1
|
Khan P, Chaudhuri RN. Acetylation of H3K56 orchestrates UV-responsive chromatin events that generate DNA accessibility during Nucleotide Excision Repair. DNA Repair (Amst) 2022; 113:103317. [PMID: 35290816 DOI: 10.1016/j.dnarep.2022.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022]
Abstract
Histone modifications have long been related to DNA damage response. Nucleotide excision repair pathway that removes helix-distorting lesions necessitates DNA accessibility through chromatin modifications. Previous studies have linked H3 tail residue acetylation to UV-induced NER. Here we present evidences that acetylation of H3K56 is crucial for early phases of NER. Using H3K56 mutants K56Q and K56R, which mimic acetylated and unacetylated lysines respectively, we show that recruitment of the repair factor Rad16, a Swi/Snf family member is dependent on H3K56 acetylation. With constitutive H3K56 acetylation, Rad16 recruitment became UV-independent. Furthermore, H3K56 acetylation promoted UV-induced hyperacetylation of H3K9 and H3K14. Importantly, constitutive H3K56 acetylation prominently increased chromatin accessibility. During NER, lack of H3K56 acetylation that effectively aborted H3 tail residue acetylation and Rad16 recruitment, thus failed to impart essential chromatin modulations. The NER-responsive oscillation of chromatin structure observed in wild type, was distinctly eliminated in absence of H3K56 acetylation. In vitro assay with wild type and H3K56 mutant cell extracts further indicated that absence of H3K56 acetylation negatively affected DNA relaxation during NER. Overall, H3K56 acetylation regulates Rad16 redistribution and UV-induced H3 tail residue hyperacetylation, and the resultant modification code promotes chromatin accessibility and recruitment of subsequent repair factors during NER.
Collapse
Affiliation(s)
- Preeti Khan
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
2
|
Li Y, Mao P, Basenko EY, Lewis Z, Smerdon MJ, Czaja W. Versatile cell-based assay for measuring DNA alkylation damage and its repair. Sci Rep 2021; 11:18393. [PMID: 34526526 PMCID: PMC8443546 DOI: 10.1038/s41598-021-97523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
DNA alkylation damage induced by environmental carcinogens, chemotherapy drugs, or endogenous metabolites plays a central role in mutagenesis, carcinogenesis, and cancer therapy. Base excision repair (BER) is a conserved, front line DNA repair pathway that removes alkylation damage from DNA. The capacity of BER to repair DNA alkylation varies markedly between different cell types and tissues, which correlates with cancer risk and cellular responses to alkylation chemotherapy. The ability to measure cellular rates of alkylation damage repair by the BER pathway is critically important for better understanding of the fundamental processes involved in carcinogenesis, and also to advance development of new therapeutic strategies. Methods for assessing the rates of alkylation damage and repair, especially in human cells, are limited, prone to significant variability due to the unstable nature of some of the alkyl adducts, and often rely on indirect measurements of BER activity. Here, we report a highly reproducible and quantitative, cell-based assay, named alk-BER (alkylation Base Excision Repair) for measuring rates of BER following alkylation DNA damage. The alk-BER assay involves specific detection of methyl DNA adducts (7-methyl guanine and 3-methyl adenine) directly in genomic DNA. The assay has been developed and adapted to measure the activity of BER in fungal model systems and human cell lines. Considering the specificity and conserved nature of BER enzymes, the assay can be adapted to virtually any type of cultured cells. Alk-BER offers a cost efficient and reliable method that can effectively complement existing approaches to advance integrative research on mechanisms of alkylation DNA damage and repair.
Collapse
Affiliation(s)
- Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.,The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Evelina Y Basenko
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.,Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Zachary Lewis
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.,Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.,Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Wioletta Czaja
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA. .,The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
3
|
Wang S, Wu XM, Liu CH, Shang JY, Gao F, Guo HS. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. PLoS Pathog 2020; 16:e1008481. [PMID: 32298394 PMCID: PMC7188298 DOI: 10.1371/journal.ppat.1008481] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/28/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) production is one of the earliest responses when plants percept pathogens and acts as antimicrobials to block pathogen entry. However, whether and how pathogens tolerate ROS stress remains elusive. Here, we report the chromatin remodeling in Verticillium dahliae, a soil-borne pathogenic fungus that causes vascular wilts of a wide range of plants, facilitates the DNA damage repair in response to plant ROS stress. We identified VdDpb4, encoding a histone-fold protein of the ISW2 chromatin remodeling complex in V. dahliae, is a virulence gene. The reduced virulence in wild type Arabidopsis plants arising from VdDpb4 deletion was impaired in the rbohd mutant plants that did not produce ROS. Further characterization of VdDpb4 and its interacting protein, VdIsw2, an ATP-dependent chromatin-remodeling factor, we show that while the depletion of VdIsw2 led to the decondensing of chromatin, the depletion of VdDpb4 resulted in a more compact chromatin structure and affected the VdIsw2-dependent transcriptional effect on gene expression, including genes involved in DNA damage repair. A knockout mutant of either VdDpb4 or VdIsw2 reduced the efficiency of DNA repair in the presence of DNA-damaging agents and virulence during plant infection. Together, our data demonstrate that VdDpb4 and VdIsw2 play roles in maintaining chromatin structure for positioning nucleosomes and transcription regulation, including genes involved in DNA repair in response to ROS stress during development and plant infection. ROS production is one of the earliest responses after the perception of pathogen-associated molecular patterns by plant transmembrane immune receptors, and dependent on the respiratory burst oxidase homolog (RBOH). ROS cause DNA oxidative damage and acts as antimicrobials to block pathogen entry. In this study, we found that chromatin remodeling components, including VdDpb4 and its interacting protein, VdIsw2, are essential for the V. dahliae tolerant in response to ROS stress during development and plant infection. Assays of the accessibility of bulk chromatin suggest that VdDpb4 plays an important role in maintaining a more “open” and accessible chromatin landscape, while VdIsw2 plays an antagonistic role in balancing chromatin structure. Abnormality of nucleosome repositioning by depletion of either protein is harmful to the fungus during DNA repair in response to ROS stress during development and plant infection. We further found that VdDpb4 is required for VdIsw2 to bind to gene promoters for appropriate RNA polymerase II transcription. Taken together, our data demonstrate that VdDpb4 is required for the location of ISW2 on DNA and VdIsw2-dependent transcriptional regulation of gene expression; and provide the first example and essential information for further investigation of chromatin-associated complexes in pathogenic fungi.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Chuan-Hui Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Jing-Yun Shang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Using Yeast as a Model Organism to Study the Functional Roles of Histone Acetylation in DNA Excision Repair. Methods Mol Biol 2019; 1983:175-190. [PMID: 31087298 DOI: 10.1007/978-1-4939-9434-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Histone acetylation plays important roles in regulating DNA metabolic processes, including many DNA repair pathways. The nucleotide excision repair (NER) pathway is critical for removing bulky, helix-distorting DNA lesions, such as UV light-induced photoproducts, but the activity of this pathway is significantly inhibited when lesions reside in nucleosomes. Recent studies have indicated that histone acetyltransferase (HAT) activity may be induced in response to UV damage, in order to facilitate the repair of UV-induced lesions in chromatin. Budding yeast (Saccharomyces cerevisiae) is an important model system for studying the functional roles of histone acetylation and HATs in NER, due to the ease of genetically altering HAT activity or acetylated lysine residues in histones. Here, we describe protocols for measuring the repair of cyclobutane pyrimidine dimers (CPDs), the major UV-induced photoproduct, in yeast strains deficient in HAT activity, either due to gene deletion or rapid anchor-away depletion of the HAT enzyme. Methods for measuring CPD repair in bulk chromatin, as well as individual chromatin loci, are detailed below.
Collapse
|
5
|
Hodges AJ, Plummer DA, Wyrick JJ. NuA4 acetyltransferase is required for efficient nucleotide excision repair in yeast. DNA Repair (Amst) 2018; 73:91-98. [PMID: 30473425 DOI: 10.1016/j.dnarep.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
The nucleotide excision repair (NER) pathway is critical for removing damage induced by ultraviolet (UV) light and other helix-distorting lesions from cellular DNA. While efficient NER is critical to avoid cell death and mutagenesis, NER activity is inhibited in chromatin due to the association of lesion-containing DNA with histone proteins. Histone acetylation has emerged as an important mechanism for facilitating NER in chromatin, particularly acetylation catalyzed by the Spt-Ada-Gcn5 acetyltransferase (SAGA); however, it is not known if other histone acetyltransferases (HATs) promote NER activity in chromatin. Here, we report that the essential Nucleosome Acetyltransferase of histone H4 (NuA4) complex is required for efficient NER in Saccharomyces cerevisiae. Deletion of the non-essential Yng2 subunit of the NuA4 complex causes a general defect in repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast; in contrast, deletion of the Sas3 catalytic subunit of the NuA3 complex does not affect repair. Rapid depletion of the essential NuA4 catalytic subunit Esa1 using the anchor-away method also causes a defect in NER, particularly at the heterochromatic HML locus. We show that disrupting the Sds3 subunit of the Rpd3L histone deacetylase (HDAC) complex rescued the repair defect associated with loss of Esa1 activity, suggesting that NuA4-catalyzed acetylation is important for efficient NER in heterochromatin.
Collapse
Affiliation(s)
- Amelia J Hodges
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States
| | - Dalton A Plummer
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States; Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|
6
|
Ray A, Khan P, Nag Chaudhuri R. Regulated acetylation and deacetylation of H4 K16 is essential for efficient NER in Saccharomyces cerevisiae. DNA Repair (Amst) 2018; 72:39-55. [PMID: 30274769 DOI: 10.1016/j.dnarep.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/24/2022]
Abstract
Acetylation status of H4 K16, a residue in the histone H4 N-terminal tail plays a unique role in regulating chromatin structure and function. Here we show that, during UV-induced nucleotide excision repair H4 K16 gets hyperacetylated following an initial phase of hypoacetylation. Disrupting H4 K16 acetylation-deacetylation by mutating H4 K16 to R (deacetylated state) or Q (acetylated state) leads to compromised chromatin functions. In the silenced mating locus and telomere region H4 K16 mutants show higher recruitment of Sir proteins and spreading beyond the designated boundaries. More significantly, chromatin of both the H4 K16 mutants has reduced accessibility in the silenced regions and genome wide. On UV irradiation, the mutants showed higher UV sensitivity, reduced NER rate and altered H3 N-terminal tail acetylation, compared to wild type. NER efficiency is affected by reduced or delayed recruitment of early NER proteins and chromatin remodeller Swi/Snf along with lack of nucleosome rearrangement during repair. Additionally UV-induced expression of RAD and SNF5 genes was reduced in the mutants. Hindered chromatin accessibility in the H4 K16 mutants is thus non-conducive for gene expression as well as recruitment of NER and chromatin remodeller proteins. Subsequently, inadequate nucleosomal rearrangement during early phases of repair impeded accessibility of the NER complex to DNA lesions, in the H4 K16 mutants. Effectively, NER efficiency was found to be compromised in the mutants. Interestingly, in the transcriptionally active chromatin region, both the H4 K16 mutants showed reduced NER rate during early repair time points. However, with progression of repair H4 K16R repaired faster than K16Q mutants and rate of CPD removal became differential between the two mutants during later NER phases. To summarize, our results establish the essentiality of regulated acetylation and deacetylation of H4 K16 residue in maintaining chromatin accessibility and efficiency of functions like NER and gene expression.
Collapse
Affiliation(s)
- Anagh Ray
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Preeti Khan
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India.
| |
Collapse
|
7
|
Mao P, Brown AJ, Esaki S, Lockwood S, Poon GMK, Smerdon MJ, Roberts SA, Wyrick JJ. ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma. Nat Commun 2018; 9:2626. [PMID: 29980679 PMCID: PMC6035183 DOI: 10.1038/s41467-018-05064-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/07/2018] [Indexed: 11/12/2022] Open
Abstract
Recurrent mutations are frequently associated with transcription factor (TF) binding sites (TFBS) in melanoma, but the mechanism driving mutagenesis at TFBS is unclear. Here, we use a method called CPD-seq to map the distribution of UV-induced cyclobutane pyrimidine dimers (CPDs) across the human genome at single nucleotide resolution. Our results indicate that CPD lesions are elevated at active TFBS, an effect that is primarily due to E26 transformation-specific (ETS) TFs. We show that ETS TFs induce a unique signature of CPD hotspots that are highly correlated with recurrent mutations in melanomas, despite high repair activity at these sites. ETS1 protein renders its DNA binding targets extremely susceptible to UV damage in vitro, due to binding-induced perturbations in the DNA structure that favor CPD formation. These findings define a mechanism responsible for recurrent mutations in melanoma and reveal that DNA binding by ETS TFs is inherently mutagenic in UV-exposed cells. Many factors contribute to mutation hotspots in cancer cells. Here the authors map UV damage at single-nucleotide resolution across the human genome and find that binding sites of ETS transcription factors are especially prone to forming UV lesions, leading to mutation hotspots in melanoma.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Shingo Esaki
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Svetlana Lockwood
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA. .,Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA. .,Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
8
|
Zhang W, Zhao G, Luo Z, Lin Y, Wang L, Guo Y, Wang A, Jiang S, Jiang Q, Gong J, Wang Y, Hou S, Huang J, Li T, Qin Y, Dong J, Qin Q, Zhang J, Zou X, He X, Zhao L, Xiao Y, Xu M, Cheng E, Huang N, Zhou T, Shen Y, Walker R, Luo Y, Kuang Z, Mitchell LA, Yang K, Richardson SM, Wu Y, Li BZ, Yuan YJ, Yang H, Lin J, Chen GQ, Wu Q, Bader JS, Cai Y, Boeke JD, Dai J. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 2017; 355:355/6329/eaaf3981. [PMID: 28280149 DOI: 10.1126/science.aaf3981] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/26/2017] [Indexed: 01/25/2023]
Abstract
We designed and synthesized a 976,067-base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect "bugs" detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.
Collapse
Affiliation(s)
- Weimin Zhang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanghou Zhao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, College of Life Science, Peking University, Beijing 100871, China
| | - Zhouqing Luo
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yicong Lin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lihui Wang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yakun Guo
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ann Wang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangying Jiang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingwen Jiang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Sha Hou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Huang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyi Li
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiran Qin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junkai Dong
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Qin
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaying Zhang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinzhi Zou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi He
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zhao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yibo Xiao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Xu
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Erchao Cheng
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Huang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Zhou
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.,BGI-Qingdao, Qingdao 266555, China
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zheng Kuang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Kun Yang
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sarah M Richardson
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jiwei Lin
- Wuxi Qinglan Biotechnology Inc., Yixing, Jiangsu 214200, China
| | - Guo-Qiang Chen
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingyu Wu
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Joel S Bader
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10011, USA
| | - Junbiao Dai
- Key Laboratory for Industrial Biocatalysis (Ministry of Education) and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Guintini L, Tremblay M, Toussaint M, D'Amours A, Wellinger RE, Wellinger RJ, Conconi A. Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu-Sir4 interaction. Nucleic Acids Res 2017; 45:4577-4589. [PMID: 28334768 PMCID: PMC5416773 DOI: 10.1093/nar/gkx123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 02/10/2017] [Indexed: 01/28/2023] Open
Abstract
Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability. In Saccharomyces cerevisiae the chromatin structure of natural telomeres is distinctive and contingent to telomeric DNA sequences. Namely, nucleosomes and Sir proteins form the heterochromatin like structure of X-type telomeres, whereas a more open conformation is present at Y’-type telomeres. It is proposed that there are no nucleosomes on the most distal telomeric repeat DNA, which is bound by a complex of proteins and folded into higher order structure. How these structures affect NER is poorly understood. Our data indicate that the X-type, but not the Y’-type, sub-telomeric chromatin modulates NER, a consequence of Sir protein-dependent nucleosome stability. The telomere terminal complex also prevents NER, however, this effect is largely dependent on the yKu–Sir4 interaction, but Sir2 and Sir3 independent.
Collapse
Affiliation(s)
- Laetitia Guintini
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Maxime Tremblay
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Martin Toussaint
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Annie D'Amours
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Avda Américo Vespucio s/n, Sevilla 41092, Spain
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Antonio Conconi
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| |
Collapse
|
10
|
Zhang Y, O’Brien PJ. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase. ACS Chem Biol 2015; 10:2606-15. [PMID: 26317160 DOI: 10.1021/acschembio.5b00409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human alkyladenine DNA glycosylase (AAG) initiates the base excision repair pathway by excising alkylated and deaminated purine lesions. In vitro biochemical experiments demonstrate that AAG uses facilitated diffusion to efficiently search DNA to find rare sites of damage and suggest that electrostatic interactions are critical to the searching process. However, it remains an open question whether DNA searching limits the rate of DNA repair in vivo. We constructed AAG mutants with altered searching ability and measured their ability to protect yeast from alkylation damage in order to address this question. Each of the conserved arginine and lysine residues that are near the DNA binding interface were mutated, and the functional impacts were evaluated using kinetic and thermodynamic analysis. These mutations do not perturb catalysis of N-glycosidic bond cleavage, but they decrease the ability to capture rare lesion sites. Nonspecific and specific DNA binding properties are closely correlated, suggesting that the electrostatic interactions observed in the specific recognition complex are similarly important for DNA searching complexes. The ability of the mutant proteins to complement repair-deficient yeast cells is positively correlated with the ability of the proteins to search DNA in vitro, suggesting that cellular resistance to DNA alkylation is governed by the ability to find and efficiently capture cytotoxic lesions. It appears that chromosomal access is not restricted and toxic sites of alkylation damage are readily accessible to a searching protein.
Collapse
Affiliation(s)
- Yaru Zhang
- Chemical
Biology Program, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Patrick J. O’Brien
- Chemical
Biology Program, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
- Department
of Biological Chemistry, University of Michigan Medical School, 1150
W. Medical Center Dr., Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
11
|
Peyresaubes F, D'Amours A, Leduc F, Grégoire MC, Boissonneault G, Conconi A. Immuno-capture of UVDE generated 3'-OH ends at UV photoproducts. DNA Repair (Amst) 2015; 36:156-161. [PMID: 26547444 DOI: 10.1016/j.dnarep.2015.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A strategy amenable to the genome-wide study of DNA damage and repair kinetics is described. The ultraviolet damage endonuclease (UVDE) generates 3'-OH ends at the two major UV induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6,4 pyrimidine-pyrimidone dimers (6,4 PPs), allowing for their capture after biotin end-labeling. qPCR amplification of biotinylated DNA enables parallel measuring of DNA damage in several loci, which can then be combined with high-throughput screening of cell survival to test genotoxic reagents. Alternatively, a library of captured sequences could be generated for a genome wide study of damage sites and large-scale assessment of repair kinetics in different regions of the genome, using next-generation sequencing. The assay is suitable to study any DNA lesion that can be converted into 3'-OH by UVDE, or other enzymes. Toward these goals, we compared UVDE with the classical T4 endonuclease V (T4V) assay. We showed that there is a linear correlation between UV dose, 3'-OH formation and capture by immunoprecipitation, together with its potential application for in vivo studies.
Collapse
Affiliation(s)
- François Peyresaubes
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Annie D'Amours
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Frédéric Leduc
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Marie-Chantal Grégoire
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Guylain Boissonneault
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Antonio Conconi
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
12
|
Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae. Genetics 2015; 200:795-806. [PMID: 25971662 DOI: 10.1534/genetics.115.175885] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/04/2015] [Indexed: 12/26/2022] Open
Abstract
A critical feature of the intermolecular contacts that bind DNA to the histone octamer is the series of histone arginine residues that insert into the DNA minor groove at each superhelical location where the minor groove faces the histone octamer. One of these "sprocket" arginine residues, histone H4 R45, significantly affects chromatin structure in vivo and is lethal when mutated to alanine or cysteine in Saccharomyces cerevisiae (budding yeast). However, the roles of the remaining sprocket arginine residues (H3 R63, H3 R83, H2A R43, H2B R36, H2A R78, H3 R49) in chromatin structure and other cellular processes have not been well characterized. We have genetically characterized mutations in each of these histone residues when introduced either singly or in combination to yeast cells. We find that pairs of arginine residues that bind DNA adjacent to the DNA exit/entry sites in the nucleosome are lethal in yeast when mutated in combination and cause a defect in histone occupancy. Furthermore, mutations in individual residues compromise repair of UV-induced DNA lesions and affect gene expression and cryptic transcription. This study reveals simple rules for how the location and structural mode of DNA binding influence the biological function of each histone sprocket arginine residue.
Collapse
|
13
|
Meas R, Smerdon MJ, Wyrick JJ. The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae. Nucleic Acids Res 2015; 43:4990-5001. [PMID: 25897129 PMCID: PMC4446432 DOI: 10.1093/nar/gkv372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
Histone amino-terminal tails (N-tails) are required for cellular resistance to DNA damaging agents; therefore, we examined the role of histone N-tails in regulating DNA damage response pathways in Saccharomyces cerevisiae. Combinatorial deletions reveal that the H2A and H3 N-tails are important for the removal of MMS-induced DNA lesions due to their role in regulating the basal and MMS-induced expression of DNA glycosylase Mag1. Furthermore, overexpression of Mag1 in a mutant lacking the H2A and H3 N-tails rescues base excision repair (BER) activity but not MMS sensitivity. We further show that the H3 N-tail functions in the Rad9/Rad53 DNA damage signaling pathway, but this function does not appear to be the primary cause of MMS sensitivity of the double tailless mutants. Instead, epistasis analyses demonstrate that the tailless H2A/H3 phenotypes are in the RAD18 epistasis group, which regulates postreplication repair. We observed increased levels of ubiquitylated PCNA and significantly lower mutation frequency in the tailless H2A/H3 mutant, indicating a defect in postreplication repair. In summary, our data identify novel roles of the histone H2A and H3 N-tails in (i) regulating the expression of a critical BER enzyme (Mag1), (ii) supporting efficient DNA damage signaling and (iii) facilitating postreplication repair.
Collapse
Affiliation(s)
- Rithy Meas
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| |
Collapse
|
14
|
|
15
|
Czaja W, Mao P, Smerdon MJ. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 16:35-43. [PMID: 24674626 DOI: 10.1016/j.dnarep.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.
Collapse
Affiliation(s)
- Wioletta Czaja
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Peng Mao
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| |
Collapse
|
16
|
Yu Y, Deng Y, Reed SH, Millar CB, Waters R. Histone variant Htz1 promotes histone H3 acetylation to enhance nucleotide excision repair in Htz1 nucleosomes. Nucleic Acids Res 2013; 41:9006-19. [PMID: 23925126 PMCID: PMC3799447 DOI: 10.1093/nar/gkt688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nucleotide excision repair (NER) is critical for maintaining genome integrity. How chromatin dynamics are regulated to facilitate this process in chromatin is still under exploration. We show here that a histone H2A variant, Htz1 (H2A.Z), in nucleosomes has a positive function in promoting efficient NER in yeast. Htz1 inherently enhances the occupancy of the histone acetyltransferase Gcn5 on chromatin to promote histone H3 acetylation after UV irradiation. Consequently, this results in an increased binding of a NER protein, Rad14, to damaged DNA. Cells without Htz1 show increased UV sensitivity and defective removal of UV-induced DNA damage in the Htz1-bearing nucleosomes at the repressed MFA2 promoter, but not in the HMRa locus where Htz1 is normally absent. Thus, the effect of Htz1 on NER is specifically relevant to its presence in chromatin within a damaged region. The chromatin accessibility to micrococcal nuclease in the MFA2 promoter is unaffected by HTZ1 deletion. Acetylation on previously identified lysines of Htz1 plays little role in NER or cell survival after UV. In summary, we have identified a novel aspect of chromatin that regulates efficient NER, and we provide a model for how Htz1 influences NER in Htz1 nucleosomes.
Collapse
Affiliation(s)
- Yachuan Yu
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK and Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
17
|
O'Dowd JM, Zavala AG, Brown CJ, Mori T, Fortunato EA. HCMV-infected cells maintain efficient nucleotide excision repair of the viral genome while abrogating repair of the host genome. PLoS Pathog 2012; 8:e1003038. [PMID: 23209410 PMCID: PMC3510244 DOI: 10.1371/journal.ppat.1003038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 10/03/2012] [Indexed: 02/05/2023] Open
Abstract
Many viruses subvert the host cell's ability to mount and complete various DNA damage responses (DDRs) after infection. HCMV infection of permissive fibroblasts activates host DDRs at the time of viral deposition and during replication, but the DDRs remain uncompleted without arrest or apoptosis. We believe this was in part due to partitioning of the damage response and double strand break repair components. After extraction of soluble proteins, the localization of these components fell into three groups: specifically associated with the viral replication centers (RCs), diffused throughout the nucleoplasm and excluded from the RCs. Others have shown that cells are incapable of processing exogenously introduced damage after infection. We hypothesized that the inability of the cells to process damage might be due to the differential association of repair components within the RCs and, in turn, potentially preferential repair of the viral genome and compromised repair of the host genome. To test this hypothesis we used multiple strategies to examine repair of UV-induced DNA damage in mock and virus-infected fibroblasts. Comet assays indicated that repair was initiated, but was not completed in infected cells. Quantitative analysis of immunofluorescent localization of cyclobutane pyrimidine dimers (CPDs) revealed that after 24 h of repair, CPDs were significantly reduced in viral DNA, but not significantly changed in the infected host DNA. To further quantitate CPD repair, we developed a novel dual-color Southern protocol allowing visualization of host and viral DNA simultaneously. Combining this Southern methodology with a CPD-specific T4 endonuclease V alkaline agarose assay to quantitate repair of adducts, we found efficient repair of CPDs from the viral DNA but not host cellular DNA. Our data confirm that NER functions in HCMV-infected cells and almost exclusively repairs the viral genome to the detriment of the host's genome. Human cytomegalovirus (HCMV) is a leading cause of birth defects. This may be due in part to this virus' ability to inflict specific damage to its host's DNA, combined with the disruption of an infected cell's ability to repair damage. Earlier studies found that components of the cell's repair machinery were differentially associated with the HCMV viral replication centers in the nucleus. Experiments here extend this observation to include components of the machinery involved in UV lesion repair. We hypothesized that association of components of the DNA repair machinery within the viral replication centers could favor the repair of viral DNA, but more importantly, be detrimental to the repair of cellular DNA. Infected cells were irradiated and examined for repair by three different methods. In the course of this study, we developed a new technique allowing simultaneous evaluation of both the viral and host genomes in an infected cell. These experiments found rapid, selective removal of UV lesions from the viral and not the cellular DNA within infected cells. Our results indicate the differential association of certain cellular repair proteins with this virus may have far-reaching implications in the disease pathogenesis of HCMV infection.
Collapse
Affiliation(s)
- John M. O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Anamaria G. Zavala
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Celeste J. Brown
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Elizabeth A. Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
18
|
Czaja W, Bespalov VA, Hinz JM, Smerdon MJ. Proficient repair in chromatin remodeling defective ino80 mutants of Saccharomyces cerevisiae highlights replication defects as the main contributor to DNA damage sensitivity. DNA Repair (Amst) 2010; 9:976-84. [PMID: 20674516 PMCID: PMC2929300 DOI: 10.1016/j.dnarep.2010.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 01/16/2023]
Abstract
Ino80 is an evolutionarily conserved member of the SWI2/SNF2-family of ATPases in Saccharomyces cerevisiae. It resides in a multiprotein helicase/chromatin remodeling complex, and has been shown to play a key role in the stability of replication forks during replication stress. Though yeast with defects in ino80 show sensitivity to killing by a variety of DNA-damaging agents, a role for the INO80 protein complex in the repair of DNA has only been assessed for double-strand breaks, and the results are contradictory and inconclusive. We report that ino80Delta cells are hypersensitive to DNA base lesions induced by ultraviolet (UV) radiation and methyl methanesulfonate (MMS), but show little (or no) increased sensitivity to the DNA double-strand break (DSB)-inducing agents ionizing radiation and camptothecin. Importantly, ino80Delta cells display efficient removal of UV-induced cyclobutane pyrimidine dimers, and show a normal rate of removal of DNA methylation damage after MMS exposure. In addition, ino80Delta cells have an overall normal rate of repair of DSBs induced by ionizing radiation. Altogether, our data support a model of INO80 as an important suppressor of genome instability in yeast involved in DNA damage tolerance through a role in stability and recovery of broken replication forks, but not in the repair of lesions leading to such events. This conclusion is in contrast to strong evidence for the DNA repair-promoting role of the corresponding INO80 complexes in higher eukaryotes. Thus, our results provide insight into the specialized roles of the INO80 subunits and the differential needs of different species for chromatin remodeling complexes in genome maintenance.
Collapse
Affiliation(s)
| | | | - John M. Hinz
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, United States
| | - Michael J. Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, United States
| |
Collapse
|
19
|
Gong F, Fahy D, Liu H, Wang W, Smerdon MJ. Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage. Cell Cycle 2008; 7:1067-74. [PMID: 18414052 PMCID: PMC5873551 DOI: 10.4161/cc.7.8.5647] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian cells exhibit complex cellular responses to DNA damage, including cell cycle arrest, DNA repair and apoptosis. Defects in any one of these responses can result in carcinogenesis. Absence of the chromatin remodeling complex Swi/Snf is found in many instances of cancer, and we have investigated its role in the UV damage response. The human carcinoma cell line SW13 is deficient in Swi/Snf and is very sensitive to UV radiation. In contrast, SW13 cells with ectopic Brg1 expression regain active Swi/Snf and become significantly more resistant to UV radiation. Sensitivity to UV light correlates well with dramatic UV induced apoptosis in SW13 cells, but not in SW13 cells expressing Brg1. We show that SW13 cells synchronized at the G(1)/S border progress into S phase after UV irradiation, and this checkpoint deficiency is corrected after Brg1 expression is restored. Interestingly, Brg1 expression in SW13 cells restores expression of two DNA damage responsive genes, Gadd45a and p21. Furthermore, Gadd45a induction and p21 degradation were observed in the Brg1-expressing SW13 cells after UV irradiation. Our findings demonstrate that Swi/Snf protects cells against deleterious consequences of UV induced DNA damage. These results also indicate that Swi/Snf may modulate checkpoint activation after UV damage via regulation of the two PCNA-binding proteins Gadd45a and p21.
Collapse
Affiliation(s)
- Feng Gong
- Biochemistry and Biophysics; School of Molecular Biosciences; Washington State University; Pullman, Washington USA
| | - Deirdre Fahy
- Biochemistry and Biophysics; School of Molecular Biosciences; Washington State University; Pullman, Washington USA
| | - Hong Liu
- Clinical Endocrinology Branch; National Institute of Diabetes & Digestive & Kidney Diseases; National Institutes of Health; Bethesda, Maryland USA
| | - Weidong Wang
- Laboratory of Genetics; National Institute of Aging; Baltimore, Maryland USA
| | - Michael J. Smerdon
- Biochemistry and Biophysics; School of Molecular Biosciences; Washington State University; Pullman, Washington USA
| |
Collapse
|
20
|
Adair JE, Kwon Y, Dement GA, Smerdon MJ, Reeves R. Inhibition of nucleotide excision repair by high mobility group protein HMGA1. J Biol Chem 2005; 280:32184-92. [PMID: 16033759 DOI: 10.1074/jbc.m505600200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian non-histone "high mobility group" A (HMGA) proteins are the primary nuclear proteins that bind to the minor groove of AT-rich DNA. They may, therefore, influence the formation and/or repair of DNA lesions that occur in AT-rich DNA, such as cyclobutane pyrimidine dimers (CPDs) induced by UV radiation. Employing both stably transfected lines of human MCF7 cells containing tetracycline-regulated HMGA1 transgenes and primary Hs578T tumor cells, which naturally overexpress HMGA1 proteins, we have shown that cells overexpressing HMGA1a protein exhibit increased UV sensitivity. Moreover, we demonstrated that knockdown of intracellular HMGA1 concentrations via two independent methods abrogated this sensitivity. Most significantly, we observed that HMGA1a overexpression inhibited global genomic nucleotide excision repair of UV-induced CPD lesions in MCF-7 cells. Consistent with these findings in intact cells, DNA repair experiments employing Xenopus oocyte nuclear extracts and lesion-containing DNA substrates demonstrated that binding of HMGA1a markedly inhibits removal of CPDs in vitro. Furthermore, UV "photo-foot-printing" demonstrated that CPD formation within a long run of Ts (T(18)-tract) in a DNA substrate changes significantly when HMGA1 is bound prior to UV irradiation. Together, these results suggest that HMGA1 directly influences both the formation and repair of UV-induced DNA lesions in intact cells. These findings have important implications for the role that HMGA protein overexpression might play in the accumulation of mutations and genomic instabilities associated with many types of human cancers.
Collapse
Affiliation(s)
- Jennifer E Adair
- School of Molecular Biosciences, Biochemistry, and Biophysics, Washingston State University, Pullman, 99164-4660, USA
| | | | | | | | | |
Collapse
|
21
|
Conconi A, Bespalov VA, Smerdon MJ. Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc Natl Acad Sci U S A 2002; 99:649-54. [PMID: 11782531 PMCID: PMC117360 DOI: 10.1073/pnas.022373099] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers (CPDs) was measured in the individual strands of transcriptionally active and inactive ribosomal genes of yeast. Ribosomal genes (rDNA) are present in multiple copies, but only a fraction of them is actively transcribed. Restriction enzyme digestion was used to specifically release the transcriptionally active fraction from yeast nuclei, and selective psoralen crosslinking was used to distinguish between active and inactive rDNA chromatin. Removal of CPDs was followed in both rDNA populations, and the data clearly show that strand-specific repair occurs in transcriptionally active rDNA while being absent in the inactive rDNA fraction. Thus, transcription-coupled repair occurs in RNA polymerase I-transcribed genes in yeast. Moreover, the nontranscribed strand of active rDNA is repaired faster than either strand of inactive rDNA, implying that NER has preferred access to the active, non-nucleosomal rDNA chromatin. Finally, restriction enzyme accessibility to active rDNA varies during NER, suggesting that there is a change in ribosomal gene chromatin structure during or soon after CPD removal.
Collapse
Affiliation(s)
- Antonio Conconi
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | | | | |
Collapse
|