1
|
Zhao H, Dong S, Du J, Xia P, Liu R, Liu T, Yang Y, Cheng Y, Cai J, Liu C, Gao F, Liu H. Analysis of miRNA-mRNA Crosstalk in Radiation-Induced Mouse Thymic Lymphomas to Identify miR-486 as a Critical Regulator by Targeting IGF2BP3 mRNA. Front Oncol 2021; 10:574001. [PMID: 33692937 PMCID: PMC7938314 DOI: 10.3389/fonc.2020.574001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/23/2020] [Indexed: 12/02/2022] Open
Abstract
Ionizing radiation is one of the common environmental carcinogens. miRNAs play critical roles in the processes of tumor occurrence, development, metastasis. However, the relationship between radiation-induced carcinogenesis and miRNA rarely reported. This study is aimed to investigate the effect of miRNAs on radiation-induced carcinogenesis. In this study we established the radiation-induced thymic lymphoma mice model. By using miRNA array of RTL tissue and predicting for miRNAs target genes, a miRNA-mRNA crosstalk network was established. Based on this network, we identified a critical miRNA, miR-486, which was the most down-regulated in the radiation-induced carcinogenesis. Then the function of miR-486 was confirmed by using knockout mice and cellular experiments. As a result, miR-486 could inhibit proliferation of mouse lymphoma cells by targeting IGF2BP3 mRNA. The adenovirus over-expression miR-486 vector reduced tumorigenesis in vivo. MiR-486 knockout mice have a strong tendency of radiation-induced carcinogenesis. In conclusion, miR-486 inhibits the proliferation of lymphoma cells and tumorigenesis induced by radiation through targeting IGF2BP3.
Collapse
Affiliation(s)
- Hainan Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.,Department of Radiology Intervention, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Suhe Dong
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Penglin Xia
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ruling Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yajie Yang
- College of Basic Medicine, Second Military Medical University, Shanghai, China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
3
|
Babini G, Morini J, Baiocco G, Mariotti L, Ottolenghi A. In vitro γ-ray-induced inflammatory response is dominated by culturing conditions rather than radiation exposures. Sci Rep 2015; 5:9343. [PMID: 25791775 PMCID: PMC4366819 DOI: 10.1038/srep09343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/26/2015] [Indexed: 01/14/2023] Open
Abstract
The inflammatory pathway has a pivotal role in regulating the fate and functions of cells after a wide range of stimuli, including ionizing radiation. However, the molecular mechanisms governing such responses have not been completely elucidated yet. In particular, the complex activation dynamics of the Nuclear transcription Factor kB (NF-kB), the key molecule governing the inflammatory pathway, still lacks a complete characterization. In this work we focused on the activation dynamics of the NF-kB (subunit p65) pathway following different stimuli. Quantitative measurements of NF-kB were performed and results interpreted within a systems theory approach, based on the negative feedback loop feature of this pathway. Time-series data of nuclear NF-kB concentration showed no evidence of γ-ray induced activation of the pathway for doses up to 5Gy but highlighted important transient effects of common environmental stress (e.g. CO2, temperature) and laboratory procedures, e.g. replacing the culture medium, which dominate the in vitro inflammatory response.
Collapse
Affiliation(s)
- G Babini
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - J Morini
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy [3] Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| | - G Baiocco
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - L Mariotti
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - A Ottolenghi
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| |
Collapse
|
4
|
Baulch JE, Aypar U, Waters KM, Yang AJ, Morgan WF. Genetic and epigenetic changes in chromosomally stable and unstable progeny of irradiated cells. PLoS One 2014; 9:e107722. [PMID: 25251398 PMCID: PMC4175465 DOI: 10.1371/journal.pone.0107722] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/15/2014] [Indexed: 01/28/2023] Open
Abstract
Radiation induced genomic instability is a well-studied phenomenon, the underlying mechanisms of which are poorly understood. Persistent oxidative stress, mitochondrial dysfunction, elevated cytokine levels and epigenetic changes are among the mechanisms invoked in the perpetuation of the phenotype. To determine whether epigenetic aberrations affect genomic instability we measured DNA methylation, mRNA and microRNA (miR) levels in well characterized chromosomally stable and unstable clonally expanded single cell survivors of irradiation. While no changes in DNA methylation were observed for the gene promoters evaluated, increased LINE-1 methylation was observed for two unstable clones (LS12 and CS9) and decreased Alu element methylation was observed for the other two unstable clones (115 and Fe5.0–8). These relationships also manifested for mRNA and miR expression. mRNA identified for the LS12 and CS9 clones were most similar to each other (261 mRNA), while the 115 and Fe5.0–8 clones were more similar to each other, and surprisingly also similar to the two stable clones, 114 and 118 (286 mRNA among these four clones). Pathway analysis showed enrichment for pathways involved in mitochondrial function and cellular redox, themes routinely invoked in genomic instability. The commonalities between the two subgroups of clones were also observed for miR. The number of miR for which anti-correlated mRNA were identified suggests that these miR exert functional effects in each clone. The results demonstrate significant genetic and epigenetic changes in unstable cells, but similar changes are almost as equally common in chromosomally stable cells. Possible conclusions might be that the chromosomally stable clones have some other form of instability, or that some of the observed changes represent a sort of radiation signature and that other changes are related to genomic instability. Irrespective, these findings again suggest that a spectrum of changes both drive genomic instability and permit unstable cells to persist and proliferate.
Collapse
Affiliation(s)
- Janet E. Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Umut Aypar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Katrina M. Waters
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Austin J. Yang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - William F. Morgan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
5
|
Rehman MU, Tahir M, Khan AQ, Khan R, Oday-O-Hamiza, Lateef A, Hassan SK, Rashid S, Ali N, Zeeshan M, Sultana S. d-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats. Exp Biol Med (Maywood) 2014; 239:465-76. [DOI: 10.1177/1535370213520112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
d-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used d-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given d-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of d-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with d-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of d-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. d-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of d-limonene against Dox-induced renal damage.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Mir Tahir
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Abdul Quaiyoom Khan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Rehan Khan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Oday-O-Hamiza
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Abdul Lateef
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Syed Kazim Hassan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Sumaya Rashid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Nemat Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Mirza Zeeshan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Sarwat Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
6
|
Kanter DJ, O'Brien MB, Shi XH, Chu T, Mishima T, Beriwal S, Epperly MW, Wipf P, Greenberger JS, Sadovsky Y. The impact of ionizing radiation on placental trophoblasts. Placenta 2014; 35:85-91. [PMID: 24418702 DOI: 10.1016/j.placenta.2013.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/12/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Exposure to low-dose radiation is widespread and attributable to natural sources. However, occupational, medical, accidental, and terrorist-related exposures remain a significant threat. Information on radiation injury to the feto-placental unit is scant and largely observational. We hypothesized that radiation causes trophoblast injury, and alters the expression of injury-related transcripts in vitro or in vivo, thus affecting fetal growth. METHODS Primary human trophoblasts (PHTs), BeWo or NCCIT cells were irradiated in vitro, and cell number and viability were determined. Pregnant C57Bl/6HNsd mice were externally irradiated on E13.5, and placentas examined on E17.5. RNA expression was analyzed using microarrays and RT-qPCR. The experiments were repeated in the presence of the gramicidin S (GS)-derived nitroxide JP4-039, used to mitigate radiation-induced cell injury. RESULTS We found that survival of in vitro-irradiated PHT cell was better than that of irradiated BeWo trophoblast cell line or the radiosensitive NCCIT mixed germ cell tumor line. Radiation altered the expression of several trophoblast genes, with a most dramatic effect on CDKN1A (p21, CIP1). Mice exposed to radiation at E13.5 exhibited a 25% reduction in mean weight by E17.5, and a 9% reduction in placental weight, which was associated with relatively small changes in placental gene expression. JP4-039 had a minimal effect on feto-placental growth or on gene expression in irradiated PHT cells or mouse placenta. DISCUSSION AND CONCLUSION While radiation affects placental trophoblasts, the established placenta is fairly resistant to radiation, and changes in this tissue may not fully account for fetal growth restriction induced by ionizing radiation.
Collapse
Affiliation(s)
- D J Kanter
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - M B O'Brien
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - X-H Shi
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Chu
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Mishima
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Beriwal
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - P Wipf
- Department of Chemistry and the Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, USA
| | - J S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Thomas SN, Waters KM, Morgan WF, Yang AJ, Baulch JE. Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability. Free Radic Biol Med 2012; 53:618-28. [PMID: 22569412 PMCID: PMC4708885 DOI: 10.1016/j.freeradbiomed.2012.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 03/05/2012] [Accepted: 03/27/2012] [Indexed: 11/26/2022]
Abstract
Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.
Collapse
Affiliation(s)
- Stefani N. Thomas
- Radiation Oncology Research Laboratory, Department of Radiation Oncology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
- The Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - William F. Morgan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Austin J. Yang
- The Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD 21201, USA
| | - Janet E. Baulch
- Radiation Oncology Research Laboratory, Department of Radiation Oncology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Mohamed RH, Karam RA, Amer MG. Epicatechin attenuates doxorubicin-induced brain toxicity: Critical role of TNF-α, iNOS and NF-κB. Brain Res Bull 2011; 86:22-8. [DOI: 10.1016/j.brainresbull.2011.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/18/2011] [Accepted: 07/02/2011] [Indexed: 10/18/2022]
|
9
|
Ilnytskyy Y, Kovalchuk O. Non-targeted radiation effects-an epigenetic connection. Mutat Res 2011; 714:113-25. [PMID: 21784089 DOI: 10.1016/j.mrfmmm.2011.06.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 01/18/2023]
Abstract
Ionizing radiation (IR) is a pivotal diagnostic and treatment modality, yet it is also a potent genotoxic agent that causes genome instability and carcinogenesis. While modern cancer radiation therapy has led to increased patient survival rates, the risk of radiation treatment-related complications is becoming a growing problem. IR-induced genome instability has been well-documented in directly exposed cells and organisms. It has also been observed in distant 'bystander' cells. Enigmatically, increased instability is even observed in progeny of pre-conceptually exposed animals, including humans. The mechanisms by which it arises remain obscure and, recently, they have been proposed to be epigenetic in nature. Three major epigenetic phenomena include DNA methylation, histone modifications and small RNA-mediated silencing. This review focuses on the role of DNA methylation and small RNAs in directly exposed and bystander tissues and in IR-induced transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms.
Collapse
Affiliation(s)
- Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | | |
Collapse
|
10
|
Aypar U, Morgan WF, Baulch JE. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link? Int J Radiat Biol 2010; 87:179-91. [DOI: 10.3109/09553002.2010.522686] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Miller JH, Jin S, Morgan WF, Yang A, Wan Y, Aypar U, Peters JS, Springer DL. Profiling Mitochondrial Proteins in Radiation-Induced Genome-Unstable Cell Lines with Persistent Oxidative Stress by Mass Spectrometry. Radiat Res 2008; 169:700-6. [DOI: 10.1667/rr1186.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 02/15/2008] [Indexed: 11/03/2022]
|
12
|
Laiakis EC, Baulch JE, Morgan WF. Interleukin 8 exhibits a pro-mitogenic and pro-survival role in radiation induced genomically unstable cells. Mutat Res 2008; 640:74-81. [PMID: 18242642 DOI: 10.1016/j.mrfmmm.2007.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/30/2007] [Accepted: 12/11/2007] [Indexed: 05/25/2023]
Abstract
Radiation induced genomic instability can be perpetuated over time by the transmission of soluble factors. This can occur via cell-to-cell gap junction communication or the secretion/shedding of soluble factors. We have investigated whether our radiation induced chromosomally unstable GM10115 human-hamster hybrid clones secrete factors that can perpetuate the instability phenotype over time. These clones do not have functional gap junctions, but do secrete significant amounts of Interleukin 8 (IL-8) into the culture medium. We then determined whether IL-8 could initiate and or perpetuate genomic instability over time in parental GM10115 cells. Contrary to our hypothesis, IL-8 could induce DNA damage, but was not responsible for the unstable phenotype. Instead it appears that IL-8 secretion provides a pro-survival function in cells that are chromosomally unstable and generally fail to thrive.
Collapse
Affiliation(s)
- Evagelia C Laiakis
- Radiation Oncology Research Laboratory, 655 West Baltimore Street, Bressler Research Building, Room 7-002, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | | | | |
Collapse
|
13
|
Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem 2007; 100:191-201. [PMID: 17227439 DOI: 10.1111/j.1471-4159.2006.04179.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adriamycin (ADR), a potent anti-tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose-limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood-brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor-alpha in wild-type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild-type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR-induced NO-mediated CNS injury.
Collapse
Affiliation(s)
- Jitbanjong Tangpong
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
de Toledo SM, Asaad N, Venkatachalam P, Li L, Howell RW, Spitz DR, Azzam EI. Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism. Radiat Res 2007; 166:849-57. [PMID: 17149977 DOI: 10.1667/rr0640.1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 08/02/2006] [Indexed: 11/03/2022]
Abstract
To investigate low-dose/low-dose-rate effects of low-linear energy transfer (LET) ionizing radiation, we used gamma-irradiated cells adapted to grow in a three-dimensional architecture that mimics cell growth in vivo. We determined the cellular, molecular and biochemical changes in these cells. Quiescent normal human fibroblasts were irradiated with single acute or chronic doses (1-10 cGy) of (137)Cs gamma rays. Whereas exposure to an acute dose of 10 cGy increased micronucleus formation, protraction of the dose over 48 h reduced micronucleus frequency to a level similar to or lower than what occurs spontaneously. The protracted treatment also up-regulated the cellular content of the antioxidant glutathione. These changes correlated with modulation of phospho-TP53 (serine 15), a stress marker that was regulated by doses as low as 1 cGy. The DNA damage that occurred after exposure to an acute dose of 10 cGy was protected against in two ways: (1) up-regulation of cellular antioxidant enzyme activity by ectopic overexpression of MnSOD, catalase or glutathione peroxidase, and (2) inhibition of superoxide anion generation by flavin-containing oxidases. These results support a significant role for oxidative metabolism in mediating low-dose radiation effects and demonstrate that cell culture in three dimensions is ideal to investigate radiation-induced adaptive responses. Expression of connexin 43, a constitutive protein of gap junctions, and the G(1) checkpoint were more sensitive to regulation by gamma rays in cells maintained in a three-dimensional than in a two-dimensional configuration.
Collapse
Affiliation(s)
- Sonia M de Toledo
- Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07101, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kim GJ, Fiskum GM, Morgan WF. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res 2006; 66:10377-83. [PMID: 17079457 PMCID: PMC2570498 DOI: 10.1158/0008-5472.can-05-3036] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radiation-induced genomic instability (RIGI) manifests as a heritable increased rate of genetic alterations in the progeny of irradiated cells generations after the initial insult. The progeny can show an increased frequency of chromosomal translocations, deletions, mutations, micronuclei, and decreased plating efficiency. What perpetuates RIGI is unclear; however, persistently increased levels of reactive oxygen species (ROS) are frequently associated with genomically unstable clones. Furthermore, addition of free radical scavengers (e.g., DMSO, glycerol, and cationic thiol cysteamine) reduces the incidence of instability after irradiation, implicating a ROS-mediated role in RIGI induction. Because mitochondria are a major natural cellular source of ROS, we tested the hypothesis that mitochondrial dysfunction has a role in maintaining the elevated ROS levels in our irradiated, genetically unstable GM10115 Chinese hamster ovary cells. Amplex Red fluorometry measurements indicate that the relative contribution of uncoupler-sensitive mitochondrial hydrogen peroxide production to total cellular hydrogen peroxide generation is greater in unstable cells. Measurements of mitochondrial DNA levels and cell cytometric fluorescent measurements of Mitotracker Green FM indicate that differences in mitochondrial ROS production are not due to varying mitochondrial levels. However, mitochondrial respiration measured in digitonin-permeabilized cells is impaired in unstable clones. In addition, manganese superoxide dismutase, a major mitochondrial antioxidant enzyme, exhibits increased immunoreactivity but decreased enzyme activity in unstable clones, which along with decreased respiration rates may explain the increased levels of cellular ROS. These studies show that mitochondria from unstable cells are abnormal and likely contribute to the persistent oxidative stress in the unstable clones.
Collapse
Affiliation(s)
- Grace J Kim
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1559, USA.
| | | | | |
Collapse
|
16
|
Kim GJ, Chandrasekaran K, Morgan WF. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis 2006; 21:361-7. [PMID: 17065161 DOI: 10.1093/mutage/gel048] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Radiation-induced genomic instability (RIGI) challenges the long-standing notion that radiation's effects derive solely from nuclear impact. In RIGI it is the unirradiated progeny that can display phenotypic changes at delayed times after irradiation of the parental cell. RIGI might well provide the driving force behind the development of radiation-induced tumorigenesis as most cancer cells even in pre-neoplastic states display multiple genetic alterations. Thus, understanding RIGI may help elucidate the mechanisms underlying radiation-induced carcinogenesis. One characteristic of clones of genetically unstable cells is that many exhibit persistently increased levels of reactive oxygen species (ROS). Furthermore, oxidants enhance and antioxidants diminish radiation-induced instability. However, much about the mechanisms behind the initiation and perpetuation of RIGI remains unknown and we examine the evidence for the hypothesis that oxidative stress and mitochondrial dysfunction may be involved in perpetuating the unstable phenotype in some cell clones surviving ionizing radiation.
Collapse
Affiliation(s)
- Grace J Kim
- Radiation Oncology Research Laboratory, University of Maryland-Baltimore, 108 North Greene Street, BRF Room 110C, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
17
|
Snyder AR, Morgan WF. Lack of consensus gene expression changes associated with radiation-induced chromosomal instability. DNA Repair (Amst) 2005; 4:958-70. [PMID: 15996903 DOI: 10.1016/j.dnarep.2005.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/30/2005] [Accepted: 04/09/2005] [Indexed: 10/25/2022]
Abstract
The relatively high frequency with which ionizing radiation induces genomic instability suggests that a gene mutation occurring after irradiation is an unlikely cause of the phenotype. To search for mechanism(s) of initiation and perpetuation of this instability phenotype, gene expression profiles of clones exhibiting delayed chromosomal instability were analyzed. Microarray analysis using two pools of isogenic radiation-induced chromosomally unstable clones compared to an irradiated but chromosomally stable clone uncovered a set of 68 differentially expressed genes using two methods of analysis. Unexpectedly, all 68 genes were under-expressed relative to the chromosomally stable reference clone. Further analysis of the candidates placed the differentially expressed genes into pathways implicating differential MAP kinase signaling, ubiquitin/proteasome function, DNA repair, cell cycle control, lipid signaling, nucleotide metabolism, and other potentially disrupted pathways. Validation studies using northern and western blotting, and functional assays concluded that although differences in some of these pathways exist, no single gene or molecular pathway was found to be differentially regulated in all of the chromosomally unstable clones tested. Inferred from these data is that there are multiple potential molecular pathways and/or events that maintain the unstable phenotype, and no single expression pattern is linked to instability in the unstable clones analyzed.
Collapse
Affiliation(s)
- Andrew R Snyder
- Molecular and Cell Biology Graduate Program, Bressler Research Building, University of Maryland, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | |
Collapse
|