1
|
Barrera LM, Ortiz LD, Grisales HDJ, Camargo M. Survival analysis and associated factors of highgrade glioma patients. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:191-206. [PMID: 39088535 PMCID: PMC11374120 DOI: 10.7705/biomedica.6742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/18/2024] [Indexed: 08/03/2024]
Abstract
Introduction High-grade gliomas are the most common primary brain tumors in adults, and they usually have a quick fatal course. Average survival is 18 months, mainly, because of tumor resistance to Stupp protocol. Objective To determine high-grade glioma patient survival and the effect of persuasion variables on survival. Materials and methods We conducted a longitudinal descriptive study in which 80 untreated recently diagnosed high-grade glioma patients participated. A survey was conducted regarding their exposure to some risk factors, degree of genetic instability in peripheral blood using micronucleus quantification on binuclear lymphocytes, micronuclei in reticulocytes and sister-chromatid exchanges in lymphocytes. In the statistical analysis, this study constructed life tables, used the Kaplan-Meier, and the log-rank test, and in the multivariate analysis, a Cox proportional hazards model was constructed. Results Eighty patients' clinical, demographic and lifestyle characteristics were analyzed, as well as their survival rates and the average survival time is 784 days (interquartile range: 928). Factors like age, exposure at work to polycyclic hydrocarbons and the number of sister-chromatid exchanges in lymphocytes in the first sampling was significantly survivalrelated in the multivariate analysis. Conclusion We determined that only three of the analyzed variables have an important effect on survival time when it comes to high-grade glioma patients.
Collapse
Affiliation(s)
- Lina Marcela Barrera
- Grupo de Investigación en Ciencias Médicas, Escuela Ciencias de la Vida, Programa de Medicina, Universidad EIA, Medellín, Colombia
| | - Leon Darío Ortiz
- Instituto de Cancerología, Clínica Las Américas, Medellín, Colombia
| | - Hugo de Jesús Grisales
- Grupo de Investigación Demografía y Salud, Facultad Nacional de Salud Pública, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
2
|
Waters MD, Warren S, Hughes C, Lewis P, Zhang F. Human genetic risk of treatment with antiviral nucleoside analog drugs that induce lethal mutagenesis: The special case of molnupiravir. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:37-63. [PMID: 35023215 DOI: 10.1002/em.22471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This review considers antiviral nucleoside analog drugs, including ribavirin, favipiravir, and molnupiravir, which induce genome error catastrophe in SARS-CoV or SARS-CoV-2 via lethal mutagenesis as a mode of action. In vitro data indicate that molnupiravir may be 100 times more potent as an antiviral agent than ribavirin or favipiravir. Molnupiravir has recently demonstrated efficacy in a phase 3 clinical trial. Because of its anticipated global use, its relative potency, and the reported in vitro "host" cell mutagenicity of its active principle, β-d-N4-hydroxycytidine, we have reviewed the development of molnupiravir and its genotoxicity safety evaluation, as well as the genotoxicity profiles of three congeners, that is, ribavirin, favipiravir, and 5-(2-chloroethyl)-2'-deoxyuridine. We consider the potential genetic risks of molnupiravir on the basis of all available information and focus on the need for additional human genotoxicity data and follow-up in patients treated with molnupiravir and similar drugs. Such human data are especially relevant for antiviral NAs that have the potential of permanently modifying the genomes of treated patients and/or causing human teratogenicity or embryotoxicity. We conclude that the results of preclinical genotoxicity studies and phase 1 human clinical safety, tolerability, and pharmacokinetics are critical components of drug safety assessments and sentinels of unanticipated adverse health effects. We provide our rationale for performing more thorough genotoxicity testing prior to and within phase 1 clinical trials, including human PIG-A and error corrected next generation sequencing (duplex sequencing) studies in DNA and mitochondrial DNA of patients treated with antiviral NAs that induce genome error catastrophe via lethal mutagenesis.
Collapse
Affiliation(s)
- Michael D Waters
- Michael Waters Consulting USA, Hillsborough, North Carolina, USA
| | | | - Claude Hughes
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Fengyu Zhang
- Global Clinical and Translational Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Kirby C, Baig A, Avlasevich SL, Torous DK, Tian S, Singh P, Bemis JC, Saubermann LJ, Dertinger SD. Dextran sulfate sodium mouse model of inflammatory bowel disease evaluated for systemic genotoxicity via blood micronucleus and Pig-a gene mutation assays. Mutagenesis 2020; 35:161-167. [PMID: 32050029 DOI: 10.1093/mutage/geaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an important risk factor for gastrointestinal cancers. Inflammation and other carcinogenesis-related effects at distal, tissue-specific sites require further study. In order to better understand if systemic genotoxicity is associated with IBD, we exposed mice to dextran sulfate sodium salt (DSS) and measured the incidence of micronucleated cells (MN) and Pig-a mutant phenotype cells in blood erythrocyte populations. In one study, 8-week-old male CD-1 mice were exposed to 0, 1, 2, 3 or 4% w/v DSS in drinking water. The 4-week in-life period was divided into four 1-week intervals-alternately on then off DSS treatment. Low volume blood samples were collected for MN analysis at the end of each week, and cardiac blood samples were collected at the end of the 4-week period for Pig-a analyses. The two highest doses of DSS were observed to induce significant increases in reticulocyte frequencies. Even so, no statistically significant treatment-related effects on the genotoxicity biomarkers were evident. While one high-dose mouse showed modestly elevated MN frequencies during the DSS treatment cycles, it also exhibited exceptionally high reticulocyte frequencies (e.g. 18.7% at the end of the second DSS cycle). In a second study, mice were treated with 0 or 4% DSS for 9-18 consecutive days. Exposure was continued until rectal bleeding or morbidity was evident, at which point the treatment was terminated and blood was collected for MN analysis. The Pig-a assay was conducted on samples collected 29 days after the start of treatment. The initial blood specimens showed highly elevated reticulocyte frequencies in DSS-exposed mice (mean ± SEM = 1.75 ± 0.10% vs. 13.04 ± 3.66% for 0 vs. 4% mice, respectively). Statistical analyses showed no treatment-related effect on MN or Pig-a mutant frequencies. Even so, the incidence of MN versus reticulocytes in the DSS-exposed mice were positively correlated (linear fit R2 = 0.657, P = 0.0044). Collectively, these results suggest that in the case of the DSS CD-1 mouse model, systemic effects include stress erythropoiesis but not remarkable genotoxicity. To the extent MN may have been slightly elevated in a minority of individual mice, these effects appear to be secondary, likely attributable to stimulated erythropoiesis.
Collapse
Affiliation(s)
| | - Ayesha Baig
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Chen Y, Huo J, Liu Y, Zeng Z, Zhu X, Chen X, Wu R, Zhang L, Chen J. Development of a novel flow cytometry-based approach for reticulocytes micronucleus test in rat peripheral blood. J Appl Toxicol 2020; 41:595-606. [PMID: 33067908 DOI: 10.1002/jat.4068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The micronucleus test (MNT) is the most widely applied short-term assay to detect clastogens or spindle disruptors. The use of flow cytometry (FCM) has been reported for micronucleated erythrocytes scoring in peripheral blood. The aim of this study was to develop a novel and practical protocol for MNT in rat peripheral blood by FCM, with the method validation. CD71-fluorescein isothiocyanate and DRAQ5 were adopted for the fluorescent staining of proteins and DNA, respectively, to detect micronuclei. To validate the method, groups of male Sprague-Dawley rats (five per group) received two oral gavage doses at 0 and 24 h of six chemicals (four positive mutagens: ethyl methanesulphonate [EMS], cyclophosphamide [CP], colchicine [COL], and ethyl nitrosourea [ENU]; two nongenotoxic chemicals: sodium saccharin and eugenol). Blood samples were collected from the tail vein before and on the five continuous days after treatments; all of which were analyzed for micronuclei presence by both the manual (Giemsa staining) and FCM methods. The FCM-based method consistently demonstrated highly sensitive responses for micronucleus detection at all concentrations and all time points for EMS, CP, COL, and ENU. Sodium saccharin and eugenol could be identified as negative in this protocol. Results obtained with the FCM-based method correlated well with the micronucleus frequencies (r = 0.659-0.952), and the proportion of immature erythrocytes (r = 0.915-0.981) tested by Giemsa staining. The method reported here, with easy operation, low background, and requirement for a regular FCM, could be an efficient system for micronucleus scoring.
Collapse
Affiliation(s)
- Yiyi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jiao Huo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yunjie Liu
- Graduate Department, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhu Zeng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuejiao Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuxi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Rui Wu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Torous DK, Avlasevich SL, Khattab MG, Baig A, Saubermann LJ, Chen Y, Bemis JC, Lovell DP, Walker VE, MacGregor JT, Dertinger SD. Human blood PIG-A mutation and micronucleated reticulocyte flow cytometric assays: Method optimization and evaluation of intra- and inter-subject variation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:807-819. [PMID: 32572998 PMCID: PMC8582004 DOI: 10.1002/em.22393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
We previously described flow cytometry-based methods for scoring the incidence of micronucleated reticulocytes (MN-RET) and PIG-A mutant phenotype reticulocytes (MUT RET) in rodent and human blood samples. The current report describes important methodological improvements for human blood analyses, including immunomagnetic enrichment of CD71-positive reticulocytes prior to MN-RET scoring, and procedures for storing frozen blood for later PIG-A analysis. Technical replicate variability in MN-RET and MUT RET frequencies based on blood specimens from 14 subjects, intra-subject variability based on serial blood draws from 6 subjects, and inter-subject variation based on up to 344 subjects age 0 to 73 years were quantified. Inter-subject variation explained most of the variability observed for both endpoints (≥77%), with much lower intra-subject and technical replicate variability. The relatively large degree of inter-subject variation is apparent from mean and standard deviation values for MN-RET (0.15 ± 0.10%) and MUT RET (4.7 ± 5.0 per million, after omission of two extreme outliers). The influences of age and sex on inter-subject variation were investigated, and neither factor affected MN-RET whereas both influenced MUT RET frequency. The lowest MUT RET values were observed for subjects <11 years old, and males had moderately higher frequencies than females. These results indicate that MN-RET and MUT RET are automation-compatible biomarkers of genotoxicity that bridge species of toxicological interest to include human populations. These data will be useful for appropriately designing future human studies that include these biomarkers of genotoxicity, and highlight the need for additional work aimed at identifying the sources of inter-individual variability reported herein.
Collapse
Affiliation(s)
| | | | - Mona G. Khattab
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| | - Ayesha Baig
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | | | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | | | | | - Vernon E. Walker
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | | | |
Collapse
|
6
|
Chen D, Qiu YB, Gao ZQ, Wu YX, Wan BB, Liu G, Chen JL, Zhou Q, Yu RQ, Pang QF. Sodium Propionate Attenuates the Lipopolysaccharide-Induced Epithelial-Mesenchymal Transition via the PI3K/Akt/mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6554-6563. [PMID: 32452677 DOI: 10.1021/acs.jafc.0c01302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Short-chain fatty acids (SCFAs), especially propionate, originate from the fermentation of dietary fiber in the gut and play a key role in inhibiting pulmonary inflammation. Chronic inflammation may induce an epithelial-mesenchymal transition (EMT) in alveolar epithelial cells and result in fibrotic disorders. This study was designed to investigate the beneficial effect of sodium propionate (SP) on lipopolysaccharide (LPS)-induced EMT. In cultured BEAS-2B cells, the protein expression levels of E-cadherin, α-smooth muscle actin (SMA), and vimentin were 0.66 ± 0.20, 1.44 ± 0.23, and 1.32 ± 0.21 in the LPS group vs 1.11 ± 0.36 (P < 0.05), 1.04 ± 0.30 (P < 0.05), and 0.96 ± 0.13 (P < 0.01) in the LPS + SP group (mean ± standard deviation), respectively. Meanwhile, LPS-triggered inflammatory cytokines and extracellular proteins were also reduced by SP administration in BEAS-2B cells. Moreover, SP treatment attenuated inflammation, EMT, extracellular matrix (ECM) deposition, and even fibrosis in a mouse EMT model. In terms of mechanism, LPS-treated BEAS-2B cells exhibited a higher level of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) phosphorylation, which was interrupted by SP treatment. It is worth noting that the blockade of the PI3K/Akt/mTOR signaling cascade reduced the LPS-evoked EMT process in BEAS-2B cells. These results suggest that SP can block LPS-induced EMT via inhibition of the PI3K/Akt/mTOR signaling cascade, which provides a basis for possible clinical use of SP in airway and lung diseases.
Collapse
Affiliation(s)
- Dan Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yu-Bao Qiu
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhi-Qi Gao
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Ya-Xian Wu
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Bin-Bin Wan
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Gang Liu
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Jun-Liang Chen
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Ren-Qiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Qing-Feng Pang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
2-Methylfuran: Toxicity and genotoxicity in male Sprague-Dawley rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503209. [DOI: 10.1016/j.mrgentox.2020.503209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
|
8
|
Tong W, Zhou C, Huang P, Ma J, Chang Y. Integration of micronucleus, comet, and Pig-a gene mutation endpoints into rat 15-day repeat-treatment studies: Proof-of-principle with Auramine O. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:403072. [DOI: 10.1016/j.mrgentox.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
|
9
|
Dertinger SD, Avlasevich SL, Torous DK, Singh P, Khanal S, Kirby C, Drake A, MacGregor JT, Bemis JC. 3Rs friendly study designs facilitate rat liver and blood micronucleus assays and Pig-a gene mutation assessments: Proof-of-concept with 13 reference chemicals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:704-739. [PMID: 31294869 PMCID: PMC8600442 DOI: 10.1002/em.22312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 05/16/2023]
Abstract
Regulatory guidance documents stress the value of assessing the most appropriate endpoints in multiple tissues when evaluating the in vivo genotoxic potential of chemicals. However, conducting several independent studies to evaluate multiple endpoints and/or tissue compartments is resource intensive. Furthermore, when dependent on visual detection, conventional approaches for scoring genotoxicity endpoints can be slow, tedious, and less objective than the ideal. To address these issues with current practices we attempted to (1) devise resource sparing treatment and harvest schedules that are compatible with liver and blood micronucleus endpoints, as well as the Pig-a gene mutation assay, and (2) utilize flow cytometry-based methods to score each of these genotoxicity biomarkers. Proof-of-principle experiments were performed with 4-week-old male and female Crl:CD(SD) rats exposed to aristolochic acids I/II, benzo[a]pyrene, cisplatin, cyclophosphamide, diethylnitrosamine, 1,2-dimethylhydrazine, dimethylnitrosamine, 2,6-dinitrotoluene, hydroxyurea, melphalan, temozolomide, quinoline, or vinblastine. These 13 chemicals were each tested in two treatment regimens: one 3-day exposure cycle, and three 3-day exposure cycles. Each exposure, blood collection, and liver harvest was accomplished during a standard Monday-Friday workweek. Key findings are that even these well-studied, relatively potent genotoxicants were not active in both tissues and all assays (indeed only cisplatin was clearly positive in all three assays); and whereas the sensitivity of the Pig-a assay clearly benefitted from three versus one treatment cycle, micronucleus assays yielded qualitatively similar results across both study designs. Collectively, these results suggest it is possible to significantly reduce animal and other resource requirements while improving assessments of in vivo genotoxicity potential by simultaneously evaluating three endpoints and two important tissue compartments using fit-for-purpose study designs in conjunction with flow cytometric scoring approaches. Environ. Mol. Mutagen., 60:704-739, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephen D. Dertinger
- Litron Laboratories, Rochester, New York
- Correspondence to: Stephen D. Dertinger and Jeffrey C. Bemis, Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, and
| | | | | | | | | | | | | | | | - Jeffrey C. Bemis
- Litron Laboratories, Rochester, New York
- Correspondence to: Stephen D. Dertinger and Jeffrey C. Bemis, Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, and
| |
Collapse
|
10
|
Maurice C, Dertinger SD, Yauk CL, Marchetti F. Integrated In Vivo Genotoxicity Assessment of Procarbazine Hydrochloride Demonstrates Induction of Pig-a and LacZ Mutations, and Micronuclei, in MutaMouse Hematopoietic Cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:505-512. [PMID: 30592561 PMCID: PMC6618172 DOI: 10.1002/em.22271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Procarbazine hydrochloride (PCH) is a DNA-reactive hematopoietic carcinogen with potent and well-characterized clastogenic activity. However, there is a paucity of in vivo mutagenesis data for PCH, and in vitro assays often fail to detect the genotoxic effects of PCH due to the complexity of its metabolic activation. We comprehensively evaluated the in vivo genotoxicity of PCH on hematopoietic cells of male MutaMouse transgenic rodents using a study design that facilitated assessments of micronuclei and Pig-a mutation in circulating erythrocytes, and lacZ mutant frequencies in bone marrow. Mice were orally exposed to PCH (0, 6.25, 12.5, and 25 mg/kg/day) for 28 consecutive days. Blood samples collected 2 days after cessation of treatment exhibited significant dose-related induction of micronuclei in both immature and mature erythrocytes. Bone marrow and blood collected 3 and 70 days after cessation of treatment also showed significantly elevated mutant frequencies in both the lacZ and Pig-a assays even at the lowest dose tested. PCH-induced lacZ and Pig-a (immature and mature erythrocytes) mutant frequencies were highly correlated, with R2 values ≥0.956, with the exception of lacZ vs. Pig-a mutants in mature erythrocytes at the 70-day time point (R2 = 0.902). These results show that PCH is genotoxic in vivo and demonstrate that the complex metabolism and resulting genotoxicity of PCH is best evaluated in intact animal models. Our results further support the concept that multiple biomarkers of genotoxicity, especially hematopoietic cell genotoxicity, can be readily combined into one study provided that adequate attention is given to manifestation times. Environ. Mol. Mutagen. 60:505-512, 2019. © 2018 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Clotilde Maurice
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| | | | - Carole L. Yauk
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| | - Francesco Marchetti
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| |
Collapse
|
11
|
Elhajouji A, Vaskova D, Downing R, Dertinger SD, Martus H. Induction ofin vivo Pig-agene mutation but not micronuclei by 5-(2-chloroethyl)-2ʹ-deoxyuridine, an antiviral pyrimidine nucleoside analogue. Mutagenesis 2018; 33:343-350. [DOI: 10.1093/mutage/gey029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/10/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Dagmara Vaskova
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Rebecca Downing
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Hansjeorg Martus
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
12
|
Maurice C, O'Brien JM, Yauk CL, Marchetti F. Integration of sperm DNA damage assessment into OECD test guidelines for genotoxicity testing using the MutaMouse model. Toxicol Appl Pharmacol 2018; 357:10-18. [PMID: 30165057 DOI: 10.1016/j.taap.2018.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
Abstract
The Organisation for Economic Co-operation and Development (OECD) endorses test guidelines (TG) for identifying chemicals that are genotoxic, such as the transgenic rodent gene mutation assay (TG 488). Current OECD TG do not include assays for sperm DNA damage resulting in a critical testing gap. We evaluated the performance of the Sperm Chromatin Structure Assay (SCSA) and the Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick end Labeling (TUNEL) assay to detect sperm DNA damage within the recommended TG 488 protocol. MutaMouse males received 0, 0.5, 1, or 2 mg/kg/day triethylenemelamine (TEM), a multifunctional alkylating agent, for 28 days orally and tissues were collected two (blood) and three (sperm and bone marrow) days later. TEM significantly increased the frequency of lacZ mutants in bone marrow, and of micronuclei (MN) in both reticulocytes (%MN-RET) and normochromatic erythrocytes (%MN-NCE) in a dose-dependent manner (P < 0.05). The percentage of DNA fragmentation index (%DFI) and %TUNEL positive cells demonstrated dose-related increases in sperm (P < 0.05), and the two assay results were strongly correlated (R = 0.9298). Within the same animal, a good correlation was observed between %MN-NCE and %DFI (R = 0.7189). Finally, benchmark dose modelling (BMD) showed comparable BMD10 values among the somatic and germ cell assays. Our results suggest that sperm DNA damage assays can be easily integrated into standard OECD designs investigating genotoxicity in somatic tissues to provide key information on whether a chemical is genotoxic in germ cells and impact its risk assessment.
Collapse
Affiliation(s)
- Clotilde Maurice
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, 0803A, Ottawa, ON K1A 0K9, Canada
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON K1A 0H3, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, 0803A, Ottawa, ON K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, 0803A, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
13
|
LeBlanc DP, Behan NA, O'Brien JM, Marchetti F, MacFarlane AJ. Folate deficiency increases chromosomal damage and mutations in hematopoietic cells in the transgenic mutamouse model. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:366-374. [PMID: 29668043 DOI: 10.1002/em.22190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Folate deficiency causes megaloblastic anemia and neural tube defects, and is also associated with some cancers. In vitro, folate deficiency increases mutation frequency and genome instability, as well as exacerbates the mutagenic potential of known environmental mutagens. Conversely, it remains unclear whether or not elevated folic acid (FA) intakes are beneficial or detrimental to the induction of DNA mutations and by proxy human health. We used the MutaMouse transgenic model to examine the in vivo effects of FA deficient, control, and supplemented diets on somatic DNA mutant frequency (MF) and genome instability in hematopoietic cells. We also examined the interaction between FA intake and exposure to the known mutagen N-ethyl-N-nitrosourea (ENU) on MF. Male mice were fed the experimental diets for 20 weeks from weaning. Half of the mice from each diet group were gavaged with 50 mg/kg body weight ENU after 10 weeks on diet and remained on their respective diet for an additional 10 weeks. Mice fed a FA-deficient diet had a 1.3-fold increase in normochromatic erythrocyte micronucleus (MN) frequency (P = 0.034), and a doubling of bone marrow lacZ MF (P = 0.035), compared to control-fed mice. Mice exposed to ENU showed significantly higher bone marrow lacZ and Pig-a MF, but there was no effect of FA intake on ENU-induced MF. These data indicate that FA deficiency increases mutations and MN formation in highly proliferative somatic cells, but that FA intake does not mitigate ENU-induced mutations. Also, FA intake above adequacy had no beneficial or detrimental effect on mutations or MN formation. Environ. Mol. Mutagen. 59:366-374, 2018. © 2018 Her Majesty the Queen in Right of Canada 2018.
Collapse
Affiliation(s)
- Danielle P LeBlanc
- Nutrition Research Division, Health Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Nathalie A Behan
- Nutrition Research Division, Health Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Jason M O'Brien
- Department of Biology, Carleton University, Ottawa, Canada
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Canada
| | - Francesco Marchetti
- Department of Biology, Carleton University, Ottawa, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Amanda J MacFarlane
- Nutrition Research Division, Health Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
14
|
Avlasevich SL, Khanal S, Singh P, Torous DK, Bemis JC, Dertinger SD. Flow cytometric method for scoring rat liver micronuclei with simultaneous assessments of hepatocyte proliferation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:176-187. [PMID: 29356121 PMCID: PMC5854533 DOI: 10.1002/em.22168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/20/2017] [Indexed: 05/28/2023]
Abstract
The current report describes a newly devised method for automatically scoring the incidence of rat hepatocyte micronuclei (MNHEP) via flow cytometry, with concurrent assessments of hepatocyte proliferation-frequency of Ki-67-positive nuclei, and the proportion of polyploid nuclei. Proof-of-concept data are provided from experiments performed with 6-week old male Crl:CD(SD) rats exposed to diethylnitrosamine (DEN) or quinoline (QUIN) for 3 or 14 consecutive days. Non-perfused liver tissue was collected 4 days after cessation of treatment in the case of 3-day studies, or 1 day after last administration in the case of 14-day studies for processing and flow cytometric analysis. In addition to livers, blood samples were collected one day after final treatment for micronucleated reticulocyte (MN-RET) measurements. Dose-dependent increases in MNHEP, Ki-67-positive nuclei, and polyploidy were observed in 3- and 14-day DEN studies. Both treatment schedules resulted in elevated %MNHEP for QUIN-exposed rats, and while cell proliferation effects were subtle, appreciable increases to normalized liver weights were observed. Whereas DEN caused markedly higher %MNHEP when exposure was extended to two weeks, QUIN-induced MNHEP were slightly increased with protracted dosing. Parallel microscopy-based MNHEP frequencies were highly correlated with flow cytometry-based measurements (four study/aggregate R2 = 0.80). No increases in MN-RET were seen in any of the four studies. Collectively, these results suggest liver micronuclei are amenable to an automated scoring technique that provides objective analyses and higher information content relative to conventional microscopy. Additional work is needed to expand the number and types of chemicals tested, identify the most advantageous treatment schedules, and test the transferability of the method. Environ. Mol. Mutagen. 59:176-187, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen D. Dertinger
- Corresponding Author: S.D.D., Litron Laboratories, 3500 Winton Place, Rochester, NY 14623; Tele: 585-442-0930; fax: 585-442-0934;
| |
Collapse
|
15
|
Guérard M, Marchand C, Funk J, Christen F, Winter M, Zeller A. DNA Damage Response of 4-Chloro-Ortho-Toluidine in Various Rat Tissues. Toxicol Sci 2018; 163:516-524. [DOI: 10.1093/toxsci/kfy054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Melanie Guérard
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Christine Marchand
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jürgen Funk
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Francois Christen
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Michael Winter
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Andreas Zeller
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| |
Collapse
|
16
|
Khanal S, Singh P, Avlasevich SL, Torous DK, Bemis JC, Dertinger SD. Integration of liver and blood micronucleus and Pig-a gene mutation endpoints into rat 28-day repeat-treatment studies: Proof-of-principle with diethylnitrosamine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 828:30-35. [PMID: 29555062 DOI: 10.1016/j.mrgentox.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
Abstract
Regulatory guidance documents stress the value of assessing multiple tissues and the most appropriate endpoints when evaluating chemicals for in vivo genotoxic potential. However, conducting several independent studies to consider multiple endpoints and/or tissue compartments is resource intensive. Furthermore, conventional approaches for scoring genotoxicity endpoints are slow, tedious, and less objective than what would be considered ideal. In an effort to address these issues with current practices, we attempted to i) employ flow cytometry-based methods to score liver micronuclei, blood micronuclei, and blood Pig-a gene mutation, and ii) integrate the endpoints into a common general toxicology study design-the rat 28-day repeat dose study. A proof-of-principle experiment was performed with 6-week old male Crl:CD(SD) rats exposed to diethylnitrosamine (DEN) for 28 consecutive days. One day later blood was collected for micronucleated reticulocyte (MN-RET) and Pig-a mutation assays, and liver tissue was obtained for micronucleated hepatocyte (MNHEP) scoring. MN-RET frequencies were not affected by DEN exposure, and mean Pig-a mutant cell frequencies were only slightly elevated. On the other hand, % MNHEP showed marked, dose-related increases (2.2, 7.2, and 9.1 mean fold-increase for 5, 10, 15 mg DEN/kg/day, respectively). Concurrent with MNHEP analyses, assessments of Ki-67-positive events and the proportion of 8n nuclei provided evidence for treatment-related changes to hepatocyte proliferation. Collectively, these results reinforce the importance of evaluating chemicals' genotoxic potential in liver in addition to hematopoietic cells, and suggest that several automated measurements can be successfully integrated into repeat-dose studies for higher efficiencies and better utilization of fewer animals.
Collapse
|
17
|
Gajski G, Ladeira C, Gerić M, Garaj-Vrhovac V, Viegas S. Genotoxicity assessment of a selected cytostatic drug mixture in human lymphocytes: A study based on concentrations relevant for occupational exposure. ENVIRONMENTAL RESEARCH 2018; 161:26-34. [PMID: 29100207 DOI: 10.1016/j.envres.2017.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Cytostatic drugs are highly cytotoxic agents used in cancer treatment and although their benefit is unquestionable, they have been recognized as hazardous to healthcare professionals in occupational settings. In a working environment, simultaneous exposure to cytostatics may occur creating a higher risk than that of a single substance. Hence, the present study evaluated the combined cyto/genotoxicity of a mixture of selected cytostatics with different mechanisms of action (MoA; 5-fluorouracil, cyclophosphamide and paclitaxel) towards human lymphocytes in vitro at a concentration range relevant for occupational as well as environmental exposure. The results suggest that the selected cytostatic drug mixture is potentially cyto/genotoxic and that it can induce cell and genome damage even at low concentrations. This indicates not only that such mixture may pose a risk to cell and genome integrity, but also that single compound toxicity data are not sufficient for the prediction of toxicity in a complex working environment. The presence of drugs in different amounts and with different MoA suggests the need to study the relationship between the presence of genotoxic components in the mixture and the resulting effects, taking into account the MoA of each component by itself. Therefore, this study provides new data sets necessary for scientifically-based risk assessments of cytostatic drug mixtures in occupational as well as environmental settings.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Carina Ladeira
- Grupo de Investigação em Ambiente e Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal; Grupo de Investigação em Genética e Metabolismo, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Susana Viegas
- Grupo de Investigação em Ambiente e Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
18
|
Long AS, Wills JW, Krolak D, Guo M, Dertinger SD, Arlt VM, White PA. Benchmark dose analyses of multiple genetic toxicity endpoints permit robust, cross-tissue comparisons of MutaMouse responses to orally delivered benzo[a]pyrene. Arch Toxicol 2018; 92:967-982. [PMID: 29177888 PMCID: PMC5818629 DOI: 10.1007/s00204-017-2099-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
Abstract
Genetic damage is a key event in tumorigenesis, and chemically induced genotoxic effects are a human health concern. Although genetic toxicity data have historically been interpreted using a qualitative screen-and-bin approach, there is increasing interest in quantitative analysis of genetic toxicity dose-response data. We demonstrate an emerging use of the benchmark dose (BMD)-approach for empirically ranking cross-tissue sensitivity. Using a model environmental carcinogen, we quantitatively examined responses for four genetic damage endpoints over an extended dose range, and conducted cross-tissue sensitivity rankings using BMD100 values and their 90% confidence intervals (CIs). MutaMouse specimens were orally exposed to 11 doses of benzo[a]pyrene. DNA adduct frequency and lacZ mutant frequency (MF) were measured in up to 8 tissues, and Pig-a MF and micronuclei (MN) were assessed in immature (RETs) and mature red blood cells (RBCs). The cross-tissue BMD pattern for lacZ MF is similar to that observed for DNA adducts, and is consistent with an oral route-of-exposure and differences in tissue-specific metabolism and proliferation. The lacZ MF BMDs were significantly correlated with the tissue-matched adduct BMDs, demonstrating a consistent adduct conversion rate across tissues. The BMD CIs, for both the Pig-a and the MN endpoints, overlapped for RETs and RBCs, suggesting comparable utility of both cell populations for protracted exposures. Examination of endpoint-specific response maxima illustrates the difficulty of comparing BMD values for a fixed benchmark response across endpoints. Overall, the BMD-approach permitted robust comparisons of responses across tissues/endpoints, which is valuable to our mechanistic understanding of how benzo[a]pyrene induces genetic damage.
Collapse
Affiliation(s)
- Alexandra S Long
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - John W Wills
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Dorothy Krolak
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada
| | - Matthew Guo
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada
| | | | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Paul A White
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Avlasevich SL, Labash C, Torous DK, Bemis JC, MacGregor JT, Dertinger SD. In vivo pig-a and micronucleus study of the prototypical aneugen vinblastine sulfate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:30-37. [PMID: 28833575 PMCID: PMC5773054 DOI: 10.1002/em.22122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 05/05/2023]
Abstract
The Pig-a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig-a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty-eight consecutive days with vinblastine dose levels from 0.0156 to 0.125 mg/kg/day. Micronucleated reticulocyte frequencies in peripheral blood were determined at Days 4 and 29, and mutant cell frequencies were determined at Days -4, 15, 29, and 46. Vinblastine affected reticulocyte frequencies, with reductions noted during the treatment phase and increases observed following cessation of treatment. Micronucleated reticulocyte frequencies were significantly elevated at Day 4 in the high dose group. Although a statistically significant increase in mutant reticulocyte frequencies were found for one dose group at a single time point (Day 46), it was not deemed biologically relevant because there was no analogous finding in mutant RBCs, it occurred at the lowest dose tested, and only 1 rat exceeded an upper bound tolerance interval established with historical negative control rats. Therefore, whereas micronucleus induction reflects vinblastine's well-established aneugenic effect on hematopoietic cells, the lack of a Pig-a response indicates that this tubulin-binding agent does not cause appreciable mutagenicity in this same cell type. Environ. Mol. Mutagen. 59:30-37, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
|
20
|
Lemon JA, Phan N, Boreham DR. Multiple CT Scans Extend Lifespan by Delaying Cancer Progression in Cancer-Prone Mice. Radiat Res 2017; 188:495-504. [DOI: 10.1667/rr14575.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jennifer A. Lemon
- Medical Sciences, Northern Ontario School of Medicine, Sudbury, Canada, P3E 2C6
| | - Nghi Phan
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R. Boreham
- Medical Sciences, Northern Ontario School of Medicine, Sudbury, Canada, P3E 2C6
| |
Collapse
|
21
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
22
|
Gajski G, Gerić M, Domijan AM, Garaj-Vrhovac V. Combined cyto/genotoxic activity of a selected antineoplastic drug mixture in human circulating blood cells. CHEMOSPHERE 2016; 165:529-538. [PMID: 27681109 DOI: 10.1016/j.chemosphere.2016.09.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Antineoplastic drugs are highly cytotoxic chemotherapeutic agents that can often interfere directly or indirectly with the cell's genome. In an environmental or medical setting simultaneous exposure may occur. Such multiple exposures may pose a higher risk than it could be assumed from the studies evaluating the effect of a single substance. Therefore, in the present study we tested the combined cyto/genotoxicity of a mixture of selected antineoplastic drugs with different mechanisms of action (5-fluorouracil, etoposide, and imatinib mesylate) towards human lymphocytes in vitro. The results suggest that the selected antineoplastic drug mixture is potentially cyto/genotoxic and that it can induce cell and genome damage even at low concentrations. Moreover, the changes in the measured oxidative stress parameters suggest the participation of reactive oxygen species in the cyto/genotoxicity of the selected mixture. The obtained results indicate not only that such mixtures may pose a risk to cell and genome integrity, but also that single compound toxicity data are not sufficient for the predicting toxicity in a complex environment. Altogether, the results emphasise the need for further toxicological screening of antineoplastic drug mixtures, especially at low environmentally relevant concentrations, as to avoid any possible adverse effects on the environment and human health.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
23
|
Long AS, Watson M, Arlt VM, White PA. Oral exposure to commercially available coal tar-based pavement sealcoat induces murine genetic damage and mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:535-45. [PMID: 27473530 PMCID: PMC4979669 DOI: 10.1002/em.22032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/12/2023]
Abstract
Coal tar (CT) is a thick black liquid produced as a by-product of coal carbonization to produce coke or manufactured gas. It is comprised a complex mixture of polycyclic aromatic compounds, including a wide range of polycyclic aromatic hydrocarbons (PAHs), many of which are genotoxic and carcinogenic. CT is used in some pavement sealants (also known as sealcoat), which are applied to pavement in order to seal and beautify the surface. Human exposure is known to occur not only during application, but also as a result of the weathering process, as elevated levels of PAHs have been found in settled house dust in residences adjacent to CT-sealed surfaces. In this study we examined the genotoxicity of an extract of a commercially available CT-based sealcoat in the transgenic Muta™Mouse model. Mice were orally exposed to 3 doses of sealcoat extract daily for 28 days. We evaluated genotoxicity by examining: (1) stable DNA adducts and (2) lacZ mutations in bone marrow, liver, lung, small intestine, and glandular stomach, as well as (3) micronucleated red blood cells. Significant increases were seen for each endpoint and in all tissues. The potency of the response differed across tissues, with the highest frequency of adducts occurring in liver and lung, and the highest frequency of mutations occurring in small intestine. The results of this study are the first demonstration of mammalian genotoxicity following exposure to CT-containing pavement sealcoat. This work provides in vivo evidence to support the contention that there may be adverse health effects in mammals, and potentially in humans, from exposure to coal tar. Environ. Mol. Mutagen. 57:535-545, 2016. © 2016 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Alexandra S. Long
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| | - Margaret Watson
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| | - Volker M. Arlt
- Analytical and Environmental Sciences DivisionMRC‐PHE Centre for Environment and Health, King's College LondonLondonUnited Kingdom
| | - Paul A. White
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| |
Collapse
|
24
|
Dalrymple A, Ordoñez P, Thorne D, Walker D, Camacho OM, Büttner A, Dillon D, Meredith C. Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing. Inhal Toxicol 2016; 28:324-38. [PMID: 27160659 PMCID: PMC4898166 DOI: 10.3109/08958378.2016.1170911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022]
Abstract
Many laboratories are working to develop in vitro models that will replace in vivo tests, but occasionally there remains a regulatory expectation of some in vivo testing. Historically, cigarettes have been tested in vivo for 90 days. Recently, methods to reduce and refine animal use have been explored. This study investigated the potential of reducing animal cigarette smoke (CS) exposure to 3 or 6 weeks, and the feasibility of separate lung lobes for histopathology or the Comet assay. Rats were exposed to sham air or CS (1 or 2 h) for 3 or 6 weeks. Respiratory tissues were processed for histopathological evaluation, and Alveolar type II cells (AEC II) isolated for the Comet assay. Blood was collected for Pig-a and micronucleus quantification. Histopathological analyses demonstrated exposure effects, which were generally dependent on CS dose (1 or 2 h, 5 days/week). Comet analysis identified that DNA damage increased in AEC II following 3 or 6 weeks CS exposure, and the level at 6 weeks was higher than 3 weeks. Pig-a mutation or micronucleus levels were not increased. In conclusion, this study showed that 3 weeks of CS exposure was sufficient to observe respiratory tract pathology and DNA damage in isolated AEC II. Differences between the 3 and 6 week data imply that DNA damage in the lung is cumulative. Reducing exposure time, plus analyzing separate lung lobes for DNA damage or histopathology, supports a strategy to reduce and refine animal use in tobacco product testing and is aligned to the 3Rs (replacement, reduction and refinement).
Collapse
Affiliation(s)
| | - Patricia Ordoñez
- Vivotecnia Research S.L., Parque Científico de Madrid,
Tres Cantos,
Madrid,
Spain
| | - David Thorne
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | - David Walker
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | | | | | - Debbie Dillon
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| | - Clive Meredith
- British American Tobacco, R&D,
Southampton,
Hampshire,
UK
| |
Collapse
|
25
|
Long AS, Lemieux CL, Arlt VM, White PA. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Muta™Mouse transgenic rodent assay. Toxicol Appl Pharmacol 2016; 290:31-42. [PMID: 26603514 PMCID: PMC4712826 DOI: 10.1016/j.taap.2015.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
Abstract
Test batteries to screen chemicals for mutagenic hazard include several endpoints regarded as effective for detecting genotoxic carcinogens. Traditional in vivo methods primarily examine clastogenic endpoints in haematopoietic tissues. Although this approach is effective for identifying systemically distributed clastogens, some mutagens may not induce clastogenic effects; moreover, genotoxic effects may be restricted to the site of contact and/or related tissues. An OECD test guideline for transgenic rodent (TGR) gene mutation assays was released in 2011, and the TGR assays permit assessment of mutagenicity in any tissue. This study assessed the responses of two genotoxicity endpoints following sub-chronic oral exposures of male Muta™Mouse to 9 carcinogenic polycyclic aromatic hydrocarbons (PAHs). Clastogenicity was assessed via induction of micronuclei in peripheral blood, and mutagenicity via induction of lacZ transgene mutations in bone marrow, glandular stomach, small intestine, liver, and lung. Additionally, the presence of bulky PAH-DNA adducts was examined. Five of the 9 PAHs elicited positive results across all endpoints in at least one tissue, and no PAHs were negative or equivocal across all endpoints. All PAHs were positive for lacZ mutations in at least one tissue (sensitivity=100%), and for 8 PAHs, one or more initial sites of chemical contact (i.e., glandular stomach, liver, small intestine) yielded a greater response than bone marrow. Five PAHs were positive in the micronucleus assay (sensitivity=56%). Furthermore, all PAHs produced DNA adducts in at least one tissue. The results demonstrate the utility of the TGR assay for mutagenicity assessment, especially for compounds that may not be systemically distributed.
Collapse
Affiliation(s)
- Alexandra S Long
- Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON, Canada; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Christine L Lemieux
- Air Health Science Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Paul A White
- Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON, Canada; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
26
|
Chepelev NL, Long AS, Williams A, Kuo B, Gagné R, Kennedy DA, Phillips DH, Arlt VM, White PA, Yauk CL. Transcriptional Profiling of Dibenzo[def,p]chrysene-induced Spleen Atrophy Provides Mechanistic Insights into its Immunotoxicity in MutaMouse. Toxicol Sci 2016; 149:251-68. [PMID: 26496743 DOI: 10.1093/toxsci/kfv232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Dibenzo[def,p]chrysene (DBC) is the most carcinogenic polycyclic aromatic hydrocarbon (PAH) examined to date. We investigated the immunotoxicity of DBC, manifested as spleen atrophy, following acute exposure of adult MutaMouse males by oral gavage. Mice were exposed to 0, 2.0, 6.2, or 20.0 mg DBC /kg-bw per day, for 3 days. Genotoxic endpoints (DBC-DNA adducts and lacZ mutant frequency in spleen and bone marrow, and red blood cell micronucleus frequency) and global gene expression changes were measured. All of the genotoxicity measures increased in a dose-dependent manner in spleen and bone marrow. Gene expression analysis showed that DBC activates p53 signaling pathways related to cellular growth and proliferation, which was evident even at the low dose. Strikingly, the expression profiles of DBC exposed mouse spleens were highly inversely correlated with the expression profiles of the only published toxicogenomics dataset of enlarged mouse spleen. This analysis suggested a central role for Bnip3l, a pro-apoptotic protein involved in negative regulation of erythroid maturation. RT-PCR confirmed expression changes in several genes related to apoptosis, iron metabolism, and aryl hydrocarbon receptor signaling that are regulated in the opposite direction during spleen atrophy versus benzo[a]pyrene-mediated splenomegaly. In addition, benchmark dose modeling of toxicogenomics data yielded toxicity estimates that are very close to traditional toxicity endpoints. This work illustrates the power of toxicogenomics to reveal rich mechanistic information for immunotoxic compounds and its ability to provide information that is quantitatively similar to that derived from standard toxicity methods in health risk assessment.
Collapse
Affiliation(s)
- Nikolai L Chepelev
- *Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada and
| | - Alexandra S Long
- *Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada and
| | - Andrew Williams
- *Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada and
| | - Byron Kuo
- *Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada and
| | - Rémi Gagné
- *Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada and
| | - Dean A Kennedy
- *Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada and
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London SE1 9NH, UK
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London SE1 9NH, UK
| | - Paul A White
- *Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada and
| | - Carole L Yauk
- *Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada and
| |
Collapse
|
27
|
Dietary folic acid protects against genotoxicity in the red blood cells of mice. Mutat Res 2015; 779:105-11. [PMID: 26177356 DOI: 10.1016/j.mrfmmm.2015.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022]
Abstract
Folate is an essential B vitamin required for the de novo synthesis of purines, thymidylate and methionine. Folate deficiency can lead to mutations and genome instability, and has been shown to exacerbate the genotoxic potential of environmental toxins. We hypothesized that a folic acid (FA) deficient diet would induce genotoxicity in mice as measured by the Pig-a mutant phenotype (CD24-) and micronuclei (MN) in reticulocytes (RET) and red blood cells/normochromatic erythrocytes (RBC/NCE). Male Balb/c mice were fed a FA deficient (0 mg/kg), control (2 mg/kg) or supplemented (6 mg/kg) diet from weaning for 18 wk. Mice fed the deficient diet had 70% lower liver folate (p < 0.001), 1.8 fold higher MN-RET (p < 0.001), and 1.5 fold higher MN-NCE (p < 0.001) than mice fed the control diet. RET(CD24-) and RBC(CD24-) frequencies were not different between mice fed the deficient and control diets. Compared to mice fed the FA supplemented diet, mice fed the deficient diet had 73% lower liver folate (p < 0.001), a 2.0 fold increase in MN-RET (p < 0.001), a 1.6 fold increase in MN-NCE (p < 0.001) and 3.8 fold increase in RBC(CD24-) frequency (p = 0.011). RET(CD24-) frequency did not differ between mice fed the deficient and supplemented diets. Our data suggest that FA adequacy protects against mutagenesis at the Pig-a locus and MN induction in the red blood cells of mice.
Collapse
|
28
|
Bemis JC, Wills JW, Bryce SM, Torous DK, Dertinger SD, Slob W. Comparison of in vitro and in vivo clastogenic potency based on benchmark dose analysis of flow cytometric micronucleus data. Mutagenesis 2015; 31:277-85. [PMID: 26049158 DOI: 10.1093/mutage/gev041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The application of flow cytometry as a scoring platform for both in vivo and in vitro micronucleus (MN) studies has enabled the efficient generation of high quality datasets suitable for comprehensive assessment of dose-response. Using this information, it is possible to obtain precise estimates of the clastogenic potency of chemicals. We illustrate this by estimating the in vivo and the in vitro potencies of seven model clastogenic agents (melphalan, chlorambucil, thiotepa, 1,3-propane sultone, hydroxyurea, azathioprine and methyl methanesulfonate) by deriving BMDs using freely available BMD software (PROAST). After exposing male rats for 3 days with up to nine dose levels of each individual chemical, peripheral blood samples were collected on Day 4. These chemicals were also evaluated for in vitro MN induction by treating TK6 cells with up to 20 concentrations in quadruplicate. In vitro MN frequencies were determined via flow cytometry using a 96-well plate autosampler. The estimated in vitro and in vivo BMDs were found to correlate to each other. The correlation showed considerable scatter, as may be expected given the complexity of the whole animal model versus the simplicity of the cell culture system. Even so, the existence of the correlation suggests that information on the clastogenic potency of a compound can be derived from either whole animal studies or cell culture-based models of chromosomal damage. We also show that the choice of the benchmark response, i.e. the effect size associated with the BMD, is not essential in establishing the correlation between both systems. Our results support the concept that datasets derived from comprehensive genotoxicity studies can provide quantitative dose-response metrics. Such investigational studies, when supported by additional data, might then contribute directly to product safety investigations, regulatory decision-making and human risk assessment.
Collapse
Affiliation(s)
| | - John W Wills
- Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada and
| | | | | | | | - Wout Slob
- National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
29
|
Bemis JC, Labash C, Avlasevich SL, Carlson K, Berg A, Torous DK, Barragato M, MacGregor JT, Dertinger SD. Rat Pig-a mutation assay responds to the genotoxic carcinogen ethyl carbamate but not the non-genotoxic carcinogen methyl carbamate. Mutagenesis 2015; 30:343-7. [PMID: 25833916 PMCID: PMC4422867 DOI: 10.1093/mutage/geu084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500 mg/kg/day) or EC (250 mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9×10(-6) on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2×10(-6) on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action.
Collapse
Affiliation(s)
- Jeffrey C Bemis
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Carson Labash
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Svetlana L Avlasevich
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Kristine Carlson
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Ariel Berg
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Dorothea K Torous
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Matthew Barragato
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | | | - Stephen D Dertinger
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| |
Collapse
|
30
|
Labash C, Avlasevich SL, Carlson K, Torous DK, Berg A, Bemis JC, MacGregor JT, Dertinger SD. Comparison of male versus female responses in the Pig-a mutation assay. Mutagenesis 2015; 30:349-57. [PMID: 25833915 DOI: 10.1093/mutage/geu055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Validation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, 7- or 14-week old male and female Sprague Dawley rats were exposed to N-ethyl-N-nitrosourea (ENU). In the study with the 7-week old rats, exposure was to 0, 1, 5 or 25mg ENU/kg/day for three consecutive days (study Days 1-3). Pig-a mutant phenotype reticulocyte (RET(CD59-)) and mutant phenotype erythrocyte (RBC(CD59-)) frequencies were determined on study Days -4, 15, 29 and 46 using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). Additionally, blood samples collected on Day 4 were analysed for micronucleated reticulocyte (MN-RET) frequency (In Vivo MicroFlow®). The percentage of reticulocytes (%RET) was markedly higher in the 7-week old males compared to females through Day 15 (2.39-fold higher on Day -4). At 25mg/kg/day, ENU reduced Day 4 RET frequencies in both sexes, and the two highest dose levels resulted in elevated MN-RET frequencies, with no sex or treatment × sex interaction. The two highest dose levels significantly elevated the frequencies of mean RET(CD59-) and RBC(CD59-) in both sexes from Day 15 onward. RET(CD59-) and RBC(CD59-) frequencies were somewhat lower for females compared to males at the highest dose level studied, and differences in RET(CD59-) resulted in a statistically significant interaction effect of treatment × sex. In the study with 14-week old rats, treatment was for 3 days with 0 or 25mg ENU/kg/day. RET frequencies differed to a lesser degree between the sexes, and in this case there was no evidence of a treatment × sex interaction. These results suggest that the slightly higher response in younger males than in the younger females may be related to differences in erythropoiesis function at that age. In conclusion, while some quantitative differences were noted, there were no qualitative differences in how males and females responded to a prototypical mutagen, and support the contention that both sexes are equally acceptable for Pig-a gene mutation studies.
Collapse
|
31
|
Tu H, Zhang M, Zhou C, Wang Z, Huang P, Ou H, Chang Y. Genotoxicity assessment of melamine in the in vivo Pig-a mutation assay and in a standard battery of assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 777:62-7. [PMID: 25726176 DOI: 10.1016/j.mrgentox.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
The genotoxicity of melamine was evaluated with the combined Pig-a mutation/micronucleus assay, the bacterial reverse mutation assay, and the in vitro cytokinesis-block micronucleus assay (CBMN). Five groups of six- to eight-week-old male Sprague-Dawley (SD) rats were given three daily doses of vehicle control (100% pure sesame oil), melamine (500, 1000, and 2000 mg/kg) or positive control (N-ethyl-N-nitrosourea, ENU, 20 mg/kg) by oral gavage. Peripheral blood was sampled pre-dose (day -1) and at time points up to day 60. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD59-) and RET(CD59-) frequencies, on days -1, 15, 29 and 60, and micronucleus frequencies were measured in RETs on day 4. No significant increases in RBC(CD59-) or RET(CD59-) frequencies were observed for the melamine-treated group at any of the time points studied, but the positive control, ENU, induced statistically significant increases compared with the vehicle control. Similar results were obtained in the micronucleus assay. Melamine did not induce statistically significant increases in %MN-RET. In the bacterial reverse mutation assay, melamine was tested from 62.5 to 1000 μg/plate in tester strains TA97a, TA98, TA100, TA102, and TA1535, with and without metabolic activation, and no evidence of toxicity or mutagenicity was observed at any dose tested. In the in vitro CBMN assay, in Chinese hamster ovary (CHO) cells, melamine was tested (75, 150, and 300 μg/mL) in the presence and absence of S9 mix, and no positive increases in the number of cells containing micronuclei were seen. These results suggest that melamine does not exhibit significant genotoxic potential. These data could be valuable for risk assessment purposes and also for further characterizing the new in vivoPig-a gene mutation assay.
Collapse
Affiliation(s)
- Honggang Tu
- National Shanghai Center for New Drug Safety Evaluation & Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Ming Zhang
- National Shanghai Center for New Drug Safety Evaluation & Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Changhui Zhou
- National Shanghai Center for New Drug Safety Evaluation & Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Zheng Wang
- National Shanghai Center for New Drug Safety Evaluation & Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Pengcheng Huang
- National Shanghai Center for New Drug Safety Evaluation & Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Hongmei Ou
- National Shanghai Center for New Drug Safety Evaluation & Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yan Chang
- National Shanghai Center for New Drug Safety Evaluation & Research, China State Institute of Pharmaceutical Industry, Shanghai, China.
| |
Collapse
|
32
|
Zhou C, Zhang M, Huang P, Tu H, Wang Z, Dertinger SD, Torous DK, Chang Y. Assessment of 5-fluorouracil and 4-nitroquinoline-1-oxide in vivo genotoxicity with Pig-a mutation and micronucleus endpoints. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:735-740. [PMID: 25124805 DOI: 10.1002/em.21893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Genotoxicity assessments were conducted on male Sprague Dawley rats treated with 5-fluorouracil (5-FU) and 4-nitroquinoline-1-oxide (4NQO) as part of an international validation trial of the Pig-a mutant phenotype assay. Rats were orally exposed to 0, 11.5, 23, or 46 mg/kg/day 5-FU for three consecutive days (Days 1-3); blood was sampled on Days -1, 4, 15, 29, and 45. Pig-a mutant phenotype reticulocyte (RET(CD59-)) and mutant phenotype erythrocyte (RBC(CD59-)) frequencies were determined on Days -1, 15, 29, and 45, and percent micronucleated reticulocytes (%MN-RET) were measured on Day 4. Rats were treated with 4NQO for 28 consecutive days by oral gavage, at doses of 1.5, 3, or 6 mg/kg/day. RBC(CD59-) and RET(CD59-) frequencies were determined on Days -1, 15, and 29, and MN-RET were quantified on Day 29. Whereas 5-FU was found to increase %MN-RET, no significant increases were observed for RBC(CD59-) or RET(CD59-) at any of the time points studied. The high dose of 4NQO (6 mg/kg/day) was observed to markedly increase RBC(CD59-) and RET(CD59-) frequencies, and this same dose level caused a weak but significantly elevated increase in MN-RET (approximately twofold). Collectively, the results provide additional support for the combination of Pig-a mutation and MN-RET into acute and 28-day repeat-dose studies.
Collapse
Affiliation(s)
- Changhui Zhou
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Avlasevich SL, Phonethepswath S, Labash C, Carlson K, Torous DK, Cottom J, Bemis JC, MacGregor JT, Dertinger SD. Diethylnitrosamine genotoxicity evaluated in sprague dawley rats using pig-a mutation and reticulocyte micronucleus assays. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:400-406. [PMID: 24574022 DOI: 10.1002/em.21862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
Diethylnitrosamine (DEN) is a genotoxic carcinogen, but in vivo DNA-damaging activities are not usually evident in hematopoietic cells because the short-lived active metabolite is formed mainly in the liver. DEN therefore represented an interesting case for evaluating the performance characteristics of blood-based endpoints of genotoxicity that have been automated using flow cytometric analysis-frequency of micronucleated reticulocytes and Pig-a mutant phenotype reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ). Male Sprague Dawley rats were treated for 28 consecutive days with DEN at levels up to 12.5 mg/kg/day. Serial blood samples were collected and micronucleus frequencies were determined on Days 4 and 29, while RET(CD59-) and RBC(CD59-) frequencies were determined on Days 15, 29, and 42. The Pig-a analyses were conducted with an enrichment step based on immunomagnetic column separation to increase the statistical power of the assay. Modest but significant reductions to reticulocyte frequencies demonstrated that bone marrow was exposed to reactive intermediates. Even so, DEN did not affect micronucleus frequencies at any dose level tested. However, RET(CD59-) frequencies were significantly elevated in the high dose group on Day 29, and RBC(CD59-) were increased at this same dose level on Days 29 and 42. These results demonstrate that the Pig-a assay is sufficiently sensitive to evaluate chemicals for genotoxic potential, even in the case of a promutagen that has traditionally required direct assessment(s) of liver tissue for detection of DNA-damage.
Collapse
|
34
|
Dertinger SD, Avlasevich SL, Torous DK, Bemis JC, Phonethepswath S, Labash C, Carlson K, Mereness J, Cottom J, Palis J, MacGregor JT. Persistence of cisplatin-induced mutagenicity in hematopoietic stem cells: implications for secondary cancer risk following chemotherapy. Toxicol Sci 2014; 140:307-14. [PMID: 24798381 DOI: 10.1093/toxsci/kfu078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cisplatin is a cytostatic agent used in the treatment of many types of cancer, but its use is associated with increased incidences of secondary leukemia. We evaluated cisplatin's in vivo genotoxic potential by analyzing peripheral blood for Pig-a mutant phenotype erythrocytes and for chromosomal damage in the form of micronuclei. Mutant phenotype reticuloyte and erythrocyte frequencies, based on anti-CD59 antibody labeling and flow cytometric analysis, were determined in male Sprague Dawley rats treated for 28 consecutive days (days 1-28) with up to 0.4 mg cisplatin/kg/day, and sampled on days -4, 15, 29, and 56. Vehicle and highest dose groups were evaluated at additional time points post-treatment up to 6 months. Day 4 and 29 blood samples were also analyzed for micronucleated reticulocyte frequency using flow cytometry and anti-CD71-based labeling. Mutant phenotype reticulocytes were significantly elevated at doses ≥0.1 mg/kg/day, and mutant phenotype erythrocytes were elevated at doses ≥0.05 mg/kg/day. In the 0.4 mg/kg/day group, these effects persisted for the 6 month observation period. Cisplatin also induced a modest but statistically significant increase in micronucleus frequency at the highest dose tested. The prolonged persistence in the production of mutant erythrocytes following cisplatin exposure suggests that this drug mutates hematopoietic stem cells and that this damage may ultimately contribute to the increased incidence of secondary leukemias seen in patients cured of primary malignancies with platinum-based regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - James Palis
- Department of Pediatrics and Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
35
|
Dertinger SD, Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Cottom J, Bemis JC, Macgregor JT. Pig-a gene mutation and micronucleated reticulocyte induction in rats exposed to tumorigenic doses of the leukemogenic agents chlorambucil, thiotepa, melphalan, and 1,3-propane sultone. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:299-308. [PMID: 24449360 DOI: 10.1002/em.21846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
To evaluate whether blood-based genotoxicity endpoints can provide temporal and dose-response data within the low-dose carcinogenic range that could contribute to carcinogenic mode of action (MoA) assessments, we evaluated the sensitivity of flow cytometry-based micronucleus and Pig-a gene mutation assays at and below tumorigenic dose rate 50 (TD50) levels. The incidence of micronucleated reticulocytes (MN-RET) was used to evaluate chromosomal damage, and the frequency of CD59-negative reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ) served as phenotypic reporters of mutation at the X-linked Pig-a gene. Several leukemogenic agents with a presumed genotoxic MoA were studied. Specifically, male Sprague Dawley rats were treated via oral gavage for 28 days with chlorambucil, thiotepa, melphalan, and 1,3-propane sultone at doses corresponding to 0.33x, 1x, and 3x TD50, as well as at the maximum tolerated dose. Frequencies of MN-RET were determined at Days 4 and 29, and RET(CD59-) and RBC(CD59-) data were collected pretreatment as well as Days 15/16, 29, and 56/57. Dose-related increases were observed for each endpoint, and time to maximal effect was consistently: MN-RET < RET(CD59-) < RBC(CD59-) . For each of the chemicals studied, the genotoxic events occurred long before tumors or preneoplastic lesions would be expected. Furthermore, in the case of Pig-a gene mutation, the responses were observed at or below the TD50 dose for three out of the four chemicals studied. These data illustrate the potential for quantitative blood-based analyses to provide dose-response and temporality information that relates genetic damage to cancer induction.
Collapse
|
36
|
Comparison of three-colour flow cytometry and slide-based microscopy for the scoring of micronucleated reticulocytes in rat bone-marrow and peripheral blood. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 758:12-7. [DOI: 10.1016/j.mrgentox.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/11/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
|
37
|
Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Bemis JC, Macgregor JT, Dertinger SD. Flow cytometric analysis of Pig-a gene mutation and chromosomal damage induced by procarbazine hydrochloride in CD-1 mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:294-298. [PMID: 23427001 DOI: 10.1002/em.21758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
Procarbazine is a genotoxic carcinogen whose DNA-damaging activities are not reliably detected in vitro. We evaluated the in vivo genotoxic effects of procarbazine on hematopoietic cells of male CD-1 mice using a multi-endpoint study design that scored micronucleated reticulocyte (MN-RET) frequency and gene mutation at the Pig-a locus. CD-1 mice were treated for 3 days with procarbazine, up to 150 mg/kg/day. Blood samples collected on Day 3 exhibited robust induction of MN-RETs, with the high dose group exhibiting a mean 29-fold increase. Blood collected 15 and 30 days after treatment began was analyzed for Pig-a mutation with a dual labeling method that facilitated mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. Procarbazine significantly increased mutant reticulocyte frequencies by Day 15. Mutant erythrocyte responses were also apparent, with a peak incidence observed for the high dose group on Day 30. These results demonstrate that the complex metabolism and resulting genotoxicity of procarbazine is best evaluated in intact animal models, and show that the flow cytometric methods employed offer a means to efficiently monitor both in vivo chromosomal damage and mutation.
Collapse
|
38
|
Harada A, Matsuzaki K, Takeiri A, Tanaka K, Mishima M. Fluorescent dye-based simple staining for in vivo micronucleus test with flow cytometer. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 751:85-90. [DOI: 10.1016/j.mrgentox.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
|
39
|
O'Brien JM, Williams A, Gingerich J, Douglas GR, Marchetti F, Yauk CL. No evidence for transgenerational genomic instability in the F1 or F2 descendants of Muta™Mouse males exposed to N-ethyl-N-nitrosourea. Mutat Res 2013; 741-742:11-17. [PMID: 23499255 DOI: 10.1016/j.mrfmmm.2013.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 06/01/2023]
Abstract
Exposure of male mice to genotoxic agents can increase mutation frequencies in their unexposed descendants. This phenomenon, known as transgenerational genomic instability (TGI), can persist for several generations. However, little is known about the underlying mechanisms. Chemically-induced TGI has been demonstrated in non-coding unstable tandem repeat DNA regions, but it is unclear whether it extends to other genetic endpoints. We investigated whether exposure of Muta™Mouse males to a single dose of 75mg/kg N-ethyl-N-nitrosourea (ENU) increased the spontaneous frequency of gene mutations or chromosome damage in their offspring. Treated males were mated with untreated females 3 days, 6 weeks or 10 weeks post-exposure to produce the F1 generation. Offspring were thus conceived from germ cells exposed to ENU as mature spermatozoa, dividing spermatogonia, or spermatogonial stem cells, respectively. F2 mice were generated by mating F1 descendants with untreated partners. Mutations in the lacZ transgene were quantified in bone marrow and micronucleus frequencies were evaluated in red blood cells by flow-cytometry for all F0 and their descendants. LacZ mutant frequencies were also determined in sperm for all exposed males and their male descendants. In F0 males, lacZ mutant frequencies were significantly increased in bone marrow at least 10-fold at all three time points investigated. In sperm, lacZ mutant frequency was significantly increased 7-11-fold after exposure of dividing and stem cell spermatogonia, but not in replication-deficient haploid sperm. Micronucleus frequencies assessed two days after ENU treatment were increased 5-fold in F0 males, but returned to control levels after 10 weeks. Despite the strong mutagenic response in F0 males, pre- and post-meiotic ENU exposure did not significantly increase lacZ mutant or micronucleus frequencies in F1 or F2 offspring. These findings suggest that TGI may not extend to all genetic endpoints and that further investigation of this phenomenon and its health relevance will require multiple measures of genomic damage.
Collapse
Affiliation(s)
- Jason M O'Brien
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Dertinger SD, Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Bryce SM, Bemis JC, Bell S, Weller P, Macgregor JT. Efficient monitoring of in vivo pig-a gene mutation and chromosomal damage: summary of 7 published studies and results from 11 new reference compounds. Toxicol Sci 2012; 130:328-48. [PMID: 22923490 PMCID: PMC3498746 DOI: 10.1093/toxsci/kfs258] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/17/2012] [Indexed: 11/12/2022] Open
Abstract
The ability to effectively monitor gene mutation and micronucleated reticulocyte (MN-RET) frequency in short-term and repeated dosing schedules was investigated using the recently developed flow cytometric Pig-a mutation assay and flow cytometric micronucleus analysis. Eight reference genotoxicants and three presumed nongenotoxic compounds were studied: chlorambucil, melphalan, thiotepa, cyclophosphamide, azathioprine, 2-acetylaminofluorene, hydroxyurea, methyl methanesulfonate, o-anthranilic acid, sulfisoxazole, and sodium chloride. These experiments extend previously published results with seven other chemicals. Male Sprague Dawley rats were treated via gavage for 3 or 28 consecutive days with several dose levels of each chemical up to the maximum tolerated dose. Blood samples were collected at several time points up to day 45 and were analyzed for Pig-a mutation with a dual-labeling method that facilitates mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. An immunomagnetic separation technique was used to increase the efficiency of scoring mutant cells. Blood samples collected on day 4, and day 29 for the 28-day study, were evaluated for MN-RET frequency. The three nongenotoxicants did not induce Pig-a or MN-RET responses. All genotoxicants except hydroxyurea increased the frequency of Pig-a mutant reticulocytes and erythrocytes. Significant increases in MN-RET frequency were observed for each of the genotoxicants at both time points. Whereas the highest Pig-a responses tended to occur in the 28-day studies, when total dose was greatest, the highest induction of MN-RET was observed in the 3-day studies, when dose per day was greatest. There was no clear relationship between the maximal Pig-a response of a given chemical and its corresponding maximal MN-RET response, despite the fact that both endpoints were determined in the same cell lineage. Taken with other previously published results, these data demonstrate the value of integrating Pig-a and micronucleus endpoints into in vivo toxicology studies, thereby providing information about mutagenesis and chromosomal damage in the same animals from which toxicity, toxicokinetics, and metabolism data are obtained.
Collapse
|
41
|
Torous DK, Phonethepswath S, Avlasevich SL, Mereness J, Bryce SM, Bemis JC, Weller P, Bell S, Gleason C, Custer LL, MacGregor JT, Dertinger SD. In vivo flow cytometric Pig-a and micronucleus assays: highly sensitive discrimination of the carcinogen/noncarcinogen pair benzo(a)pyrene and pyrene using acute and repeated-dose designs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:420-428. [PMID: 22730284 DOI: 10.1002/em.21709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 06/01/2023]
Abstract
Combining multiple genetic toxicology endpoints into a single in vivo study, and/or integrating one or more genotoxicity assays into general toxicology studies, is attractive because it reduces animal use and enables comprehensive comparative analysis using toxicity, metabolism, and pharmacokinetic information from the same animal. This laboratory has developed flow cytometric scoring techniques for monitoring two blood-based genotoxicity endpoints-micronucleated reticulocyte frequency and gene mutation at the Pig-a locus-thereby making combination and integration studies practical. The ability to effectively monitor these endpoints in short-term and repeated dosing schedules was investigated with the carcinogen/noncarcinogen pair benzo(a)pyrene (BP) and pyrene (Pyr). Male Sprague-Dawley rats were treated via oral gavage for 3 or 28 consecutive days with several dose levels of Pyr, including maximum tolerated doses. BP exposure was administered by the same route but at one dose level, 250 or 125 mg/kg/day for 3-day and 28-day studies, respectively. Serial blood samples were collected up to Day 45, and were analyzed for Pig-a mutation with a dual labeling method (SYTO 13 in combination with anti-CD59-PE) that facilitated mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. A mutant cell enrichment step based on immunomagnetic column separation was used to increase the statistical power of the assay. BP induced robust mutant reticulocyte responses by Day 15, and elevated frequencies persisted until study termination. Mutant erythrocyte responses lagged mutant reticulocyte responses, with peak incidences observed on Day 30 of the 3-day study (43-fold increase) and on Day 42 of the 28-day study (171-fold increase). No mutagenic effects were apparent for Pyr. Blood samples collected on Day 4, and Day 29 for the 28-day study, were evaluated for micronucleated reticulocyte frequency. Significant increases in micronucleus frequencies were observed with BP, whereas Pyr had no effect. These results demonstrate that Pig-a and micronucleus endpoints discriminate between these structurally related carcinogenic and noncarcinogenic agents. Furthermore, the high sensitivity demonstrated with the enrichment protocol indicates that the Pig-a endpoint is suitable for both repeated-dose and acute studies, allowing integration of mutagenic and clastogenic endpoints into on-going toxicology studies, and use as a short-term assay that provides efficient screening and mechanistic information in vivo.
Collapse
|
42
|
Swayne BG, Behan NA, Williams A, Stover PJ, Yauk CL, MacFarlane AJ. Supplemental dietary folic acid has no effect on chromosome damage in erythrocyte progenitor cells of mice. J Nutr 2012; 142:813-7. [PMID: 22437555 PMCID: PMC3735919 DOI: 10.3945/jn.112.157750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 01/19/2023] Open
Abstract
Folate deficiency can cause chromosome damage, which could result from reduced de novo thymidylate synthesis or DNA hypomethylation. High folic acid intake has been hypothesized to inhibit folate-dependent one-carbon metabolism, which could also lead to DNA damage. A large proportion of the general population may have high folic acid intakes. In this study, 2 experiments were conducted to examine the effects of folate on chromosome damage. First, male mice were fed folic acid-deficient (D) (0 mg folic acid/kg diet), control (C) (2 mg/kg), or folic acid-supplemented (S) (6 mg folic acid/kg diet) diets from weaning to maturity. Second, female mice were fed the D, C, or S diet throughout pregnancy, lactation, and breeding for 3 generations; male mice from the F3 generation were fed the same diet as their mothers from weaning, producing D, C, and S F3 male mice. RBC micronucleus frequencies, a measure of chromosome damage or aneuploidy, were determined for both experimental groups. In mice fed diets from weaning to maturity, erythrocyte micronucleus frequency was 24% greater in D compared with C mice. F3 mice fed diet D had 260% and 174% greater reticulocyte and erythrocyte micronucleus frequencies compared with F3 C mice, respectively. The S diets did not affect micronucleus frequency, suggesting that excess folic acid at this level does not promote or protect against chromosome damage. The results suggest that chronic exposure to folic acid at the levels similar to those achieved through fortification is unlikely to be clastogenic or aneugenic.
Collapse
Affiliation(s)
- Breanne G. Swayne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Nathalie A. Behan
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada; and
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Amanda J. MacFarlane
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada; and
| |
Collapse
|
43
|
Lemieux CL, Douglas GR, Gingerich J, Phonethepswath S, Torous DK, Dertinger SD, Phillips DH, Arlt VM, White PA. Simultaneous measurement of benzo[a]pyrene-induced Pig-a and lacZ mutations, micronuclei and DNA adducts in Muta™ Mouse. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:756-65. [PMID: 21976233 PMCID: PMC3258540 DOI: 10.1002/em.20688] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 05/25/2023]
Abstract
In this study we compared the response of the Pig-a gene mutation assay to that of the lacZ transgenic rodent mutation assay, and demonstrated that multiple endpoints can be measured in a 28-day repeat dose study. Muta™Mouse were dosed daily for 28 days with benzo[a]pyrene (BaP; 0, 25, 50 and 75 mg/kg body weight/day) by oral gavage. Micronucleus (MN) frequency was determined in reticulocytes (RETs) 48 hr following the last dose. 72 h following the last dose, mice were euthanized, and tissues (glandular stomach, small intestine, bone marrow and liver) were collected for lacZ mutation and DNA adduct analysis, and blood was evaluated for Pig-a mutants. BaP-derived DNA adducts were detected in all tissues examined and significant dose-dependent increases in mutant Pig-a phenotypes (i.e., RET(CD24-) and RBC (CD24-)) and lacZ mutants were observed. We estimate that mutagenic efficiency (i.e., rate of conversion of adducts into mutations) was much lower for Pig-a compared to lacZ, and speculate that this difference is likely explained by differences in repair capacity between the gene targets, and differences in the cell populations sampled for Pig-a versus lacZ. The BaP doubling doses for both gene targets, however, were comparable, suggesting that similar mechanisms are involved in the accumulation of gene mutations. Significant dose-related increases in % MN were also observed; however, the doubling dose was considerably higher for this endpoint. The similarity in dose response kinetics of Pig-a and lacZ provides further evidence for the mutational origin of glycosylphosphatidylinositol (GPI)-anchor deficiencies detected in the Pig-a assay.
Collapse
Affiliation(s)
- Christine L Lemieux
- Mechanistic Studies Division, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dertinger SD, Phonethepswath S, Weller P, Avlasevich S, Torous DK, Mereness JA, Bryce SM, Bemis JC, Bell S, Portugal S, Aylott M, MacGregor JT. Interlaboratory Pig-a gene mutation assay trial: Studies of 1,3-propane sultone with immunomagnetic enrichment of mutant erythrocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:748-755. [PMID: 22052433 DOI: 10.1002/em.20671] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/20/2011] [Accepted: 06/26/2011] [Indexed: 05/31/2023]
Abstract
An international collaborative trial was established to systematically investigate the merits and limitations of a rat in vivo Pig-a gene mutation assay. The product of this gene is essential for anchoring CD59 to the plasma membrane, and mutations in this gene are identified by flow cytometric quantification of circulating erythrocytes without cell surface CD59 expression. Initial interlaboratory data from rats treated with several potent mutagens have been informative, but the time required for those flow cytometric analyses (∼20 min per sample) limited the number of cells that could be interrogated for the mutant phenotype. Thus, it was desirable to establish a new higher throughput scoring approach before expanding the trial to include weak mutagens or nongenotoxicants. An immunomagnetic column separation method that dramatically increases analysis rates was therefore developed (Dertinger et al. [2011]: Mutat Res 721:163-170). To evaluate this new method for use in the international collaborative trial, studies were conducted to determine the mutagenic response of male Sprague Dawley rats treated for 3 or 28 consecutive days with several doses of 1,3-propane sultone (1,3-PS). Pig-a mutant frequencies were measured over a period of several weeks and were supplemented with another indicator of genetic toxicity, peripheral blood micronucleated reticulocyte (MN-RET) counts. 1,3-PS was found to increase Pig-a mutation and MN-RET frequencies in both 3- and 28-day study designs. While the greatest induction of MN-RETs was observed in the 3-day study, the highest Pig-a responses were found with 28-days of treatment. Pig-a measurements were acquired in approximately one-third the time required in the original method, while the number of erythrocyte and reticulocyte equivalents analyzed per sample were increased by factors of 100 and 10, respectively. The data strongly support the value of using the immunomagnetic separation technique for enumerating Pig-a mutation frequencies. These results also demonstrate that the ongoing international trial will benefit from the inclusion of studies that are based on both acute and protracted repeat dosing schedules in conjunction with the acquisition of longitudinal data, at least until more data have been accumulated.
Collapse
|
45
|
Lynch AM, Giddings A, Custer L, Gleason C, Henwood A, Aylott M, Kenny J. International Pig-a gene mutation assay trial (stage III): results with N-methyl-N-nitrosourea. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:699-710. [PMID: 22167885 DOI: 10.1002/em.20691] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
N-methyl-N-nitrosourea (MNU) was evaluated in the in vivo Pig-a mutation assay as part of an International Collaborative Trial to investigate laboratory reproducibility, 28-day study integration, and comparative analysis with micronucleus (MN), comet, and clinical pathology endpoints. Male Sprague Dawley rats were treated for 28 days with doses of 0, 2.5, 5, and 10 mg MNU/kg/day in two independent laboratories, GlaxoSmithKline (GSK) and Bristol Myers Squibb (BMS). Additional studies investigated the low-dose region (<2.5 mg/kg/day). Reticulocytes were evaluated for Pig-a phenotypic mutation, CD59-negative reticulocytes/erythrocytes (RETs(CD592-)/ RBCs(CD592-)) on Days 1, 4, 15, 29, 43, and 57, and for micronucleated reticulocytes (MN-RETs) on Days 4 and 29. Comet analysis was conducted for liver and whole blood, and hematology and clinical chemistry was investigated. Dose-dependent increases in the frequency of RETs(CD592-) and RBCs(CD592-) were observed by Day 15 or 29, respectively. Dose-dependent increases were observed in %MN-RET on Days 4 and 29, and in mean %tail intensity in liver and in blood. Hematology/clinical chemistry data demonstrated bone marrow toxicity. Data comparison between GSK and BMS indicated a high degree of concordance with the Pig-a mutation assay results, consistent with previous observations with MNU and N-ethyl-N-nitrosourea. These data confirm that complementary genotoxicity endpoints can be effectively incorporated into routine toxicology studies, a strategy that can provide information on gene mutation, chromosome damage, and DNA strand breaks in a single repeat dose rodent study. Collectively, this would reduce animal usage while providing valuable genetic toxicity information within the context of other toxicological endpoints.
Collapse
|
46
|
Shi J, Krsmanovic L, Bruce S, Kelly T, Paranjpe M, Szabo K, Arevalo M, Atta-Safoh S, Debelie F, LaForce MK, Sly J, Springer S. Assessment of genotoxicity induced by 7,12-dimethylbenz(a)anthracene or diethylnitrosamine in the Pig-a, micronucleus and Comet assays integrated into 28-day repeat dose studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:711-720. [PMID: 21976072 DOI: 10.1002/em.20678] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/26/2011] [Indexed: 05/31/2023]
Abstract
As part of the Stage 3 of the Pig-a international trial, we evaluated 7,12-dimethylbenz(a)anthracene (DMBA) for induction of Pig-a gene mutation using a 28-day repeat dose study design in Sprague-Dawley rats. In the same study, chromosomal damage in peripheral blood and primary DNA damage in liver were also investigated by the micronucleus (MN) assay and the Comet assay, respectively. In agreement with previously published data (Dertinger et al., [2010]: Toxicol Sci 115:401-411), DMBA induced dose-dependent increases of CD59-negative erythrocytes/reticulocytes and micronucleated reticulocytes (MN-RETs). However, there was no significant increase in DNA damage in the liver cells when tested up to 10 mg/kg/day, which appears to be below the maximum tolerated dose. When tested up to 200 mg/kg/day in a follow-up 3 dose study, DMBA was positive in the liver Comet assay. Additionally, we evaluated diethylnitrosamine (DEN), a known mutagen/hepatocarcinogen, for induction of Pig-a mutation, MN and DNA damage in a 28-day study. DEN produced negative results in both the Pig-a mutation assay and the MN assay, but induced dose-dependent increases of DNA damage in the liver and blood Comet assay. In summary, our results demonstrated that the Pig-a mutation assay can be effectively integrated into repeat dose studies and the data are highly reproducible between different laboratories. Also, integration of multiple genotoxicity endpoints into the same study not only provides a comprehensive evaluation of the genotoxic potential of test chemicals, but also reduces the number of animals needed for testing, especially when more than one in vivo genotoxicity tests are required.
Collapse
Affiliation(s)
- Jing Shi
- BioReliance Corporation, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Phan N, De Lisio M, Parise G, Boreham DR. Biological effects and adaptive response from single and repeated computed tomography scans in reticulocytes and bone marrow of C57BL/6 mice. Radiat Res 2011; 177:164-75. [PMID: 22059980 DOI: 10.1667/rr2532.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study investigated the biological effects and adaptive responses induced by single and repeated in vivo computed tomography (CT) scans. We postulated that, through the induction of low-level oxidative stress, repeated low-dose CT scans (20 mGy, 2 days/week, 10 weeks) could protect mice (C57BL/6) from acute effects of high-dose radiation (1 Gy, 2 Gy). The micronucleated reticulocyte (MN-RET) count increased linearly after exposure to single CT scans of doses ranging from 20 to 80 mGy (P = 0.033). Ten weeks of repeated CT scans (total dose 400 mGy) produced a slight reduction in spontaneous MN-RET levels relative to levels in sham CT-scanned mice (P = 0.04). Decreases of nearly 10% in γ-H2AX fluorescence levels were observed in the repeated CT-scanned mice after an in vitro challenge dose of 1 Gy (P = 0.017) and 2 Gy (P = 0.026). Spontaneous apoptosis levels (caspase 3 and 7 activation) were also significantly lower in the repeated CT-scanned mice than the sham CT-scanned mice (P < 0.01). In contrast, mice receiving only a single CT scan showed a 19% elevation in apoptosis (P < 0.02) and a 10% increase in γ-H2AX fluorescence levels after a 2-Gy challenge (P < 0.05) relative to sham CT controls. Overall, repeated CT scans seemed to confer resistance to larger doses in mice, whereas mice exposed to single CT scans exhibited transient genotoxicity, enhanced apoptosis, and characteristics of radiation sensitization.
Collapse
Affiliation(s)
- Nghi Phan
- Department of Medical Physics and Applied Radiation Sciences, Nuclear Research Building Room 227, 1280 Main St. West, McMaster University, Hamilton, Ontario, Canada, L8S 4K1.
| | | | | | | |
Collapse
|
48
|
Dertinger SD, Torous DK, Hayashi M, MacGregor JT. Flow cytometric scoring of micronucleated erythrocytes: an efficient platform for assessing in vivo cytogenetic damage. Mutagenesis 2010; 26:139-45. [DOI: 10.1093/mutage/geq055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
49
|
Liu L, Liu Y, Ni G, Liu S. Flow cytometric scoring of micronucleated reticulocytes as a possible high-throughput radiation biodosimeter. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:215-221. [PMID: 19790259 DOI: 10.1002/em.20523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Micronucleated reticulocyte (MN-RET) scoring by flow cytometry (FCM) has been used in assessment of the clastogenic effects of chemicals. However, its dose-response to acute whole body irradiation (WBI) at moderate dose rates remains to be established. We show that FCM scoring of MN-RET in peripheral blood from male ICR mice exposed to WBI X-ray doses of 0.5-5 Gy at a dose rate of 0.488 Gy/min exhibits a linear dose-response relationship 24, 48, and 72 hr following WBI. Parallel microscopic counting of micronucleated polychromatic erythrocytes (MN-PCE) in bone marrow smears from the same animals showed similar linear dose-response patterns at the same time points. Indeed, MN-RET and MN-PCE were highly correlated at all doses and time points. In view of the speed and accuracy of this method, in addition to the small blood sample size needed for the assay, the flow cytometric protocol for MN-RET scoring may provide a minimally-invasive, high throughput radiation biodosimeter.
Collapse
Affiliation(s)
- Libo Liu
- Divison of Radiation Medicine, Jilin University School of Public Health, Changchun, China
| | | | | | | |
Collapse
|
50
|
Dertinger SD, Phonethepswath S, Franklin D, Weller P, Torous DK, Bryce SM, Avlasevich S, Bemis JC, Hyrien O, Palis J, MacGregor JT. Integration of mutation and chromosomal damage endpoints into 28-day repeat dose toxicology studies. Toxicol Sci 2010; 115:401-11. [PMID: 20202993 DOI: 10.1093/toxsci/kfq070] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two endpoints of genetic toxicity, mutation at the X-linked Pig-a gene and chromosomal damage in the form of micronucleated reticulocytes (MN-RETs), were evaluated in blood samples obtained from 28-day repeat-dosing studies typical of those employed in toxicity evaluations. Male Wistar Han rats were treated at 24-h intervals on days 1 through 28 with one of five prototypical genotoxicants: N-ethyl-N-nitrosourea, 7,12-dimethyl-12-benz[a]anthracene, 4-nitroquinoline-1-oxide (4NQO), benzo(a)pyrene, and N-methyl-N-nitrosourea. Flow cytometric scoring of CD59-negative erythrocytes (indicative of glycosylphosphatidylinositol anchor deficiency and hence Pig-a mutation) was performed using blood specimens obtained on days -1, 15, 29, and 56. Blood specimens collected on days 4 and 29 were evaluated for MN-RET frequency using flow cytometry-based MicroFlow Kits. With the exception of 4NQO, each chemical induced significant increases in the frequency of MN-RETs on days 4 and 29. All five agents increased the frequency of mutant phenotype (CD59 negative) reticulocytes (RETs) and erythrocytes. Mutation responses in RETs occurred earlier than in erythrocytes and tended to peak, or nearly peak, at day 29. In contrast, the mutant phenotype erythrocyte responses were modest on day 29 and required additional time to reach their maximal value. The observed kinetics were expected based on the known turnover of RETs and erythrocytes. The data show that RETs can serve as an appropriate indicator cell population for 28-day studies. Collectively, these data suggest that blood-based genotoxicity endpoints can be effectively incorporated into routine toxicology studies, a strategy that would reduce animal usage while providing valuable genetic toxicity information within the context of other toxicological endpoints.
Collapse
|