1
|
Puzanskiy RK, Kirpichnikova AA, Bogdanova EM, Prokopiev IA, Shavarda AL, Romanyuk DA, Vanisov SA, Yemelyanov VV, Shishova MF. From Division to Death: Metabolomic Analysis of Nicotiana tabacum BY-2 Cells Reveals the Complexity of Life in Batch Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3426. [PMID: 39683219 DOI: 10.3390/plants13233426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Tobacco BY-2 cell culture is one of the most widely used models in plant biology. The main advantage of BY-2 suspension cultures is the synchronization of cell development and the appearance of polar elongation. In batch culture, BY-2 cells passed through the lag, proliferation, elongation, and stationary phases. During this process, the composition of the growth medium changed dramatically. Sucrose was rapidly eliminated; hexose first accumulated and then depleted. The medium's pH initially decreased and then rose with aging. As a result of the crosstalk between the internal and external stimuli, cells pass through complicated systemic rearrangements, which cause metabolomic alterations. The early stages were characterized by high levels of amino acids and sterols, which could be interpreted as the result of synthetic activity. The most intense rearrangements occurred between the proliferation and active elongation stages, including repression of amino acid accumulation and up-regulation of sugar metabolism. Later stages were distinguished by higher levels of secondary metabolites, which may be a non-specific response to deteriorating conditions. Senescence was followed by some increase in fatty acids and sterols as well as amino acids, and probably led to self-destructive processes. A correlation analysis revealed relationships between metabolites' covariation, their biochemical ratio, and the growth phase.
Collapse
Affiliation(s)
- Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | | | - Ekaterina M Bogdanova
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ilya A Prokopiev
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Alexey L Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Center for Molecular and Cell Technologies, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Daria A Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Sergey A Vanisov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | | | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Tusé D, McNulty M, McDonald KA, Buchman LW. A review and outlook on expression of animal proteins in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426239. [PMID: 39239203 PMCID: PMC11374769 DOI: 10.3389/fpls.2024.1426239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
This review delves into the multifaceted technologies, benefits and considerations surrounding the expression of animal proteins in plants, emphasizing its potential role in advancing global nutrition, enhancing sustainability, while being mindful of the safety considerations. As the world's population continues to grow and is projected to reach 9 billion people by 2050, there is a growing need for alternative protein sources that can meet nutritional demands while minimizing environmental impact. Plant expression of animal proteins is a cutting-edge biotechnology approach that allows crops to produce proteins traditionally derived from animals, offering a sustainable and resource-efficient manner of producing these proteins that diversifies protein production and increases food security. In the United States, it will be important for there to be clear guidance in order for these technologies to reach consumers. As consumer demand for sustainable and alternative food sources rise, biotechnologies can offer economic opportunities, making this emerging technology a key player in the market landscape.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group, Sacramento, CA, United States
| | - Matthew McNulty
- Center for Cellular Agriculture, Tufts University, Medford, MA, United States
| | - Karen A McDonald
- Department of Chemical Engineering and Global Healthshare Initiative, University of California, Davis, Davis, CA, United States
| | - Leah W Buchman
- Biotechniology Innovation Organization, Agriculture and Environment, Washington, DC, United States
| |
Collapse
|
3
|
Murthy HN, Joseph KS, Paek KY, Park SY. Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites. Crit Rev Biotechnol 2024; 44:837-859. [PMID: 37500186 DOI: 10.1080/07388551.2023.2233690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, India
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
5
|
Dushina E, Popov S, Zlobin A, Martinson E, Paderin N, Vityazev F, Belova K, Litvinets S. Effect of Homogenized Callus Tissue on the Rheological and Mechanical Properties of 3D-Printed Food. Gels 2024; 10:42. [PMID: 38247765 PMCID: PMC10815391 DOI: 10.3390/gels10010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The aim of the study was to develop ink enriched with a high content of lupine callus tissue (CT) suitable for 3D printing. Printable ink obtained using mashed potatoes (20 g/100 mL) and a 3% agar solution was used as the parent CT-free ink (CT0). Viscosity increased from 9.6 to 75.4 kPa·s during the cooling of the CT0 ink from 50 to 20 °C, while the viscosity of the ink with 80 g/100 mL of CT (CT80) increased from 0.9 to 5.6 kPa·s under the same conditions. The inclusion of CT was shown to decrease the hardness of 3D-printed food gel from 0.32 ± 0.03 to 0.21 ± 0.03 N. The storage modulus G' value was 7.9 times lower in CT80 samples than in CT0 samples. The values of fracture stress for CT80 and CT0 inks were 1621 ± 711 and 13,241 ± 2329 Pa, respectively. The loss tangent and the limiting strain did not differ in CT0 and CT80, although the value of the fracture strain was 1.6 times higher in the latter. Thus, the present study demonstrates that CT may be added to printing ink in order to enhance food with plant cell material and enable the 3D printing of specially shaped foods.
Collapse
Affiliation(s)
- Elena Dushina
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Andrey Zlobin
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Ekaterina Martinson
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Nikita Paderin
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50, Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (F.V.)
| | - Kseniya Belova
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| | - Sergey Litvinets
- Institute of Biology and Biotechnology, Vyatka State University, 36, Moskovskaya Str., 610000 Kirov, Russia; (E.D.); (A.Z.); (E.M.); (K.B.); (S.L.)
| |
Collapse
|
6
|
Zuzarte M, Salgueiro L, Canhoto J. Plant Tissue Culture: Industrial Relevance and Future Directions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:1-15. [PMID: 38796640 DOI: 10.1007/10_2024_254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Plant tissue culture has evolved in the last decades with several types of cultures being developed to promote a more sustainable food production system. Moreover, these cultures can be applied for the production of relevant metabolites with medicinal potential, thus contributing to nutrition and healthcare. Importantly, plant micropropagation has enabled agricultural expansion and tissue culture has emerged as a promising production alternative for several plants and their metabolites in the food, cosmetic, and pharmaceutical industries. Plant tissue cultures present several advantages over conventional propagation techniques as they are season independent, enabling a continuous supply of the plants/compounds of interest, with the guarantee of high phytosanitary quality. In addition, genetic uniformity is generally maintained, thus reducing chemical variability that can compromise safety and efficacy. Nevertheless, despite their undeniable potential, with many researchers focusing on new strategies to improve production yield in cell cultures, such as with the use of elicitors or resorting to metabolomics engineering, an effective and lucrative large-scale production has yet to be obtained. Indeed, only a few compounds with market value are produced in this regard and several limitations such as contaminations, low culture yield and production costs still need to be overcome in order to take advantage of the full potential of these techniques.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal.
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Maschke RW, Seidel S, Rossi L, Eibl D, Eibl R. Disposable Bioreactors Used in Process Development and Production Processes with Plant Cell and Tissue Cultures. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:119-144. [PMID: 38538838 DOI: 10.1007/10_2024_249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The bioreactor is the centerpiece of the upstream processing in any biotechnological production process. Its design, the cultivation parameters, the production cell line, and the culture medium all have a major influence on the efficiency of the process and the result of the cultivation. Disposable bioreactors have been used for the past 20 years, playing a major role in process development and commercial production of high-value substances at medium scales.Our review deals with scalable, disposable bioreactors that have proven to be useful for the cultivation of plant cell and tissue cultures. Based on the definitions of terms and a categorization approach, the most commonly used, commercially available, disposable bioreactor types are presented below. The focus is on wave-mixed, stirred, and orbitally shaken bioreactors. In addition to their instrumentation and bioengineering characteristics, cultivation results are discussed, and emerging trends for the development of disposable bioreactors for plant cell and tissue cultures are also addressed.
Collapse
Affiliation(s)
- Rüdiger W Maschke
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Stefan Seidel
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland.
| | - Lia Rossi
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Dieter Eibl
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Regine Eibl
- ZHAW Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| |
Collapse
|
8
|
Martinez AA, Panuska C, Kurina-Sanz M, Rinaldoni AN, Orden AA. Undifferentiated Cells of Tessaria absinthioides with High Nutritional Value and Health-Promoting Phytochemicals. An Approach Based on Plant Cellular Agriculture. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:742-747. [PMID: 37737926 DOI: 10.1007/s11130-023-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
In vitro cultures of undifferentiated plant cells of Tessaria absinthioides, a native herb popularly recognized and used for its health benefits, were studied as potential food supplements. These tissues were incubated under two light conditions, and the biomass obtained was freeze-dried and oven-dried. To evaluate their nutritional value, their physicochemical and functional properties were determined. Although in some cases there were significant differences in the results according to the drying methodology applied, all these tissues presented a high proportion of proteins (23.6-28.3%), a low percentage of fats (< 2%) constituted mainly by phytosterols, and a significant amount of crude fibers (6.9-9.0%) and ashes (> 10%). In addition, the freeze-dried calli resulted in a product with better functional properties. On the other hand, their phytochemical profiles and antioxidant capacity were studied and compared with tissues from wild specimens and with green tea and chamomile as reference extracts.
Collapse
Affiliation(s)
- Antares A Martinez
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700ANW, San Luis, Argentina
| | - Camila Panuska
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700ANW, San Luis, Argentina
| | - Marcela Kurina-Sanz
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700ANW, San Luis, Argentina
| | - Ana N Rinaldoni
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700ANW, San Luis, Argentina.
| | - Alejandro A Orden
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700ANW, San Luis, Argentina.
| |
Collapse
|
9
|
Malarz J, Yudina YV, Stojakowska A. Hairy Root Cultures as a Source of Phenolic Antioxidants: Simple Phenolics, Phenolic Acids, Phenylethanoids, and Hydroxycinnamates. Int J Mol Sci 2023; 24:ijms24086920. [PMID: 37108084 PMCID: PMC10138958 DOI: 10.3390/ijms24086920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived antioxidants are intrinsic components of human diet and factors implicated in tolerance mechanisms against environmental stresses in both plants and humans. They are being used as food preservatives and additives or ingredients of cosmetics. For nearly forty years, Rhizobium rhizogenes-transformed roots (hairy roots) have been studied in respect to their usability as producers of plant specialized metabolites of different, primarily medical applications. Moreover, the hairy root cultures have proven their value as a tool in crop plant improvement and in plant secondary metabolism investigations. Though cultivated plants remain a major source of plant polyphenolics of economic importance, the decline in biodiversity caused by climate changes and overexploitation of natural resources may increase the interest in hairy roots as a productive and renewable source of biologically active compounds. The present review examines hairy roots as efficient producers of simple phenolics, phenylethanoids, and hydroxycinnamates of plant origin and summarizes efforts to maximize the product yield. Attempts to use Rhizobium rhizogenes-mediated genetic transformation for inducing enhanced production of the plant phenolics/polyphenolics in crop plants are also mentioned.
Collapse
Affiliation(s)
- Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| | - Yulia V Yudina
- Educational and Scientific Medical Institute, National Technical University "Kharkiv Polytechnic Institute", Kyrpychova Street 2, 61002 Kharkiv, Ukraine
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
10
|
Enrichment of 3D-Printed k-Carrageenan Food Gel with Callus Tissue of Narrow-Leaved Lupin Lupinus angustifolius. Gels 2023; 9:gels9010045. [PMID: 36661811 PMCID: PMC9857940 DOI: 10.3390/gels9010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of the study is to develop and evaluate the printability of k-carrageenan inks enriched with callus tissue of lupin (L. angustifolius) and to determine the effect of two lupin calluses (LA14 and LA16) on the texture and digestibility of 3D-printed gel. The results demonstrated that the enriched ink was successfully 3D printed at concentrations of 33 and 50 g/100 mL of LA14 callus and 33 g/100 mL of LA16 callus. The feasibility of 3D printing is extremely reduced at higher concentrations of callus material in the ink. The hardness, cohesiveness, and gumminess of the 3D-printed gel with LA16 callus were weakened compared to the gel with LA14 callus. The results of rheological measurements showed that an increase in the content of LA16 callus interfered with the formation of a k-carrageenan gel network, while LA14 callus strengthened the k-carrageenan gel with increasing concentration. Gel samples at different concentrations of LA14 and LA16 calluses formed a spongy network structure, but the number of pores decreased, and their size increased, when the volume fraction occupied by LA14 and LA16 calluses increased. Simple polysaccharides, galacturonic acid residues, and phenolic compounds (PCs) were released from A-FP gels after sequential in vivo oral and in vitro gastrointestinal digestion. PCs were released predominantly in the simulated intestinal and colonic fluids. Thus, incorporating lupin callus into the hydrocolloid ink for food 3D printing can be a promising approach to developing a gelling material with new mechanical, rheological, and functional properties.
Collapse
|
11
|
Seidel S, Maschke RW, Kraume M, Eibl R, Eibl D. CFD modelling of a wave-mixed bioreactor with complex geometry and two degrees of freedom motion. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1021416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Optimizing bioprocesses requires an in-depth understanding, from a bioengineering perspective, of the cultivation systems used. A bioengineering characterization is typically performed via experimental or numerical methods, which are particularly well-established for stirred bioreactors. For unstirred, non-rigid systems such as wave-mixed bioreactors, numerical methods prove to be problematic, as often only simplified geometries and motions can be assumed. In this work, a general approach for the numerical characterization of non-stirred cultivation systems is demonstrated using the CELL-tainer bioreactor with two degree of freedom motion as an example. In a first step, the motion is recorded via motion capturing, and a 3D model of the culture bag geometry is generated via 3D-scanning. Subsequently, the bioreactor is characterized with respect to mixing time, and oxygen transfer rate, as well as specific power input and temporal Kolmogorov length scale distribution. The results demonstrate that the CELL-tainer with two degrees of freedom outperforms classic wave-mixed bioreactors in terms of oxygen transport. In addition, it was shown that in the cell culture version of the CELL-tainer, the critical Kolmogorov length is not surpassed in any simulation.
Collapse
|
12
|
Schirmer C, Eibl R, Maschke RW, Mozaffari F, Junne S, Daumke R, Ottinger M, Göhmann R, Ott C, Wenk I, Kubischik J, Eibl D. Single‐use Technology for the Production of Cellular Agricultural Products: Where are We Today? CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cedric Schirmer
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| | - Regine Eibl
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| | - Rüdiger W. Maschke
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| | - Fruhar Mozaffari
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| | - Stefan Junne
- Technische Universität Berlin Bioprocess Engineering Ackerstraße 76 13355 Berlin Germany
| | - Ralph Daumke
- PendoTECH/Mettler Toledo GmbH MTPRO Im Hackacker 15 8902 Urdorf Switzerland
| | - Melanie Ottinger
- Thermo Fisher Scientific Bioproduction Single Use Division, Unit 9 Atley Way NE23 1WA Cramlington United Kingdom
| | - Rüdiger Göhmann
- GEA Westfalia Separator Group GmbH Product Management Pharma/Chemicals Werner-Habig-Straße 1 59302 Oelde Germany
| | - Christian Ott
- Schott AG Biotech Christoph-Dorner-Straße 29 84028 Landshut Germany
| | - Irina Wenk
- Thermo Fisher Scientific Bioproduction Single Use Division, Unit 9 Atley Way NE23 1WA Cramlington United Kingdom
| | - Jens Kubischik
- Thermo Fisher Scientific Biosciences Division Frankfurter Straße 129b 64293 Darmstadt Germany
| | - Dieter Eibl
- ZHAW Zurich University of Applied Sciences School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology Campus Grüental 8820 Wädenswil Switzerland
| |
Collapse
|
13
|
Kärkkäinen E, Aisala H, Rischer H, Sozer N. Formation and analysis of structured solid foam patties based on crosslinked plant cell suspension cultures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Abdulhafiz F. Plant Cell Culture Technologies: A promising alternatives to Produce High-Value Secondary Metabolites. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Kobayashi Y, Kärkkäinen E, Häkkinen ST, Nohynek L, Ritala A, Rischer H, Tuomisto HL. Life cycle assessment of plant cell cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151990. [PMID: 34843779 DOI: 10.1016/j.scitotenv.2021.151990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
A novel food such as plant cell culture (PCC) is an important complementary asset for traditional agriculture to tackle global food insecurity. To evaluate environmental impacts of PCC, a life cycle assessment was applied to tobacco bright yellow-2 and cloudberry PCCs. Global warming potential (GWP), freshwater eutrophication potential (FEUP), marine eutrophication potential, terrestrial acidification potential (TAP), stratospheric ozone depletion, water consumption and land use were assessed. The results showed particularly high contributions (82-93%) of electricity consumption to GWP, FEUP and TAP. Sensitivity analysis indicated that using wind energy instead of the average Finnish electricity mix reduced the environmental impacts by 34-81%. Enhancement in the energy efficiency of bioreactor mixing processes and reduction in cultivation time also effectively improved the environmental performance (4-47% reduction of impacts). In comparison with other novel foods, the environmental impacts of the PCC products studied were mostly comparable to those of microalgae products but higher than those of microbial protein products produced by autotrophic hydrogen-oxidizing bacteria. Assayed fresh PCC products were similar or close to GWP of conventionally grown food products and, with technological advancements, can be highly competitive.
Collapse
Affiliation(s)
- Yumi Kobayashi
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 4, 00014 University of Helsinki, Finland
| | - Elviira Kärkkäinen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Suvi T Häkkinen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland.
| | - Hanna L Tuomisto
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 4, 00014 University of Helsinki, Finland; Natural Resources Institute Finland, P.O. Box 2, 00790 Helsinki, Finland
| |
Collapse
|
16
|
Dou J, Weathers P. Specialty molecules from plants and in vitro cultures as new drugs: regulatory considerations from flask to patient. PLANT CELL, TISSUE AND ORGAN CULTURE 2022; 149:105-111. [PMID: 35345535 PMCID: PMC8942155 DOI: 10.1007/s11240-022-02287-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 05/13/2023]
Abstract
Few therapeutic specialty molecules from in vitro cultures beyond paclitaxel have come to market and although other more complex products like ginseng have also appeared, success has been limited. Often it is not the science that is limiting, but rather regulatory issues that limit considerations of potential products mainly because of costs in getting the product to market. Here we discuss broader thinking of such specialty molecules in the form of dietary supplements, nutraceuticals, herbal medicines, botanical drugs, and pure molecules along with potential complex products from a regulatory standpoint and especially within the realm of approved botanical drugs, e.g., Veregen and Fulyzaq, that have new drug applications (NDAs). The United States food and drug administration (US FDA) regulatory categories are used to provide examples of alternative product options that could prove useful for taking specialty molecules to market.
Collapse
Affiliation(s)
- Jinhui Dou
- Jiangsu Tripod Preclinical Research Laboratories Co. LTD, Nanjing, China
| | - Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 USA
| |
Collapse
|
17
|
Wikandari R, Manikharda, Baldermann S, Ningrum A, Taherzadeh MJ. Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security. Bioengineered 2021; 12:11305-11330. [PMID: 34779353 PMCID: PMC8810126 DOI: 10.1080/21655979.2021.2003665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The growing population and the climate changes put a pressure on food production globally, therefore a fundamental transformation of food production is required. One approach to accelerate food production is application of modern biotechnology such as cell culture, marker assisted selection, and genetic engineering. Cell culture technology reduces the usage of arable land, while marker-assisted selection increases the genetic gain of crop breeding and genetic engineering enable to introduce a desired traits to crop. The cell culture technology has resulted in development of cultured meat, fungal biomass food (mycoprotein), and bioactive compounds from plant cell culture. Except cultured meat which recently begin to penetrate the market, the other products have been in the market for years. The marker-assisted selection and genetic engineering have contributed significantly to increase the resiliency against emerging pests and abiotic stresses. This review addresses diverse techniques of cell culture technology as well as advanced genetic engineering technology CRISPR Cas-9 and its application for crop improvement. The pros and cons of different techniques as well as the challenges and future perspective of application of modern biotechnology for strengthening food security are also discussed.
Collapse
Affiliation(s)
- Rachma Wikandari
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Manikharda
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Susanne Baldermann
- Faculty of Life Science, Food Nutrition and Health, Food Metabolome, Universitat Bayreuth, Kulmbach, 95326, Germany
- Food4Future (F4F), Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg1, Grossbeeren, Germany
| | - Andriati Ningrum
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
18
|
Negri S, Gambini S, Ceoldo S, Avesani L, Commisso M, Guzzo F. Undifferentiated In Vitro Cultured Actinidia deliciosa as Cell Factory for the Production of Quercetin Glycosides. PLANTS 2021; 10:plants10112499. [PMID: 34834864 PMCID: PMC8622025 DOI: 10.3390/plants10112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022]
Abstract
Land plants produce a vast arsenal of specialized metabolites and many of them display interesting bioactivities in humans. Recently, flavonol quercetin gained great attention in the light of the COVID-19 pandemic because, in addition to the anti-inflammatory, antiviral and anti-cancer activity already described, it emerged as possible inhibitor of 3CLpro, the major protease of SARS-CoV-2 virus. Plant cell and tissue culture (PCTC) is an attractive platform for the biotechnological production of plant metabolites. This technology allows a large amount of water and agricultural land to be saved and, being free of contaminants in the process, it is suitable for scaling up the production in bioreactors. In a project aimed to generate and screen in vitro plant cells for the production of valuable specialized metabolites for commercial production, we generated various cell lines from Actinidia deliciosa (kiwi fruit tree) and Actinidia chinensis (gold kiwi fruit tree), that were able to produce relevant amounts of quercetin derivatives, mainly quercetin glycosides. Three cell lines from A. deliciosa were characterized by targeted and untargeted metabolomics. In standard growing conditions, they produce and accumulate up to 13.26 mg/100 g fresh weight (419.76 mg/100 g dry weight) of quercetin derivatives. To address future industrial applications, these cell lines should be entered into an acceleration program to further increase the amount of these metabolites by optimizing the culture conditions and elicitation.
Collapse
|