1
|
He C, Zhang H, Chen X, Diao R, Sun J, Mao X. Novel reaction systems for catalytic synthesis of structured phospholipids. Appl Microbiol Biotechnol 2024; 108:1. [PMID: 38153551 DOI: 10.1007/s00253-023-12913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 12/29/2023]
Abstract
Phospholipids are distinctive, adaptable molecules that are crucial to numerous biological systems. Additionally, their various architectures and amphiphilic characteristics support their unrivaled crucial functions in scientific and industrial applications. Due to their enormous potential for use in the fields of medicine, food, cosmetics, and health, structured phospholipids, which are modified phospholipids, have garnered increased attention. Traditional extraction methods, however, are pricy, resource-intensive, and low-yielding. The process of enzyme-catalyzed conversion is effective for producing several types of structured phospholipase. However, most frequently employed catalytic procedures involve biphasic systems with organic solvents, which have a relatively large mass transfer resistance and are susceptible to solvent residues and environmental effects due to the hydrophobic nature of phospholipids. Therefore, the adoption of innovative, successful, and environmentally friendly enzyme-catalyzed conversion systems provides a new development route in the field of structured phospholipids processing. Several innovative catalytic reaction systems are discussed in this mini-review, including aqueous-solid system, mixed micelle system, water-in-oil microemulsion system, Pickering emulsion system, novel solvent system, three-liquid-phase system, and supercritical carbon dioxide solvent system. However, there is still a glaring need for a thorough examination of these systems for the enzymatic synthesis of structural phospholipids. In terms of the materials utilized, applicability, benefits and drawbacks, and comparative effectiveness of each system, this research establishes further conditions for the system's selection. To create more effective biocatalytic processes, it is still important to build green biocatalytic processes with improved performance. KEY POINTS: • The latest catalytic systems of phospholipase D are thoroughly summarized. • The various systems are contrasted, and their traits are enumerated. • Different catalytic systems' areas of applicability and limitations are discussed.
Collapse
Affiliation(s)
- Chenxi He
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Xi Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Rujing Diao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China.
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China.
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Gao Y, Ding Z, Liu Y, Xu YJ. Advances in encapsulation systems of Antarctic krill oil: From extraction to encapsulation, and future direction. Compr Rev Food Sci Food Saf 2024; 23:e13332. [PMID: 38578167 DOI: 10.1111/1541-4337.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.
Collapse
Affiliation(s)
- Yuhang Gao
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Effects of carboxymethyl chitosan adsorption on bioactive components of Antarctic krill oil. Food Chem 2022; 388:132995. [PMID: 35453014 DOI: 10.1016/j.foodchem.2022.132995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 01/03/2023]
Abstract
High acid value (AV) and fluorine content of Antarctic krill oil (AKO) extracted from frozen krill by ethanol limit its product development. In this study, a method was proposed to reduce the AV and fluorine content of AKO by carboxymethyl chitosan (CMCS) adsorption. The optimal adsorption condition was 12.5% (w/v) of CMCS at 30℃ for 15 min. At this condition, AV and fluorine content decreased by 78.0% and 61.4%, respectively. It is interesting that CMCS adsorption showed specificity to particular substances. Although free fatty acids content showed a significant reduction, free EPA and DHA, phospholipid and astaxanthin remained almost constant. Moreover, CMCS adsorption showed no influence on neuroprotective activity of AKO against H2O2-induced neuro-damage of PC12 cells. The reclaimed CMCS showed an undiminished antimicrobial activity against both Gram-positive and Gram-negative bacteria. The CMCS adsorption shows a potential development for refining AKO and other oils in food industry.
Collapse
|