1
|
Ehtiati S, Naeeni B, Qeysouri B, Heidarian E, Azmon M, Ahmadzade R, Movahedpour A, Kazemi F, Motamedzadeh A, Khatami SH. Electrochemical biosensors in early leukemia detection. Clin Chim Acta 2024; 562:119871. [PMID: 39009333 DOI: 10.1016/j.cca.2024.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Leukemia, a type of blood cancer marked by an abnormal increase in white blood cells, poses a significant challenge to healthcare. The key to successful treatment lies in early detection. However, traditional methods often fall short. This review investigates the potential of electrochemical biosensors for a more accurate and earlier diagnosis of leukemia. Electrochemical biosensors are compact devices that transform biological interactions into electrical signals. Their small size, ease of use, and minimal sample requirements make them perfectly suited for point-of-care applications. Their remarkable sensitivity and specificity enable the detection of subtle biomolecular changes associated with leukemia, which is crucial for early disease detection. This review delves into studies that have utilized these biosensors to identify various types of leukemia. It examines the roles of electrodes, biorecognition elements, and signal transduction mechanisms. The discussion includes the integration of nanomaterials such as gold nanoparticles and nitrogen-doped graphene into biosensor design. These materials boost sensitivity, enhance signal amplification, and facilitate multi-analyte detection, thereby providing a more holistic view of the disease. Beyond technical advancements, the review underscores the practical benefits of these biosensors. Their portability makes them a promising tool for resource-constrained settings, enabling swift diagnosis in remote areas or at a patient's bedside. The potential for monitoring treatment effectiveness and detecting minimal residual disease to prevent relapse is also explored. This review emphasizes the transformative potential of electrochemical biosensors in combating leukemia. By facilitating earlier and more accurate diagnosis, these biosensors stand to revolutionize patient care and enhance treatment outcomes.
Collapse
Affiliation(s)
- Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Naeeni
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Qeysouri
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Heidarian
- Department of Clinical Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ahmadzade
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Kazemi
- Metabolic Diseases Research Center, Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Khosropour H, Keramat M, Tasca F, Laiwattanapaisal W. A comprehensive review of the application of Zr-based metal-organic frameworks for electrochemical sensors and biosensors. Mikrochim Acta 2024; 191:449. [PMID: 38967877 DOI: 10.1007/s00604-024-06515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
A family of inorganic-organic hybrid crystalline materials made up of organic ligands and metal cations or clusters is known as metal-organic frameworks (MOFs). Because of their unique stability, intriguing characteristics, and structural diversity, zirconium-based MOFs (Zr-MOFs) are regarded as one of the most interesting families of MOF materials for real-world applications. Zr-MOFs that have the ligands, metal nodes, and guest molecules enclosed show distinct electrochemical reactions. They can successfully and sensitively identify a wide range of substances, which is important for both environmental preservation and human health. The rational design and synthesis of Zr-MOF electrochemical sensors and biosensors, as well as their applications in the detection of drugs, biomarkers, pesticides, food additives, hydrogen peroxide, and other materials, are the main topics of this comprehensive review. We also touch on the current issues and potential future paths for Zr-MOF electrochemical sensor research.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Mansoureh Keramat
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Federico Tasca
- Faculty of Chemistry and Biology, Department of Materials Chemistry, University of Santiago of Chile, Av. Libertador Bernardo ÓHiggins 3363, Estacion Central, 8320000, Santiago, Chile
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Pourmadadi M, Aghababaei N, Abdouss M. Photocatalytic activation of peroxydisulfate by UV-LED through rGO/g-C 3N 4/SiO 2 nanocomposite for ciprofloxacin removal: Mineralization, toxicity, degradation pathways, and application for real matrix. CHEMOSPHERE 2024; 359:142374. [PMID: 38763393 DOI: 10.1016/j.chemosphere.2024.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
If trace amounts of antibiotics remain in the environment, they can lead to microbial pathogens becoming resistant to antibiotics and putting ecosystem health at risk. For instance, ciprofloxacin (CIP) can be found in surface and ground waters, suggesting that conventional water treatment technologies are ineffective at removing it. Now, a rGO/g-C3N4/SiO2 nanocomposite was synthesized in this study to activate peroxydisulfate (PDS) under UVA-LED irradiation. UVA-LED/rGO-g-C3N4-SiO2/PDS system performance was evaluated using Ciprofloxacin as an antibiotic. Particularly, rGO/g-C3N4/SiO2 showed superior catalytic activity for PDS activation to remove CIP. Operational variables, reactive species determination, and mechanisms were investigated. 0.85 mM PDS and 0.3 g/L rGO/g-C3N4/SiO2 eliminated 99.63% of CIP in 35 min and mineralized 59.78% in 100 min at pH = 6.18. By scavenging free radicals, bicarbonate ions inhibit CIP degradation. According to the trapping experiments, superoxide (O2•-) was the main active species rather than sulfate (SO4•-) and hydroxyl radicals (•OH). RGO/g-C3N4/SiO2 showed an excellent recyclable capability of up to six cycles. The UVA-LED/rGO-g-C3N4-SiO2/PDS system was also tested under real conditions. The system efficiency was reasonable. By calculating the synergistic factor (SF), this work highlights the benefit of combining composite, UVA-LED, and PDS. UVA-LED/rGO-g-C3N4-SiO2/PDS had also been predicted to be an eco-friendly process based on the results of the ECOSAR program. Consequently, this study provides a novel and durable nanocomposite with supreme thermal stability that effectively mitigates environmental contamination by eliminating antibiotics from wastewater.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC, 1983963113, Iran
| | - Nafiseh Aghababaei
- Department of Chemical Engineering, Tafresh University, Tafresh, 39518 79611, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, 15875-4413, Tehran, Iran.
| |
Collapse
|
4
|
Shin M, Lim J, Park Y, Lee JY, Yoon J, Choi JW. Carbon-based nanocomposites for biomedical applications. RSC Adv 2024; 14:7142-7156. [PMID: 38419681 PMCID: PMC10900039 DOI: 10.1039/d3ra08946k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Carbon nanomaterials have attracted significant attention in the biomedical field, including for biosensing, drug delivery, and tissue engineering applications. Based on their inherent properties such as their unique structure and high conductivity, carbon nanomaterials can overcome the current limitations in biomedical research such as poor stability of biomolecules, low sensitivity and selectivity of biosensors, and difficulty in precise drug delivery. In addition, recently, several novel nanomaterials have been integrated with carbon nanomaterials to develop carbon-based nanocomposites for application in biomedical research. In this review, we discuss recent studies on carbon-based nanocomposites and their biomedical applications. First, we discuss the representative carbon nanomaterials and nanocomposites composed of carbon and other novel nanomaterials. Next, applications of carbon nanomaterials and nanocomposites in the biomedical field are discussed according to topics in the biomedical field. We have discussed the recent studies on biosensors, drug delivery, and tissue engineering. In conclusion, we believe that this review provides the potential and applicability of carbon nanomaterials and their nanocomposites and suggests future directions of the application of carbon-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Yongseon Park
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| |
Collapse
|
5
|
Janani G, Girigoswami A, Girigoswami K. Advantages of nanomedicine over the conventional treatment in Acute myeloid leukemia. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:415-441. [PMID: 38113194 DOI: 10.1080/09205063.2023.2294541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Leukemia is a cancer of blood cells that mainly affects the white blood cells. In acute myeloid leukemia (AML) sudden growth of cancerous cells occurs in blood and bone marrow, and it disrupts normal blood cell production. Most patients are asymptomatic, but it spreads rapidly and can become fatal if left untreated. AML is the prevalent form of leukemia in children. Risk factors of AML include chemical exposure, radiation, genetics, etc. Conventional diagnostic methods of AML are complete blood count tests and bone marrow aspiration, while conventional treatment methods involve chemotherapy, radiation therapy, and bone marrow transplant. There is a risk of cancer cells spreading progressively to the other organs if left untreated, and hence, early diagnosis is required. The conventional diagnostic methods are time- consuming and have drawbacks like harmful side effects and recurrence of the disease. To overcome these difficulties, nanoparticles are employed in treating and diagnosing AML. These nanoparticles can be surface- modified and can be used against cancer cells. Due to their enhanced permeability effect and high surface-to-volume ratio they will be able to reach the tumour site which cannot be reached by traditional drugs. This review article talks about how nanotechnology is more advantageous over the traditional methods in the treatment and diagnosis of AML.
Collapse
Affiliation(s)
- Gopalarethinam Janani
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Mashhadian A, Jian R, Tian S, Wu S, Xiong G. An Overview of Electrochemical Sensors Based on Transition Metal Carbides and Oxides: Synthesis and Applications. MICROMACHINES 2023; 15:42. [PMID: 38258161 PMCID: PMC10819441 DOI: 10.3390/mi15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Sensors play vital roles in industry and healthcare due to the significance of controlling the presence of different substances in industrial processes, human organs, and the environment. Electrochemical sensors have gained more attention recently than conventional sensors, including optical fibers, chromatography devices, and chemiresistors, due to their better versatility, higher sensitivity and selectivity, and lower complexity. Herein, we review transition metal carbides (TMCs) and transition metal oxides (TMOs) as outstanding materials for electrochemical sensors. We navigate through the fabrication processes of TMCs and TMOs and reveal the relationships among their synthesis processes, morphological structures, and sensing performance. The state-of-the-art biological, gas, and hydrogen peroxide electrochemical sensors based on TMCs and TMOs are reviewed, and potential challenges in the field are suggested. This review can help others to understand recent advancements in electrochemical sensors based on transition metal oxides and carbides.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| |
Collapse
|
7
|
Pourmadadi M, Tajiki A, Abdouss M. A green approach for preparation of polyacrylic acid/starch incorporated with titanium dioxide nanocomposite as a biocompatible platform for curcumin delivery to breast cancer cells. Int J Biol Macromol 2023; 242:124785. [PMID: 37169052 DOI: 10.1016/j.ijbiomac.2023.124785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Curcumin (Cur) is a polyphenolic hydrophobic molecule with several biological uses, including cancer therapy. However, its widespread use in cancer treatment faces limitations due to its low solubility in acidic and neutral conditions, rapid removal from the circulatory system, and poor bioavailability. In order to overcome these challenges, a biocompatible and pH-sensitive carrier nanoplatform was designed for the specific delivery of curcumin to breast cancer cells. This nanocomposite containing polyacrylic acid (PAA), starch, and titanium dioxide (TiO2) was synthesized with a specific morphology through the water-in-oil-in-water green emulsification strategy. The nanocomposite structure was confirmed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and field-emission scanning electrom microscopy (FE-SEM) imaging tests. The mean particle size of 151 nm for the PAA-Starch-TiO2 nanocomposite ensures specific entry into cancer cells and minimal damage to healthy cells. Loading efficiency (LE) and encapsulation efficiency (EE) for curcumin obtained 49.50 % and 87.25 %, which are desirable for a carrier nanoplatform. Compared to the physiological medium, the in-vitro release of curcumin was higher in the acidic conditions in all time intervals, which indicates the possibility of targeted drug release from the PAA-Starch-TiO2 nanocomposite around the tumor tissue. Furthermore, for better understanding of the release mechanism, the cumulative release data in both media were fitted with common mathematical kinetic models. Cytotoxicity tests against the MCF-7 cell line were performed using in vitro MTT and flow cytometry tests. The results showed that the PAA-Starch-TiO2 carrying Cur was more effective through increasing the bioavailability and controlled release of the drug compared to the free Cur. Also, the death of cancer cells in the presence of this nanocomposite compared to free Cur occurred mainly through the induction of apoptosis, which indicates the programmed death of cancer cells and the high efficiency of the designed nanocarrier.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Tajiki
- Chemistry Department, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Majid Abdouss
- Chemistry Department, Amirkabir University of Technology, Tehran 1591634311, Iran.
| |
Collapse
|
8
|
Wang Y, Yang Y, Zheng X, Shi J, Zhong L, Duan X, Zhu Y. Application of iron oxide nanoparticles in the diagnosis and treatment of leukemia. Front Pharmacol 2023; 14:1177068. [PMID: 37063276 PMCID: PMC10097929 DOI: 10.3389/fphar.2023.1177068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Leukemia is a malignancy initiated by uncontrolled proliferation of hematopoietic stem cell from the B and T lineages, resulting in destruction of hematopoietic system. The conventional leukemia treatments induce severe toxic and a long series of unwanted side-effects which are caused by lack of specificity of anti-leukemic drugs. Recently, nanotechnology have shown tremendous application and clinical impact with respect to diagnosis and treatment of leukemia. According to considerable researches in the context of finding new nanotechnological platform, iron oxide nanoparticles have been gained increasing attention for the leukemia patients use. In this review, a short introduction of leukemia is described followed by the evaluation of the current approaches of iron oxide nanoparticles applied in the leukemia detection and treatment. The enormous advantages of iron oxide nanoparticles for leukemia have been discussed, which consist of the detection of magnetic resonance imaging (MRI) as efficient contrast agents, magnetic biosensors and targeted delivery of anti-leukemia drugs by coating different targeting moieties. In addition, this paper will briefly describe the application of iron oxide nanoparticles in the combined treatment of leukemia. Finally, the shortcomings of the current applications of iron-based nanoparticles in leukemia diagnosis and treatment will be discussed in particular.
Collapse
|
9
|
Pourmadadi M, Ahmadi M, Yazdian F. Synthesis of a novel pH-responsive Fe 3O 4/chitosan/agarose double nanoemulsion as a promising Nanocarrier with sustained release of curcumin to treat MCF-7 cell line. Int J Biol Macromol 2023; 235:123786. [PMID: 36828092 DOI: 10.1016/j.ijbiomac.2023.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Nanotechnology, using drug carriers, has gained remarkable achievements in treating cancer by inhibiting the adverse effects of traditional therapeutic methods, such as applying curcumin. Using chitosan could help to target tumors, without harming healthy cells. Also, magnetic iron oxide provides a high specific area to increase the capability of the nano-scale vehicle to load curcumin. A double emulsion hydrogel of Fe3O4/chitosan/agarose was synthesized and curcumin was loaded with loading and entrapment efficacies of 48.25 % and 87.5 %, respectively. The crystalline nature of the nanocomposites was confirmed by X-ray diffraction, and Fourier transforms spectroscopy investigated the functional groups of the components. The results of DLS and zeta potential showed proper particle size and surface charge, which are important for making the EPR effect and stability of the developed drug delivery system. The release profile of curcumin from the nanocarrier presented a sustained and pH-responsive release, avoiding overdosage and decreasing side effects. The best kinetic model that the release data could be fitted on was Hixon-Crowell. Finally, from the cytotoxicity of the prepared nanocomposite, it was concluded that the nanocarrier is biocompatible, and from flow cytometry analysis, a high apoptosis percentage proved that the effect of the designed drug delivery system on MCF-7 cell lines is programmed. Hence, this curcumin-loaded double emulsion could mitigate cancer therapy restrictions, with a minimum toxic effect on cultured cells.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran.
| |
Collapse
|
10
|
Gharehzadehshirazi A, Zarejousheghani M, Falahi S, Joseph Y, Rahimi P. Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics. SENSORS (BASEL, SWITZERLAND) 2023; 23:1482. [PMID: 36772521 PMCID: PMC9919359 DOI: 10.3390/s23031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 05/11/2023]
Abstract
Although tremendous progress has been made in treating childhood cancer, it is still one of the leading causes of death in children worldwide. Because cancer symptoms overlap with those of other diseases, it is difficult to predict a tumor early enough, which causes cancers in children to be more aggressive and progress more rapidly than in adults. Therefore, early and accurate detection methods are urgently needed to effectively treat children with cancer therapy. Identification and detection of cancer biomarkers serve as non-invasive tools for early cancer screening, prevention, and treatment. Biosensors have emerged as a potential technology for rapid, sensitive, and cost-effective biomarker detection and monitoring. In this review, we provide an overview of important biomarkers for several common childhood cancers. Accordingly, we have enumerated the developed biosensors for early detection of pediatric cancer or related biomarkers. This review offers a restructured platform for ongoing research in pediatric cancer diagnostics that can contribute to the development of rapid biosensing techniques for early-stage diagnosis, monitoring, and treatment of children with cancer and reduce the mortality rate.
Collapse
Affiliation(s)
- Azadeh Gharehzadehshirazi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Mashaalah Zarejousheghani
- Freiberg Center for Water Research—ZeWaF, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Sedigheh Falahi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
- Freiberg Center for Water Research—ZeWaF, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
- Freiberg Center for Water Research—ZeWaF, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
11
|
Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. BIOSENSORS 2023; 13:99. [PMID: 36671934 PMCID: PMC9856029 DOI: 10.3390/bios13010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, diagnosing early-stage cancers can be vital for saving patients and dramatically decreases mortality rates. Therefore, specificity and sensitivity in the detection of cancer antigens should be elaborately ensured. Some early-stage cancers can be diagnosed via detecting the cancer antigen CA-125, such as ovarian cancer, and required treatments can be applied more efficiently. Thus, detection of CA-125 by employing various optical or electrochemical biosensors is a preliminary and crucial step to treating cancers. In this review, a diverse range of optical and electrochemical means of detecting CA-125 are reviewed. Furthermore, an applicable comparison of their performance and sensitivity is provided, several commercial detection kits are investigated, and their applications are compared and discussed to determine whether they are applicable and accurate enough.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
12
|
Allegra A, Petrarca C, Di Gioacchino M, Mirabile G, Gangemi S. Electrochemical Biosensors in the Diagnosis of Acute and Chronic Leukemias. Cancers (Basel) 2022; 15:cancers15010146. [PMID: 36612142 PMCID: PMC9817807 DOI: 10.3390/cancers15010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Until now, morphological assessment with an optical or electronic microscope, fluorescence in situ hybridization, DNA sequencing, flow cytometry, polymerase chain reactions, and immunohistochemistry have been employed for leukemia identification. Nevertheless, despite their numerous different vantages, it is difficult to recognize leukemic cells correctly. Recently, the electrochemical evaluation with a nano-sensing interface seems an attractive alternative. Electrochemical biosensors measure the modification in the electrical characteristics of the nano-sensing interface, which is modified by the contact between a biological recognition element and the analyte objective. The implementation of nanosensors is founded not on single nanomaterials but rather on compilating these components efficiently. Biosensors able to identify the molecules of deoxyribonucleic acid are defined as DNA biosensors. Our review aimed to evaluate the literature on the possible use of electrochemical biosensors for identifying hematological neoplasms such as acute promyelocytic leukemia, acute lymphoblastic leukemia, and chronic myeloid leukemia. In particular, we focus our attention on using DNA electrochemical biosensors to evaluate leukemias.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Claudia Petrarca
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy
- Correspondence:
| | - Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
13
|
Tharani S, Durgalakshmi D, Balakumar S, Rakkesh RA. Futuristic Advancements in Biomass‐Derived Graphene Nanoassemblies: Versatile Biosensors for Point‐of‐Care Devices. ChemistrySelect 2022. [DOI: 10.1002/slct.202203603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- S. Tharani
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| | - D. Durgalakshmi
- Department of Medical Physics Anna University Chennai 600 025 TN India
- Department of Physics Ethiraj College for Women Chennai 600 008 TN India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology University of Madras Chennai 600 025 TN India
| | - R. Ajay Rakkesh
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| |
Collapse
|
14
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C 3N 4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022; 13:204. [PMID: 36412845 PMCID: PMC9680252 DOI: 10.3390/jfb13040204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | | | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Amirmasoud Samadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Mahsa Yazdani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|