo MTB, Galinha CF, Nascimento FX. Integration of spectroscopic techniques and machine learning for optimizing Phaeodactylum tricornutum cell and fucoxanthin productivity. BIORESOURCE TECHNOLOGY 2025; 418:131988. [PMID: 39694114 DOI: 10.1016/j.biortech.2024.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The development of sustainable and controlled microalgae bioprocesses relies on robust and rapid monitoring tools that facilitate continuous process optimization, ensuring high productivity and minimizing response times. In this work, we analyse the influence of medium formulation on the growth and productivity of axenic Phaeodactylum tricornutumcultures and use the resulting data to develop machine learning (ML) models based on spectroscopy. Our culture assays produced a comprehensive dataset of 255 observations, enabling us to train 55 (24+31) robust models that predict cells or fucoxanthin directly from either absorbance or 2D-fluorescence spectroscopy. We demonstrate that medium formulation significantly affects cell and fucoxanthin concentrations, and that these effects can be effectively monitored using the developed models, free of overfitting. On a separate data subset, the models demonstratedhigh accuracy (cell: R2 = 0.98, RMSEP = 2.41x106 cells/mL; fucoxanthin: R2 = 0.91 and RMSEP = 0.65 ppm), providing a practical, cost-effective, and environmentally friendly alternative to standard analytical methods.
Collapse
Affiliation(s)
- Pedro Reynolds-Brandão
- LAQV-REQUIMTE, Chemistry Dept., NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Francisco Quintas-Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Constança D F Bertrand
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Rodrigo M Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Maria T B Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Cláudia F Galinha
- LAQV-REQUIMTE, Chemistry Dept., NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Francisco X Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| |
Collapse
|
2
|
Deng Y, Zhang C, Lv L, Wang K, Liu F, Zhou Y, Peng Z, Wang B. In situ detection of silk fibroin using a dual recognition strategy with a flexible pressure immunosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1185-1195. [PMID: 38305686 DOI: 10.1039/d3ay01967e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Silk is a symbol of ancient Chinese civilization that has made an indelible contribution to the development of world civilization. However, because ancient artifacts are often contaminated or degraded, it is difficult to detect the presence of silk therein, and the true origin of silk thus remains a mystery. Therefore, this work presents a flexible pressure immunosensor that was designed based on 3D polypyrrole (PPy) foams for the trace detection of silk fibroin at archaeological sites. Initially, silk fibroin (SF) was conjugated with antibody-functionalized copper oxide nanoparticles (CuO NPs) and carboxylated magnetic beads (MBs) to form a sandwich immune complex. Then, the sandwich immune complex was added to hydrogen peroxide (H2O2) by magnetic separation to catalyse the generation of oxygen (O2), which converted the antigen-antibody specific recognition signal to gas pressure. As the pressure within the device increases, the 3D PPy foam, as the sensing layer resistance was 150 Ω, undergoes extrusion and deformation. This deformation leads to alterations in the foam resistance. The flexible pressure immunosensor can sensitively monitor the change in electrical resistance in the system and quantitatively detect silk fibroin. With optimization, the flexible pressure immunosensor demonstrates a dynamic range of operation spanning from 10 ng mL-1 to 100 μg mL-1, exhibiting a remarkable detection limit of 10.58 ng mL-1 specifically for silk fibroin. Notably, this immunosensor surpasses enzyme-linked immunosorbent assay (ELISA) in terms of superior reproducibility, specificity, and accuracy. Therefore, this application provides a new method and technical support for silk detection.
Collapse
Affiliation(s)
- Yefeng Deng
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Lianpeng Lv
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Kun Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Feng Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | - Zhiqin Peng
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bing Wang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Pawar D, Lo Presti D, Silvestri S, Schena E, Massaroni C. Current and future technologies for monitoring cultured meat: A review. Food Res Int 2023; 173:113464. [PMID: 37803787 DOI: 10.1016/j.foodres.2023.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The high population growth rate, massive animal food consumption, fast economic progress, and limited food resources could lead to a food crisis in the future. There is a huge requirement for dietary proteins including cultured meat is being progressed to fulfill the need for meat-derived proteins in the diet. However, production of cultured meat requires monitoring numerous bioprocess parameters. This review presents a comprehensive overview of various widely adopted techniques (optical, spectroscopic, electrochemical, capacitive, FETs, resistive, microscopy, and ultrasound) for monitoring physical, chemical, and biological parameters that can improve the bioprocess control in cultured meat. The methods, operating principle, merits/demerits, and the main open challenges are reviewed with the aim to support the readers in advancing knowledge on novel sensing systems for cultured meat applications.
Collapse
Affiliation(s)
- Dnyandeo Pawar
- Microwave Materials Group, Centre for Materials for Electronics Technology (C-MET), Athani P.O, Thrissur, Kerala 680581, India.
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
4
|
Saha A, Sedaghat S, Gopalakrishnan S, Waimin J, Yermembetova A, Glassmaker N, Mousoulis C, Shakouri A, Wei A, Rahimi R, Alam MA. A new paradigm of reliable sensing with field-deployed electrochemical sensors integrating data redundancy and source credibility. Sci Rep 2023; 13:3101. [PMID: 36813820 PMCID: PMC9946936 DOI: 10.1038/s41598-022-25920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/07/2022] [Indexed: 02/24/2023] Open
Abstract
For a continuous healthcare or environmental monitoring system, it is essential to reliably sense the analyte concentration reported by electrochemical sensors. However, environmental perturbation, sensor drift, and power-constraint make reliable sensing with wearable and implantable sensors difficult. While most studies focus on improving sensor stability and precision by increasing the system's complexity and cost, we aim to address this challenge using low-cost sensors. To obtain the desired accuracy from low-cost sensors, we borrow two fundamental concepts from communication theory and computer science. First, inspired by reliable data transmission over a noisy communication channel by incorporating redundancy, we propose to measure the same quantity (i.e., analyte concentration) with multiple sensors. Second, we estimate the true signal by aggregating the output of the sensors based on their credibility, a technique originally developed for "truth discovery" in social sensing applications. We use the Maximum Likelihood Estimation to estimate the true signal and the credibility index of the sensors over time. Using the estimated signal, we develop an on-the-fly drift-correction method to make unreliable sensors reliable by correcting any systematic drifts during operation. Our approach can determine solution pH within 0.09 pH for more than three months by detecting and correcting the gradual drift of pH sensors as a function of gamma-ray irradiation. In the field study, we validate our method by measuring nitrate levels in an agricultural field onsite over 22 days within 0.06 mM of a high-precision laboratory-based sensor. We theoretically demonstrate and numerically validate that our approach can estimate the true signal even when the majority (~ 80%) of the sensors are unreliable. Moreover, by restricting wireless transmission to high-credible sensors, we achieve near-perfect information transfer at a fraction of the energy cost. The high-precision sensing with low-cost sensors at reduced transmission cost will pave the way for pervasive in-field sensing with electrochemical sensors. The approach is general and can improve the accuracy of any field-deployed sensors undergoing drift and degradation during operation.
Collapse
Affiliation(s)
- Ajanta Saha
- grid.169077.e0000 0004 1937 2197School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 USA
| | - Sotoudeh Sedaghat
- grid.169077.e0000 0004 1937 2197Department of Materials Engineering, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA
| | - Sarath Gopalakrishnan
- grid.169077.e0000 0004 1937 2197School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 USA
| | - Jose Waimin
- grid.169077.e0000 0004 1937 2197Department of Materials Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Aiganym Yermembetova
- grid.169077.e0000 0004 1937 2197Department of Materials Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Nicholas Glassmaker
- grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA
| | - Charilaos Mousoulis
- grid.169077.e0000 0004 1937 2197School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 USA
| | - Ali Shakouri
- grid.169077.e0000 0004 1937 2197School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 USA
| | - Alexander Wei
- grid.169077.e0000 0004 1937 2197Department of Materials Engineering, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue University, West Lafayette, IN 47906 USA
| | - Rahim Rahimi
- grid.169077.e0000 0004 1937 2197Department of Materials Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Muhammad A. Alam
- grid.169077.e0000 0004 1937 2197School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 USA
| |
Collapse
|
5
|
Nikita S, Mishra S, Gupta K, Runkana V, Gomes J, Rathore AS. Advances in bioreactor control for production of biotherapeutic products. Biotechnol Bioeng 2023; 120:1189-1214. [PMID: 36760086 DOI: 10.1002/bit.28346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Advanced control strategies are well established in chemical, pharmaceutical, and food processing industries. Over the past decade, the application of these strategies is being explored for control of bioreactors for manufacturing of biotherapeutics. Most of the industrial bioreactor control strategies apply classical control techniques, with the control system designed for the facility at hand. However, with the recent progress in sensors, machinery, and industrial internet of things, and advancements in deeper understanding of the biological processes, coupled with the requirement of flexible production, the need to develop a robust and advanced process control system that can ease process intensification has emerged. This has further fuelled the development of advanced monitoring approaches, modeling techniques, process analytical technologies, and soft sensors. It is seen that proper application of these concepts can significantly improve bioreactor process performance, productivity, and reproducibility. This review is on the recent advancements in bioreactor control and its related aspects along with the associated challenges. This study also offers an insight into the future prospects for development of control strategies that can be designed for industrial-scale production of biotherapeutic products.
Collapse
Affiliation(s)
- Saxena Nikita
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Somesh Mishra
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Keshari Gupta
- TCS Research, Tata Consultancy Services Limited, Pune, India
| | | | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| |
Collapse
|
6
|
Rösner LS, Walter F, Ude C, John GT, Beutel S. Sensors and Techniques for On-Line Determination of Cell Viability in Bioprocess Monitoring. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120762. [PMID: 36550968 PMCID: PMC9774925 DOI: 10.3390/bioengineering9120762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
In recent years, the bioprocessing industry has experienced significant growth and is increasingly emerging as an important economic sector. Here, efficient process management and constant control of cellular growth are essential. Good product quality and yield can only be guaranteed with high cell density and high viability. Whereas the on-line measurement of physical and chemical process parameters has been common practice for many years, the on-line determination of viability remains a challenge and few commercial on-line measurement methods have been developed to date for determining viability in industrial bioprocesses. Thus, numerous studies have recently been conducted to develop sensors for on-line viability estimation, especially in the field of optical spectroscopic sensors, which will be the focus of this review. Spectroscopic sensors are versatile, on-line and mostly non-invasive. Especially in combination with bioinformatic data analysis, they offer great potential for industrial application. Known as soft sensors, they usually enable simultaneous estimation of multiple biological variables besides viability to be obtained from the same set of measurement data. However, the majority of the presented sensors are still in the research stage, and only a few are already commercially available.
Collapse
Affiliation(s)
- Laura S. Rösner
- Institute for Technical Chemistry, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Franziska Walter
- Institute for Technical Chemistry, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Christian Ude
- Institute for Technical Chemistry, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Gernot T. John
- PreSens Precision Sensing GmbH, Am BioPark 11, 93053 Regensburg, Germany
| | - Sascha Beutel
- Institute for Technical Chemistry, Leibniz University of Hanover, 30167 Hannover, Germany
- Correspondence:
| |
Collapse
|
7
|
Yermembetova A, Oduncu MR, Wei A. Radiation-Tolerant Thin-Film Electrodes for pH Monitoring in Sterile Media. Anal Chem 2022; 94:15535-15540. [DOI: 10.1021/acs.analchem.2c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aiganym Yermembetova
- Department of Materials Science and Engineering, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Muhammed Ramazan Oduncu
- Department of Materials Science and Engineering, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Alexander Wei
- Department of Materials Science and Engineering, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
McCorry MC, Reardon KF, Black M, Williams C, Babakhanova G, Halpern JM, Sarkar S, Swami NS, Mirica KA, Boermeester S, Underhill A. Sensor technologies for quality control in engineered tissue manufacturing. Biofabrication 2022; 15:10.1088/1758-5090/ac94a1. [PMID: 36150372 PMCID: PMC10283157 DOI: 10.1088/1758-5090/ac94a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells' health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.
Collapse
Affiliation(s)
- Mary Clare McCorry
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Kenneth F Reardon
- Chemical and Biological Engineering and Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, United States of America
| | - Marcie Black
- Advanced Silicon Group, Lowell, MA 01854, United States of America
| | - Chrysanthi Williams
- Access Biomedical Solutions, Trinity, Florida 34655, United States of America
| | - Greta Babakhanova
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, United States of America
- Materials Science and Engineering Program, University of New Hampshire, Durham, NH 03824, United States of America
| | - Sumona Sarkar
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Sarah Boermeester
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Abbie Underhill
- Scientific Bioprocessing Inc., Pittsburgh, PA 15238, United States of America
| |
Collapse
|
9
|
Teel HR, Likit-Anurak K, Shimpalee S, Turick CE. Imaginary admittance and charge transfer resistance correlate to the physiological status of Shewanella oneidensis cultures in real time. Bioelectrochemistry 2022; 147:108210. [PMID: 35872371 DOI: 10.1016/j.bioelechem.2022.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Monitoring microbial activity is essential for industrial and environmental applications to proceed efficiently. To minimize time and labor-intensive monitoring, a new paradigm is required for in-situ, real time analysis. Since bioconversion of organics is accomplished by microorganisms through the oxidation of feedstocks linked to the reduction of electron acceptors, microorganisms can be viewed as electrochemical catalysts. In this respect, cell membranes have an electrical potential, which is analogous to a conventional capacitor and linked dynamically to cellular activity. Here we demonstrate the use of electrochemical impedance spectrometry (EIS) and cyclic voltammetry (CV) for monitoring microbial metabolic activity in real time, in-situ. The effect of organic electron donors as a function of concentration to the physiological status of strains of Shewanella oneidensis was determined. In this study, the pyomelanin overproducer (S. oneidensis ΔhmgA) and the pyomelanin deficient mutant (S. oneidensis ΔmelA) were chosen due to different surface electrochemical characteristics along with differences in oxygen utilization efficiency. CV, relative admittance, phase shift and permittivity changed with growth status and correlated with electron flow from organic carbon sources and terminal electron acceptor availability. This work offers a novel and inexpensive approach to real time monitoring with the advantage of abundant data.
Collapse
Affiliation(s)
| | | | | | - Charles E Turick
- ElectroBioDyne LLC, Aiken, SC, USA; Savannah River National Lab., Aiken, SC 29803.
| |
Collapse
|
10
|
Samaras JJ, Micheletti M, Ding W. Transformation of Biopharmaceutical Manufacturing Through Single-Use Technologies: Current State, Remaining Challenges, and Future Development. Annu Rev Chem Biomol Eng 2022; 13:73-97. [PMID: 35700527 DOI: 10.1146/annurev-chembioeng-092220-030223] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody-drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.
Collapse
Affiliation(s)
- Jasmin J Samaras
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Martina Micheletti
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Weibing Ding
- Manufacturing Science & Technology, GSK, King of Prussia, Pennsylvania, USA;
| |
Collapse
|
11
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
12
|
Robustness: linking strain design to viable bioprocesses. Trends Biotechnol 2022; 40:918-931. [PMID: 35120750 DOI: 10.1016/j.tibtech.2022.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/18/2022]
Abstract
Microbial cell factories are becoming increasingly popular for the sustainable production of various chemicals. Metabolic engineering has led to the design of advanced cell factories; however, their long-term yield, titer, and productivity falter when scaled up and subjected to industrial conditions. This limitation arises from a lack of robustness - the ability to maintain a constant phenotype despite the perturbations of such processes. This review describes predictable and stochastic industrial perturbations as well as state-of-the-art technologies to counter process variability. Moreover, we distinguish robustness from tolerance and discuss the potential of single-cell studies for improving system robustness. Finally, we highlight ways of achieving consistent and comparable quantification of robustness that can guide the selection of strains for industrial bioprocesses.
Collapse
|
13
|
Modern Sensor Tools and Techniques for Monitoring, Controlling, and Improving Cell Culture Processes. Processes (Basel) 2022. [DOI: 10.3390/pr10020189] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The growing biopharmaceutical industry has reached a level of maturity that allows for the monitoring of numerous key variables for both process characterization and outcome predictions. Sensors were historically used in order to maintain an optimal environment within the reactor to optimize process performance. However, technological innovation has pushed towards on-line in situ continuous monitoring of quality attributes that could previously only be estimated off-line. These new sensing technologies when coupled with software models have shown promise for unique fingerprinting, smart process control, outcome improvement, and prediction. All this can be done without requiring invasive sampling or intervention on the system. In this paper, the state-of-the-art sensing technologies and their applications in the context of cell culture monitoring are reviewed with emphasis on the coming push towards industry 4.0 and smart manufacturing within the biopharmaceutical sector. Additionally, perspectives as to how this can be leveraged to improve both understanding and outcomes of cell culture processes are discussed.
Collapse
|
14
|
Emerson J, Glassey J. Bioprocess monitoring and control: challenges in cell and gene therapy. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Off-Gas-Based Soft Sensor for Real-Time Monitoring of Biomass and Metabolism in Chinese Hamster Ovary Cell Continuous Processes in Single-Use Bioreactors. Processes (Basel) 2021. [DOI: 10.3390/pr9112073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammalian cell culture, especially in pharmaceutical manufacturing and research, biomass and metabolic monitoring are mandatory for various cell culture process steps to develop and, finally, control bioprocesses. As a common measure for biomass, the viable cell density (VCD) or the viable cell volume (VCV) is widely used. This study highlights, for the first time, the advantages of using VCV instead of VCD as a biomass depiction in combination with an oxygen-uptake- rate (OUR)-based soft sensor for real-time biomass estimation and process control in single-use bioreactor (SUBs) continuous processes with Chinese hamster ovary (CHO) cell lines. We investigated a series of 14 technically similar continuous SUB processes, where the same process conditions but different expressing CHO cell lines were used, with respect to biomass growth and oxygen demand to calibrate our model. In addition, we analyzed the key metabolism of the CHO cells in SUB perfusion processes by exometabolomic approaches, highlighting the importance of cell-specific substrate and metabolite consumption and production rate qS analysis to identify distinct metabolic phases. Cell-specific rates for classical mammalian cell culture key substrates and metabolites in CHO perfusion processes showed a good correlation to qOUR, yet, unexpectedly, not for qGluc. Here, we present the soft-sensoring methodology we developed for qPyr to allow for the real-time approximation of cellular metabolism and usage for subsequent, in-depth process monitoring, characterization and optimization.
Collapse
|
16
|
Reardon KF. Practical monitoring technologies for cells and substrates in biomanufacturing. Curr Opin Biotechnol 2021; 71:225-230. [PMID: 34482018 DOI: 10.1016/j.copbio.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023]
Abstract
Precise control over bioreactor operation is desired for optimal productivity and product quality, and there is an increased drive to automation in biomanufacturing. All of these goals require sensors, not only of the basic parameters of temperature, pH, and dissolved oxygen, but of the biomass and substrate concentrations, which directly determine the outcome of the bioprocess. While there are many innovative sensing concepts for biomass and substrate concentrations, this review focuses on sensors that are in-line with the bioreactor, providing data continuously without the removal of sample from the system. The discussion emphasizes the requirements of industry for these sensors, including performance, ease of use, and cost. As the bioeconomy grows, advances in sensing technologies will be needed to achieve the automation of the future for a wider array of bioreactors.
Collapse
Affiliation(s)
- Kenneth F Reardon
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA; OptiEnz Sensors LLC, Fort Collins, CO, USA.
| |
Collapse
|
17
|
Mitra S, Murthy GS. Bioreactor control systems in the biopharmaceutical industry: a critical perspective. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 2:91-112. [PMID: 38624976 PMCID: PMC8340809 DOI: 10.1007/s43393-021-00048-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022]
Abstract
Industrial-scale bioprocessing underpins much of the production of pharmaceuticals, nutraceuticals, food, and beverage processing industries of the modern world. The profitability of these processes increasingly leverages the economies of scale and scope that are critically dependent on the product yields, titers, and productivity. Most of the processes are controlled using classical control approaches and represent over 90% of the industrial controls used in bioprocessing industries. However, with the advances in the production processes, especially in the biopharmaceutical and nutraceutical industries, monitoring and control of bioprocesses such as fermentations with GMO organisms, and downstream processing has become increasingly complex and the inadequacies of the classical and some of the modern control systems techniques is becoming apparent. Therefore, with increasing research complexity, nonlinearity, and digitization in process, there has been a critical need for advanced process control that is more effective, and easier process intensification and product yield (both by quality and quantity) can be achieved. In this review, industrial aspects of a process and automation along with various commercial control strategies have been extensively discussed to give an insight into the future prospects of industrial development and possible new strategies for process control and automation with a special focus on the biopharmaceutical industry. Supplementary Information The online version contains supplementary material available at 10.1007/s43393-021-00048-6.
Collapse
Affiliation(s)
- Sagnik Mitra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, 453552 India
| | - Ganti S. Murthy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, 453552 India
| |
Collapse
|
18
|
Díaz Pacheco A, Delgado-Macuil RJ, Díaz-Pacheco Á, Larralde-Corona CP, Dinorín-Téllez-Girón J, López-Y-López VE. Use of equivalent circuit analysis and Cole-Cole model in evaluation of bioreactor operating conditions for biomass monitoring by impedance spectroscopy. Bioprocess Biosyst Eng 2021; 44:1923-1934. [PMID: 33884467 DOI: 10.1007/s00449-021-02572-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The most important parameter in bioprocesses is biomass, where not only the quantity produced in a culture but also the behavior that is presented are important concerns. It is clear that conditions of operation in a bioreactor affect biomass production, but how operation conditions affect the measurement of biomass on-line is of special interest. We studied the effect of bioreactor operating condition variations on model parameters using impedance spectroscopy for biomass monitoring. The model parameters analyzed were capacitance, resistance, alpha (α), conductivity delta (∆σ) and critical frequency (fc). These model parameters were obtained by fitting data from impedance measurements to an equivalent circuit model and Cole-Cole conductivity model. The effect of operating conditions on the medium with no cells was estimated by the percentage of change in each model parameter. The operating conditions with the most significant percentage of change were determined, by comparing to the percentage of change of the same model parameters obtained, during a fermentation of Bacillus thuringiensis as a cellular model. Equivalent circuit parameters were mainly affected by variation in pH, temperature and aeration, whereas Cole-Cole parameters were affected by variation in agitation, aeration, temperature and pH. Therefore, any variation in these operating conditions (within the test interval) during a fermentation may generate changes in monitoring parameters, which will not be a direct consequence of any change in the properties of the biomass.
Collapse
Affiliation(s)
- Adrián Díaz Pacheco
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Raul Jacobo Delgado-Macuil
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Ángel Díaz-Pacheco
- Departamento de Ciencias, Instituto Nacional de Astrofísica, Óptica Y Electrónica, Luis Enrique Erro No.1, Santa María Tonantzintla, 72840, San Andrés Cholula, Puebla, Mexico
| | - Claudia Patricia Larralde-Corona
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Blvd. del Maestro S/N Esq. Elías Piña. Col. Narciso Mendoza, 88710, Reynosa, Tamaulipas, Mexico
| | - Jabel Dinorín-Téllez-Girón
- Universidad Politécnica de Tlaxcala, A. Universidad Politécnica No.1 San Pedro Xalcaltzinco, 90180, Tepeyanco, Tlaxcala, Mexico
| | - Victor Eric López-Y-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
19
|
Oliveira M, Conceição P, Kant K, Ainla A, Diéguez L. Electrochemical Sensing in 3D Cell Culture Models: New Tools for Developing Better Cancer Diagnostics and Treatments. Cancers (Basel) 2021; 13:1381. [PMID: 33803738 PMCID: PMC8003119 DOI: 10.3390/cancers13061381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, conventional pre-clinical in vitro studies are primarily based on two-dimensional (2D) cell culture models, which are usually limited in mimicking the real three-dimensional (3D) physiological conditions, cell heterogeneity, cell to cell interaction, and extracellular matrix (ECM) present in living tissues. Traditionally, animal models are used to mimic the 3D environment of tissues and organs, but they suffer from high costs, are time consuming, bring up ethical concerns, and still present many differences when compared to the human body. The applications of microfluidic-based 3D cell culture models are advantageous and useful as they include 3D multicellular model systems (MCMS). These models have demonstrated potential to simulate the in vivo 3D microenvironment with relatively low cost and high throughput. The incorporation of monitoring capabilities in the MCMS has also been explored to evaluate in real time biophysical and chemical parameters of the system, for example temperature, oxygen, pH, and metabolites. Electrochemical sensing is considered as one of the most sensitive and commercially adapted technologies for bio-sensing applications. Amalgamation of electrochemical biosensing with cell culture in microfluidic devices with improved sensitivity and performance are the future of 3D systems. Particularly in cancer, such models with integrated sensing capabilities can be crucial to assess the multiple parameters involved in tumour formation, proliferation, and invasion. In this review, we are focusing on existing 3D cell culture systems with integrated electrochemical sensing for potential applications in cancer models to advance diagnosis and treatment. We discuss their design, sensing principle, and application in the biomedical area to understand the potential relevance of miniaturized electrochemical hybrid systems for the next generation of diagnostic platforms for precision medicine.
Collapse
Affiliation(s)
- Micaela Oliveira
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (M.O.); (P.C.); (K.K.); (A.A.)
| | - Pedro Conceição
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (M.O.); (P.C.); (K.K.); (A.A.)
- Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Krishna Kant
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (M.O.); (P.C.); (K.K.); (A.A.)
| | - Alar Ainla
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (M.O.); (P.C.); (K.K.); (A.A.)
| | - Lorena Diéguez
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (M.O.); (P.C.); (K.K.); (A.A.)
| |
Collapse
|
20
|
Djisalov M, Knežić T, Podunavac I, Živojević K, Radonic V, Knežević NŽ, Bobrinetskiy I, Gadjanski I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. BIOLOGY 2021; 10:204. [PMID: 33803111 PMCID: PMC7998526 DOI: 10.3390/biology10030204] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.Dj.); (T.K.); (I.P.); (K.Ž.); (V.R.); (N.Ž.K.); (I.B.)
| |
Collapse
|
21
|
Why Is Batch Processing Still Dominating the Biologics Landscape? Towards an Integrated Continuous Bioprocessing Alternative. Processes (Basel) 2020. [DOI: 10.3390/pr8121641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Continuous manufacturing of biologics (biopharmaceuticals) has been an area of active research and development for many reasons, ranging from the demand for operational streamlining to the requirement of achieving obvious economic benefits. At the same time, biopharma strives to develop systems and concepts that can operate at similar scales for clinical and commercial production—using flexible infrastructures, such as single-use flow paths and small surge vessels. These developments should simplify technology transfer, reduce footprint and capital investment, and will allow to react readily to changing market pressures while maintaining quality attributes. Despite a number of clearly identified benefits compared to traditional batch processes, continuous bioprocessing is still not widely adopted for commercial manufacturing. This paper details how industry-specific technological, organizational, economic, and regulatory barriers that exist in biopharmaceutical manufacturing are hindering the adoption of continuous production processes. Based on this understanding, the roles of process systems engineering (PSE), process analytical technologies, and process modeling and simulation are highlighted as key enabling tools in overcoming these multi-faceted barriers in today’s manufacturing environment. Of course, we do recognize that there is also a need for a clear set of regulations to guide a transition of biologics manufacturing towards continuous processing. Furthermore, the role played by the emerging fields of process integration and automation as well as digitalization is explored, as these are the tools of the future to facilitate this transition from batch to continuous production. Finally, an outlook focusing on technology, management, and regulatory aspects is presented to identify key concerted efforts required to drive the broad adaptation of continuous manufacturing in biopharmaceutical processes.
Collapse
|
22
|
Towards smart biomanufacturing: a perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes. J Ind Microbiol Biotechnol 2020; 47:947-964. [PMID: 32895764 PMCID: PMC7695667 DOI: 10.1007/s10295-020-02308-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
The biomanufacturing industry has now the opportunity to upgrade its production processes to be in harmony with the latest industrial revolution. Technology creates capabilities that enable smart manufacturing while still complying with unfolding regulations. However, many biomanufacturing companies, especially in the biopharma sector, still have a long way to go to fully benefit from smart manufacturing as they first need to transition their current operations to an information-driven future. One of the most significant obstacles towards the implementation of smart biomanufacturing is the collection of large sets of relevant data. Therefore, in this work, we both summarize the advances that have been made to date with regards to the monitoring and control of bioprocesses, and highlight some of the key technologies that have the potential to contribute to gathering big data. Empowering the current biomanufacturing industry to transition to Industry 4.0 operations allows for improved productivity through information-driven automation, not only by developing infrastructure, but also by introducing more advanced monitoring and control strategies.
Collapse
|
23
|
Novel Carbon Dioxide-Based Method for Accurate Determination of pH and pCO2 in Mammalian Cell Culture Processes. Processes (Basel) 2020. [DOI: 10.3390/pr8050520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In mammalian cell culture, especially in pharmaceutical manufacturing, pH is a critical process parameter that has to be controlled as accurately as possible. Not only does pH directly affect cell culture performance, ensuring a comparable pH is also crucial for scaling and transfer of processes. A sample-based offline pH measurement is commonly used to ensure correct bioreactor pH probe signals after sterilization and as a detection measure for drifts of probe signals. However, the sample-based pH offline measurement does not necessarily deliver required accuracy. Offsets between bioreactor pH and sample pH heavily depend on equipment, local procedures and the offline measurement method that is used. This article adequately describes a novel, non-invasive method to determine pH and pCO2 in sterile bioreactors without the need to sample and measure offline. This method utilizes the chemical correlation between carbon dioxide in the gas phase, dissolved carbon dioxide, bicarbonate and dependent proton concentrations that directly affect the pH in carbonate buffered systems. The proposed carbon dioxide-based pH reference method thereby is able to accurately determine the true pH in the bioreactor without the need to sample. The proposed method is independent of scale and bioreactor configuration and does not depend on local procedures that may differ between sites, scales or operators. Applicability of the method for both stainless steel and single use bioreactors is shown. Furthermore, the very same principles are applicable for non-invasive, online pCO2 monitoring.
Collapse
|
24
|
Dahlmann K, Busse C, Aupert F, de Vries I, Marquard D, Solle D, Lammers F, Scheper T. Online monitoring of the cell-specific oxygen uptake rate with an in situ combi-sensor. Anal Bioanal Chem 2019; 412:2111-2121. [PMID: 31802179 DOI: 10.1007/s00216-019-02260-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 11/30/2022]
Abstract
In a biotechnological process, standard monitored process variables are pH, partial oxygen pressure (pO2), and temperature. These process variables are important, but they do not give any information about the metabolic activity of the cell. The ISICOM is an in situ combi-sensor that is measuring the cell-specific oxygen uptake rate (qOUR) online. This variable allows a qualitative judgement of metabolic cell activity. The measuring principle of the ISICOM is based on a volume element enclosed into a small measuring chamber. Inside the measuring chamber, the pO2 and the scattered light is measured. Within a defined measuring interval, the chamber closes, and the oxygen supply for the cells is interrupted. The decreasing oxygen concentration is recorded by the pO2 optode. This measuring principle, known as the dynamic method, determines the oxygen uptake rate (OUR). Together with the scattered light signal, the cell concentration is estimated and the qOUR is available online. The design of the ISICOM is focused on functionality, sterility, long-term stability, and response time behavior so the sensor can be used in bioprocesses. With the ISICOM, measurement of online and in situ measurement of the OUR is possible. The OUR and qOUR online measurement of an animal cell batch cultivation is demonstrated, with maximum values of OUR = 2.5 mmol L-1 h-1 and a qOUR = 9.5 pmol cell-1 day-1. Information about limitation of the primary and secondary substrate is derived by the monitoring of the metabolic cell activity of bacteria and yeast cultivation processes. This sensor contributes to a higher process understanding by offering an online view on to the cell behavior. In the sense of process analytical technology (PAT), this important information is needed for bioprocesses to realize a knowledge base process control.
Collapse
Affiliation(s)
- Katharina Dahlmann
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Christoph Busse
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Florian Aupert
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ingo de Vries
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Daniel Marquard
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Dörte Solle
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| | - Frank Lammers
- Sanofi, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Thomas Scheper
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| |
Collapse
|
25
|
Turick CE, Shimpalee S, Satjaritanun P, Weidner J, Greenway S. Convenient non-invasive electrochemical techniques to monitor microbial processes: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:8327-8338. [PMID: 31478059 PMCID: PMC6800409 DOI: 10.1007/s00253-019-10091-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022]
Abstract
Real-time electrochemical monitoring in bioprocesses is an improvement over existing systems because it is versatile and provides more information to the user than periodic measurements of cell density or metabolic activity. Real-time electrochemical monitoring provides the ability to monitor the physiological status of actively growing cells related to electron transfer activity and potential changes in the proton gradient of the cells. Voltammetric and amperometric techniques offer opportunities to monitor electron transfer reactions when electrogenic microbes are used in microbial fuel cells or bioelectrochemical synthesis. Impedance techniques provide the ability to monitor the physiological status of a wide range of microorganisms in conventional bioprocesses. Impedance techniques involve scanning a range of frequencies to define physiological activity in terms of equivalent electrical circuits, thereby enabling the use of computer modeling to evaluate specific growth parameters. Electrochemical monitoring of microbial activity has applications throughout the biotechnology industry for generating real-time data and offers the potential for automated process controls for specific bioprocesses.
Collapse
Affiliation(s)
- Charles E. Turick
- Savannah River National Laboratory, Environmental Science and Biotechnology, Aiken, SC USA
| | - Sirivatch Shimpalee
- Department of Chemical Engineering and Computing, University of South Carolina, 541 Main Street, Columbia, SC USA
| | - Pongsarun Satjaritanun
- Department of Chemical Engineering and Computing, University of South Carolina, 541 Main Street, Columbia, SC USA
| | - John Weidner
- Department of Chemical Engineering and Computing, University of South Carolina, 541 Main Street, Columbia, SC USA
| | - Scott Greenway
- Savannah River Consulting, 301 Gateway Drive, Aiken, SC USA
| |
Collapse
|
26
|
Potyrailo RA, Dieringer J, Cotero V, Lee Y, Go S, Schulmerich M, Malmquist G, Castan A, Gebauer K, Pizzi V. Label-free independent quantitation of viable and non-viable cells using a multivariable multi-resonant sensor. Bioelectrochemistry 2019; 125:97-104. [DOI: 10.1016/j.bioelechem.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
27
|
Junne S, Neubauer P. How scalable and suitable are single-use bioreactors? Curr Opin Biotechnol 2018; 53:240-247. [DOI: 10.1016/j.copbio.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/27/2023]
|