1
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
2
|
Thompson CM, Gentry R, Fitch S, Lu K, Clewell HJ. An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Crit Rev Toxicol 2021; 50:919-952. [PMID: 33599198 DOI: 10.1080/10408444.2020.1854679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formaldehyde is a reactive aldehyde naturally present in all plant and animal tissues and a critical component of the one-carbon metabolism pathway. It is also a high production volume chemical used in the manufacture of numerous products. Formaldehyde is also one of the most well-studied chemicals with respect to environmental fate, biology, and toxicology-including carcinogenic potential, and mode of action (MOA). In 2006, a published MOA for formaldehyde-induced nasal tumors in rats concluded that nasal tumors were most likely driven by cytotoxicity and regenerative cell proliferation, with possible contributions from direct genotoxicity. In the past 15 years, new research has better informed the MOA with the publication of in vivo genotoxicity assays, toxicogenomic analyses, and development of ultra-sensitive methods to measure endogenous and exogenous formaldehyde-induced DNA adducts. Herein, we review and update the MOA for nasal tumors, with particular emphasis on the numerous studies published since 2006. These new studies further underscore the involvement of cytotoxicity and regenerative cell proliferation, and further inform the genotoxic potential of inhaled formaldehyde. The data lend additional support for the use of mechanistic data for the derivation of toxicity criteria and/or scientifically supported approaches for low-dose extrapolation for the risk assessment of formaldehyde.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
3
|
Ren F, Wang J, Aniagu S, Li J, Jiang Y, Chen T. Effects of Trichloroethylene on the Expression of Long Intergenic Noncoding RNAs in B6C3F1 Mouse Liver. Chem Res Toxicol 2020; 33:1356-1363. [PMID: 31942800 DOI: 10.1021/acs.chemrestox.9b00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Trichloroethylene (TCE), a widely used industrial solvent, is a common environmental contaminant. We previously reported that TCE-induced changes in DNA methylation and miRNA expression contributed to the development of a liver tumor in mice. In this study, we investigated the role of long intergenic noncoding RNA (LincRNA), another type of epigenetic modification, in TCE hepatocarcinogenesis. Male B6C3F1 mice were gavaged with TCE at dose levels of 0, 100, 500, and 1000 mg/kg b.w. for 5 days. The expression changes of LincRNAs in liver samples from control and TCE-exposed mice were screened by microarray. When compared to the control group, 21 and 29 LincRNAs were upregulated and downregulated, respectively, in the liver of mice exposed to TCE at 1000 mg/kg b.w. In addition, TCE treatment increased the expression levels of LincRNA-GM8704 but decreased the expression levels of LiverLincs_chr17_4383_2 in a dose-dependent manner. We further found that the mRNAs that are highly correlated with the expression of LiverLincs_chr17_4383_2 are involved in a number of cancer-related signaling pathways including PPARs, cell cycle, and ErbB and p53 signaling pathways. Among the expression-correlated mRNAs, Cdkn1a was found to be a downstream target gene of LiverLincs_chr17_4383_2. To follow up on that, we also found that miR-182-5p might mediate the association between downregulation of LiverLincs_chr17_4383_2 and upregulation of Cdkn1a, leading to increased cell proliferation in TCE exposed liver cells. In conclusion, TCE induced extensive LincRNA expression changes in mouse liver, and the downregulation of LiverLincs_chr17_4383_2 might contribute to TCE hepatocarcinogenesis by interacting with miR-182-5p and Cdkn1a.
Collapse
Affiliation(s)
- Fei Ren
- Medical College, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jin Wang
- Medical College, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Circle, Austin, Texas 78753, United States
| | - Jianxiang Li
- Medical College, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yan Jiang
- Medical College, Soochow University, Suzhou 215123, China
| | - Tao Chen
- Medical College, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Kobets T, Iatropoulos MJ, Williams GM. Mechanisms of DNA-reactive and epigenetic chemical carcinogens: applications to carcinogenicity testing and risk assessment. Toxicol Res (Camb) 2019; 8:123-145. [PMID: 30997017 PMCID: PMC6417487 DOI: 10.1039/c8tx00250a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023] Open
Abstract
Chemicals with carcinogenic activity in either animals or humans produce increases in neoplasia through diverse mechanisms. One mechanism is reaction with nuclear DNA. Other mechanisms consist of epigenetic effects involving either modifications of regulatory macromolecules or perturbation of cellular regulatory processes. The basis for distinguishing between carcinogens that have either DNA reactivity or an epigenetic activity as their primary mechanism of action is detailed in this review. In addition, important applications of information on these mechanisms of action to carcinogenicity testing and human risk assessment are discussed.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| | - Michael J Iatropoulos
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| | - Gary M Williams
- Department of Pathology , New York Medical College , Valhalla , NY 10595 , USA . ; ; Tel: +1 914-594-3105
| |
Collapse
|
5
|
Review of the evidence for thresholds for DNA-Reactive and epigenetic experimental chemical carcinogens. Chem Biol Interact 2019; 301:88-111. [DOI: 10.1016/j.cbi.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
|
6
|
Ghosh M, Öner D, Duca RC, Cokic SM, Seys S, Kerkhofs S, Van Landuyt K, Hoet P, Godderis L. Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO 2-np in bronchial epithelial (16-HBE) cells. Mutat Res 2017; 796:1-12. [PMID: 28212500 DOI: 10.1016/j.mrfmmm.2017.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022]
Abstract
With the increase in use of TiO2-np, a better understanding of their safety is important. In the present study the effect of different crystal phases of TiO2-np (anatase, rutile and anatase: rutile mixture; 20-26nm) were studied for cyto-genotoxicity and global DNA methylation and hydroxymethylation. Cytotoxic response was observed at a concentration of 25μg/ml for the particles tested. Results of comet and micronucleus (with and without CytB) assays revealed significant genotoxic effect of these particles. Flow cytometry revealed cell cycle arrest in the S-phase. Based on the results, toxicity of the particles could be correlated with their physico-chemical properties (i.e. smaller size and hydrodynamic diameter and larger surface area), anatase form being the most toxic. From the results of the cyto-genotoxicity assays, concentrations were determined for the epigenetic study. Effect on global DNA methylation and hydroxymethylation levels were studied at cyto-genotoxic (25μg/ml), genotoxic (12.5μg/ml) and sub cyto-genotoxic (3.25μg/ml) concentrations using LC-MS/MS analysis. Though no significant changes were observed for 3h treatment schedule; significant hypomethylation were observed at 24h for anatase (significant at 3.25 and 25μg/ml), rutile (significant at 3.25 and 25μg/ml) and anatase: rutile mixture (significant at 25μg/ml) forms. The results suggest that epigenetic changes could occur at sub cyto-genotoxic concentrations. And hence for complete characterization of nanoparticle toxicity, epigenetic studies should be performed along with conventional toxicity testing methods.
Collapse
Affiliation(s)
- Manosij Ghosh
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium.
| | - Deniz Öner
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium
| | - Radu-Corneliu Duca
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium
| | - Stevan M Cokic
- Department of Oral Health Sciences, KU Leuven BIOMAT, 3000 Leuven, Belgium
| | - Sven Seys
- K.U.Leuven, Department of Immunology and Microbiology, Leuven, Belgium
| | - Stef Kerkhofs
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, Heverlee, Leuven, Belgium
| | | | - Peter Hoet
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium
| | - Lode Godderis
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, B-3001, Heverlee, Belgium.
| |
Collapse
|
7
|
Ledda C, Loreto C, Zammit C, Marconi A, Fago L, Matera S, Costanzo V, Sanzà GF, Palmucci S, Ferrante M, Costa C, Fenga C, Biondi A, Pomara C, Rapisarda V. Non‑infective occupational risk factors for hepatocellular carcinoma: A review (Review). Mol Med Rep 2017; 15:511-533. [PMID: 28000892 PMCID: PMC5364850 DOI: 10.3892/mmr.2016.6046] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading worldwide cause of cancer‑associated mortalities. Hepatocellular carcinoma, which accounts for the majority of liver tumors, ranks fifth among types of human cancer. Well‑established risk factors for liver cancer include the hepatitis B and C viruses, aflatoxins, alcohol consumption, and oral contraceptives. Tobacco smoking, androgenic steroids, and diabetes mellitus are suspected risk factors. Current knowledge regarding non‑infective occupational risk factors for liver cancer is inconclusive. The relevance of liver disorders to occupational medicine lies in the fact that the majority of chemicals are metabolized in the liver, and toxic metabolites generated via metabolism are the predominant cause of liver damage. However, their non‑specific clinical manifestations that are similar in a number of liver diseases make diagnosis difficult. Furthermore, concomitant conditions, such as viral hepatitis and alcohol or drug abuse, may mask liver disorders that result from occupational hepatotoxic agents and block the demonstration of an occupational cause. The identification of environmental agents that result in human cancer is a long and often difficult process. The purpose of the present review is to summarize current knowledge regarding the association of non‑infective occupational risk exposure and HCC, to encourage further research and draw attention to this global occupational public health problem.
Collapse
Affiliation(s)
- Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
- Hygiene and Public Health, Department of Medical Sciences, Surgical and Advanced Technologies ‘GF Ingrassia’, University of Catania, I-95123 Catania, Italy
| | - Carla Loreto
- Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, I-95123 Catania, Italy
| | - Christian Zammit
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta
| | - Andrea Marconi
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Lucrezia Fago
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Serena Matera
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Valentina Costanzo
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Giovanni Fuccio Sanzà
- Division of Radiology, ‘Policlinico-Vittorio Emanuele’ University Hospital, University of Catania, I-95123 Catania, Italy
| | - Stefano Palmucci
- Division of Radiology, ‘Policlinico-Vittorio Emanuele’ University Hospital, University of Catania, I-95123 Catania, Italy
| | - Margherita Ferrante
- Hygiene and Public Health, Department of Medical Sciences, Surgical and Advanced Technologies ‘GF Ingrassia’, University of Catania, I-95123 Catania, Italy
| | - Chiara Costa
- Occupational Medicine, Department of the Environment, Safety, Territory, Food and Health Sciences, University of Messina, I-98125 Messina, Italy
| | - Concettina Fenga
- Occupational Medicine, Department of the Environment, Safety, Territory, Food and Health Sciences, University of Messina, I-98125 Messina, Italy
| | - Antonio Biondi
- General Surgery, Department of General Surgery and Medical-Surgical Specialties, University of Catania, I-95123 Catania, Italy
| | - Cristoforo Pomara
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta
- Forensic Pathology, Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
8
|
López-Álvarez GS, Wojdacz TK, García-Cuellar CM, Monroy-Ramírez HC, Rodríguez-Segura MA, Pacheco-Rivera RA, Valencia-Antúnez CA, Cervantes-Anaya N, Soto-Reyes E, Vásquez-Garzón VR, Sánchez-Pérez Y, Villa-Treviño S. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats. Biol Open 2017; 6:59-70. [PMID: 27895046 PMCID: PMC5278421 DOI: 10.1242/bio.020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4) using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively) after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats. Summary: Many genes downregulated by DNA methylation are tumor suppressor genes. In the present study, DNA methylation of Nox4 is observed, with implications for Nox4 as a potential therapeutic target for liver or other cancers.
Collapse
Affiliation(s)
- Guadalupe S López-Álvarez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Tomasz K Wojdacz
- Aarhus Institute of Advanced Studies and Department of Biomedicine, Bartholins Allé 6 Building, 1242, 8000 Aarhus C, Denmark
| | - Claudia M García-Cuellar
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, CDMX CP 14080, México
| | - Hugo C Monroy-Ramírez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Miguel A Rodríguez-Segura
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Ruth A Pacheco-Rivera
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas-IPN, Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, CDMX CP 11340, México
| | - Carlos A Valencia-Antúnez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Nancy Cervantes-Anaya
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| | - Ernesto Soto-Reyes
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, CDMX CP 14080, México
| | - Verónica R Vásquez-Garzón
- CONACYT, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Ex-Hacienda de Aguilera S/N Carretera a San Felipe del Agua, Oaxaca, Oax., CP 68020, México
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, CDMX CP 14080, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, CDMX CP 07360, México
| |
Collapse
|
9
|
Senyildiz M, Alpertunga B, Ozden S. DNA methylation analysis in rat kidney epithelial cells exposed to 3-MCPD and glycidol. Drug Chem Toxicol 2016; 40:432-439. [PMID: 27884059 DOI: 10.1080/01480545.2016.1255951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been regarded as a rat carcinogen, which is known to induce Leydig-cell and mammary gland tumors in males, as well as kidney tumors in both genders. 3-MCPD is highly suspected to be a non-genotoxic carcinogen. 2,3-Epoxy-1-propanol (glycidol) can be formed via dehalogenation from 3-MCPD. We aimed to investigate the cytotoxic effects of 3-MCPD and glycidol, then to demonstrate the possible epigenetic mechanisms with global and gene-specific DNA methylation in rat kidney epithelial cells (NRK-52E). IC50 value of 3-MCPD was determined as 48 mM and 41.39 mM, whereas IC50 value of glycidol was 1.67 mM and 1.13 mM by MTT and NRU test, respectively. Decreased global DNA methylation at the concentrations of 100 μM and 1000 μM for 3-MCPD and 100 μM and 500 μM for glycidol were observed after 48 h exposure by using 5-methylcytosine (5-mC) ELISA kit. Methylation changes were detected in promoter regions of c-myc and Rassf1a in 3-MCPD and glycidol treated NRK-52E cells by using methylation-specific PCR (MSP), whereas changes on gene expression of c-myc and Rassf1a were observed by using real-time PCR. However, e-cadherin, p16, VHL and p15 genes were unmethylated in their CpG promoter regions in response to treatment with 3-MCPD and glycidol. Alterations in DNA methylation might be key events in the toxicity of 3-MCPD and glycidol.
Collapse
Affiliation(s)
- Mine Senyildiz
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Istanbul University , Istanbul , Turkey
| | - Buket Alpertunga
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Istanbul University , Istanbul , Turkey
| | - Sibel Ozden
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Istanbul University , Istanbul , Turkey
| |
Collapse
|
10
|
Glen CD, McVeigh LE, Voutounou M, Dubrova YE. The effects of methyl-donor deficiency on the pattern of gene expression in mice. Mol Nutr Food Res 2015; 59:501-6. [DOI: 10.1002/mnfr.201400660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Colin D. Glen
- Department of Genetics; University of Leicester; Leicester UK
| | | | | | - Yuri E. Dubrova
- Department of Genetics; University of Leicester; Leicester UK
| |
Collapse
|
11
|
Yafune A, Kawai M, Itahashi M, Kimura M, Nakane F, Mitsumori K, Shibutani M. Global DNA methylation screening of liver in piperonyl butoxide-treated mice in a two-stage hepatocarcinogenesis model. Toxicol Lett 2013; 222:295-302. [PMID: 23968726 DOI: 10.1016/j.toxlet.2013.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022]
Abstract
Disruptive epigenetic gene control has been shown to be involved in carcinogenesis. To identify key molecules in piperonyl butoxide (PBO)-induced hepatocarcinogenesis, we searched hypermethylated genes using CpG island (CGI) microarrays in non-neoplastic liver cells as a source of proliferative lesions at 25 weeks after tumor promotion with PBO using mice. We further performed methylation-specific polymerase chain reaction (PCR), real-time reverse transcription PCR, and immunohistochemical analysis in PBO-promoted liver tissues. Ebp4.1, Wdr6 and Cmtm6 increased methylation levels in the promoter region by PBO promotion, although Cmtm6 levels were statistically non-significant. These results suggest that PBO promotion may cause altered epigenetic gene regulation in non-neoplastic liver cells surrounding proliferative lesions to allow the facilitation of hepatocarcinogenesis. Both Wdr6 and Cmtm6 showed decreased expression in non-neoplastic liver cells in contrast to positive immunoreactivity in the majority of proliferative lesions produced by PBO promotion. These results suggest that both Wdr6 and Cmtm6 were spared from epigenetic gene modification in proliferative lesions by PBO promotion in contrast to the hypermethylation-mediated downregulation in surrounding liver cells. Considering the effective detection of proliferative lesions, these molecules could be used as detection markers of hepatocellular proliferative lesions and played an important role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Atsunori Yafune
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Mechanisms postulated to link folate and B12 metabolism with cancer, including genome-wide hypomethylation, gene-specific promoter hypermethylation, and DNA uracil misincorporation, have been observed in prostate tumor cells. However, epidemiological studies of prostate cancer risk, based on dietary intakes and blood levels of folate and vitamin B12 and on folate-pathway gene variants, have generated contradictory findings. In a meta-analysis, circulating concentrations of B12 (seven studies, OR = 1.10; 95% CI 1.01, 1.19; P = 0.002) and (in cohort studies) folate (five studies, OR = 1.18; 95% CI 1.00, 1.40; P = 0.02) were positively associated with an increased risk of prostate cancer. Homocysteine was not associated with risk of prostate cancer (four studies, OR = 0.91; 95% CI 0.69, 1.19; P = 0.5). In a meta-analysis of folate-pathway polymorphisms, MTR 2756A > G (eight studies, OR = 1.06; 95% CI 1.00, 1.12; P = 0.06) and SHMT1 1420C > T (two studies, OR = 1.11; 95% CI 1.00, 1.22; P = 0.05) were positively associated with prostate cancer risk. There were no effects due to any other polymorphisms, including MTHFR 677C > T (12 studies, OR = 1.04; 95% CI 0.97, 1.12; P = 0.3). The positive association of circulating B12 with an increased risk of prostate cancer could be explained by reverse causality. However, given current controversies over mandatory B12 fortification, further research to eliminate a causal role of B12 in prostate cancer initiation and/or progression is required. Meta-analysis does not entirely rule out a positive association of circulating folate with increased prostate cancer risk. As with B12, even a weak positive association would be a significant public health issue, given the high prevalence of prostate cancer and concerns about the potential harms versus benefits of mandatory folic acid fortification.
Collapse
|
13
|
|
14
|
Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:215-32. [PMID: 22956504 PMCID: PMC4281087 DOI: 10.1007/978-1-4419-9967-2_11] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumorigenesis, a complex and multifactorial progressive process of transformation of normal cells into malignant cells, is characterized by the accumulation of multiple cancer-specific heritable phenotypes triggered by the mutational and/or non-mutational (i.e., epigenetic) events. Accumulating evidence suggests that environmental and occupational exposures to natural substances, as well as man-made chemical and physical agents, play a causative role in human cancer. In a broad sense, carcinogenesis may be induced through either genotoxic or non-genotoxic mechanisms; however, both genotoxic and non-genotoxic carcinogens also cause prominent epigenetic changes. This review presents current evidence of the epigenetic alterations induced by various chemical carcinogens, including arsenic, 1,3-butadine, and pharmaceutical and biological agents, and highlights the potential for epigenetic changes to serve as markers for carcinogen exposure and cancer risk assessment.
Collapse
Affiliation(s)
- Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Antitumor effects and preliminary systemic toxicity of ANISpm in vivo and in vitro. Anticancer Drugs 2013; 24:32-42. [DOI: 10.1097/cad.0b013e328359affd] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Bbosa GS, Kitya D, Odda J, Ogwal-Okeng J. Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health (London) 2013. [DOI: 10.4236/health.2013.510a1003] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Thomson JP, Lempiäinen H, Hackett JA, Nestor CE, Müller A, Bolognani F, Oakeley EJ, Schübeler D, Terranova R, Reinhardt D, Moggs JG, Meehan RR. Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome. Genome Biol 2012; 13:R93. [PMID: 23034186 PMCID: PMC3491421 DOI: 10.1186/gb-2012-13-10-r93] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/03/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Induction and promotion of liver cancer by exposure to non-genotoxic carcinogens coincides with epigenetic perturbations, including specific changes in DNA methylation. Here we investigate the genome-wide dynamics of 5-hydroxymethylcytosine (5hmC) as a likely intermediate of 5-methylcytosine (5mC) demethylation in a DNA methylation reprogramming pathway. We use a rodent model of non-genotoxic carcinogen exposure using the drug phenobarbital. RESULTS Exposure to phenobarbital results in dynamic and reciprocal changes to the 5mC/5hmC patterns over the promoter regions of a cohort of genes that are transcriptionally upregulated. This reprogramming of 5mC/5hmC coincides with characteristic changes in the histone marks H3K4me2, H3K27me3 and H3K36me3. Quantitative analysis of phenobarbital-induced genes that are involved in xenobiotic metabolism reveals that both DNA modifications are lost at the transcription start site, while there is a reciprocal relationship between increasing levels of 5hmC and loss of 5mC at regions immediately adjacent to core promoters. CONCLUSIONS Collectively, these experiments support the hypothesis that 5hmC is a potential intermediate in a demethylation pathway and reveal precise perturbations of the mouse liver DNA methylome and hydroxymethylome upon exposure to a rodent hepatocarcinogen.
Collapse
|
18
|
Pogribny IP, Beland FA. DNA methylome alterations in chemical carcinogenesis. Cancer Lett 2012; 334:39-45. [PMID: 23010082 DOI: 10.1016/j.canlet.2012.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/28/2012] [Accepted: 09/14/2012] [Indexed: 01/30/2023]
Abstract
Carcinogenesis, a complex multifactorial process of the transformation of normal cells into malignant cells, is characterized by many biologically significant and interdependent alterations triggered by the mutational and/or non-mutational (i.e., epigenetic) events. One of these events, specific to all types of cancer, is alterations in DNA methylation. This review summarizes the current knowledge of the role of DNA methylation changes induced by various genotoxic chemicals (carcinogenic agents that interact with DNA) and non-genotoxic carcinogens (chemicals causing tumor by mechanisms other than directly damaging DNA) in the lung, colorectal, liver, and hematologic carcinogenesis. It also emphasizes the potential role for epigenetic changes to serve as markers for carcinogen exposure and carcinogen risk assessment.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
19
|
Koturbash I, Simpson NE, Beland FA, Pogribny IP. Alterations in histone H4 lysine 20 methylation: implications for cancer detection and prevention. Antioxid Redox Signal 2012; 17:365-74. [PMID: 22035019 DOI: 10.1089/ars.2011.4370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE Cancer development and progression are associated with numerous genetic, epigenetic, and metabolic changes. RECENT ADVANCES A number of epigenetic aberrations have been characterized in cancer, including DNA methylation and various histone modification changes. One of the most unique and enigmatic epigenetic marks that is noticeably altered in several major human cancers is methylation of histone H4 lysine 20; however, there is insufficient knowledge of the underlying molecular mechanisms associated with this abberation. CRITICAL ISSUES This review presents current evidence of the role of histone H4 lysine 20 methylation in normal and cancer cells and during tumorigenesis induced by genotoxic and nongenotoxic carcinogens. Additionally, it describes molecular mechanisms that may cause this alteration and highlights the significance of this epigenetic mark as an early indicator of carcinogenesis. FUTURE DIRECTIONS Accumulating evidence suggests that dietary components may be significant regulators of the cellular epigenome, including histone methylation, by providing and maintaining the adequate levels of S-adenosyl-L-methionine, flavin adenine dinucleotide, α-ketoglutarate, and iron. Future research should elucidate the potential for modifying cellular metabolism through dietary intervention for timely regulation of the epigenome as means for the prevention of cancer development.
Collapse
Affiliation(s)
- Igor Koturbash
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | | | | | | |
Collapse
|
20
|
Voutounou M, Glen CD, Dubrova YE. The effects of methyl-donor deficiency on mutation induction and transgenerational instability in mice. Mutat Res 2012; 734:1-4. [PMID: 22569175 DOI: 10.1016/j.mrfmmm.2012.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 01/25/2023]
Abstract
The results of recent human and animal studies have provided strong evidence for the epigenetic effects of a dietary deficiency of methyl donors such as folate, choline and methionine on cancer risk and some other common diseases. However, the mechanisms underlying the links between epigenetic alterations and disease remain elusive. To establish whether a methyl-donor deficient diet can result in long-term changes in mutation rate in treated animals and their offspring, BALB/c male mice were maintained for 8 weeks, from 4 weeks of age, on a synthetic diet lacking in choline and folic acid. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in sperm samples of treated males, as well as in sperm and brain of their first-generation offspring. ESTR mutation frequency in the germline of males sacrificed immediately after treatment or sampled 6 and 10 weeks after the end of dietary restriction did not significantly differ from that in age-matched control groups. The frequency of ESTR mutation in DNA samples extracted from sperm and brain of the first-generation offspring of treated mice was also similar to that in controls. The results of our study suggest that the effects of a methyl-donor deficient diet on mutation induction and transgenerational instability in mice are likely to be negligible.
Collapse
Affiliation(s)
- Mariel Voutounou
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | |
Collapse
|
21
|
Priestley CC, Anderton M, Doherty AT, Duffy P, Mellor HR, Powell H, Roberts R. Epigenetics – relevance to drug safety science. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx00003b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Epigenetics describes the study of heritable changes in gene expression that occur in the absence of a change to the DNA sequence. Specific patterns of epigenetic signatures can be stably transmitted through mitosis and cell division and form the molecular basis for developmental stage- and cell type-specific gene expression. Associations have been observed that endogenous and exogenous stimuli can change the epigenetic control of both somatic and stem cell differentiation and thus influence phenotypic behaviours and/or disease progression. In relation to drug safety, DNA methylation changes have been identified in many stages of tumour development following exposure to non-genotoxic carcinogens. However, it is not clear whether DNA methylation changes cause cancer, or arise as a consequence of the transformed state. Toxic agents could act at different levels, by directly modifying the epigenome or indirectly by altering signalling pathways. These alterations in chromatin structure may or may not be heritable but are probably reversible. That said, there is currently insufficient data to support inclusion of epigenetic profiling into pre-clinical evaluation studies. Several international collaborations aim to generate data to determine whether epigenetic modifications are causal links in disease and/or tumour progression. It will only be when an understanding of chemical mode-of-action is required that evaluation of epigenetic changes might be considered. The current toxicological testing battery is expected to identify any potential adverse effects regardless of the mechanism, epigenetic or otherwise. It is recommended that toxicologists keep a close watch of new developments in this field, in particular identification of early epigenetic markers for non-genotoxic carcinogenicity. Scientific collaborations between academia and industry will help to understand inter-individual variations in response to drug and toxin exposure to be able to distinguish between adverse and non-adverse epigenetic changes.
Collapse
Affiliation(s)
- Catherine C. Priestley
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Mark Anderton
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Ann T. Doherty
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Paul Duffy
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Howard R. Mellor
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Helen Powell
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| | - Ruth Roberts
- Safety Assessment, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK. Fax: +44 1625 231281; Tel: +44 1625 232435
| |
Collapse
|
22
|
Wallace AD. Toxic Endpoints in the Study of Human Exposure to Environmental Chemicals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 112:89-115. [DOI: 10.1016/b978-0-12-415813-9.00004-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Koturbash I, Melnyk S, James SJ, Beland FA, Pogribny IP. Role of epigenetic and miR-22 and miR-29b alterations in the downregulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene. Mol Carcinog 2011; 52:318-27. [PMID: 22213190 DOI: 10.1002/mc.21861] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
Carcinogenesis is a multistep sequential process of clonal expansion of initiated cells associated with the accumulation of multiple cancer-specific heritable phenotypes. The acquisition of these heritable cancer-specific alterations may be triggered by mutational and/or non-mutational changes in the genome that affect the regulation of gene expression. Currently, cancer-specific epigenetically mediated changes in gene expression are regarded as driving events in tumorigenesis. In the present study, we investigated the role of gene-specific expression changes in the mechanism of rat hepatocarcinogenesis induced by the complete hepatocarcinogen 2-acetylaminofluorene (2-AAF). The results of the present study demonstrate significant alterations in gene expression, especially of Mat1a and Mthfr genes, during early stages of rat 2-AAF-induced liver carcinogenesis. Both of these genes were downregulated in the livers of 2-AAF-treated male rats. Inhibition of Mat1a expression was associated with an increase in histone H3 lysine 27 trimethylation and a decrease in histone H3 lysine 18 acetylation at the gene promoter/first exon region. Additionally, we demonstrate for the first time a critical contribution of miR-22 and miR-29b microRNAs in the inhibition of Mat1a and Mthfr gene expression during 2-AAF-induced rat hepatocarcinogenesis. The downregulation of Mat1a and Mthfr genes was accompanied by marked functional alterations in one-carbon metabolism. The results of the present study suggest that downregulation of the Mat1a and Mthfr genes may be one of the main driver events that promote liver carcinogenesis by causing a profound accumulation of subsequent epigenetic abnormalities during progression of the carcinogenic process.
Collapse
Affiliation(s)
- Igor Koturbash
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | | | | | | | | |
Collapse
|
24
|
Koturbash I, Scherhag A, Sorrentino J, Sexton K, Bodnar W, Swenberg JA, Beland FA, Pardo-Manuel deVillena F, Rusyn I, Pogribny IP. Epigenetic mechanisms of mouse interstrain variability in genotoxicity of the environmental toxicant 1,3-butadiene. Toxicol Sci 2011; 122:448-56. [PMID: 21602187 PMCID: PMC3155089 DOI: 10.1093/toxsci/kfr133] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/11/2011] [Indexed: 12/18/2022] Open
Abstract
1,3-Butadiene (BD) is a common environmental contaminant classified as "carcinogenic to humans." Formation of BD-induced DNA adducts plays a major role in its carcinogenicity. BD is also an epigenotoxic agent (i.e., it affects DNA and histone methylation in the liver). We used a panel of genetically diverse inbred mice (NOD/LtJ, CAST/EiJ, A/J, WSB/EiJ, PWK/PhJ, C57BL/6J, and 129S1/SvImJ) to assess whether BD-induced genotoxic and epigenotoxic events may be subject to interstrain differences. Mice (male, 7 weeks) were exposed via inhalation to 0 or 625 ppm BD for 6 h/day and 5 days/week for 2 weeks and liver BD-DNA adducts, epigenetic alterations, and liver toxicity were assessed. N-7-(2,3,4-trihydroxybut-1-yl)-guanine adducts were detected in all strains after exposure, yet BD-induced DNA damage in CAST/EiJ mice was two to three times lower. Epigenetic effects of BD were most prominent in C57BL/6J mice where loss of global DNA methylation and loss of trimethylation of histone H3 lysine 9, histone H3 lysine 27, and histone H4 lysine 20, accompanied by dysregulation of liver gene expression indicative of hepatotoxicity, were found. Interestingly, we observed an increase in histone methylation in the absence of changes in gene expression and DNA methylation in CAST/EiJ strain. We hypothesized that mitigated genotoxicity of BD in CAST/EiJ mice may be due to chromatin condensation. Indeed, we show that in response to BD exposure, chromatin condensation occurs in CAST/EiJ, whereas the opposite effect is observed in C57BL/6J mice. These findings demonstrate that interstrain susceptibility to genotoxicity by a well-known environmental carcinogen may be due to strain-specific epigenetic events in response to the exposure.
Collapse
Affiliation(s)
- Igor Koturbash
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Anne Scherhag
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
- Technical University of Kaiserslautern, Kaiserslautern, Rheinland-Pfalz 67663, Germany
| | | | | | - Wanda Bodnar
- Department of Environmental Sciences and Engineering
| | - James A. Swenberg
- Curriculum in Toxicology
- Department of Environmental Sciences and Engineering
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | | | - Ivan Rusyn
- Curriculum in Toxicology
- Department of Environmental Sciences and Engineering
| | - Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| |
Collapse
|
25
|
Wisler JA, Afshari C, Fielden M, Zimmermann C, Taylor S, Carnahan J, Vonderfecht S. Raf Inhibition Causes Extensive Multiple Tissue Hyperplasia and Urinary Bladder Neoplasia in the Rat. Toxicol Pathol 2011; 39:809-22. [DOI: 10.1177/0192623311410442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Seven novel and potent Raf small molecule kinase inhibitors (C1–7) were evaluated in seven-day oral repeat dose rat toxicity studies. All compounds tested induced hyperplasia in multiple tissues. Consistently affected was stratified squamous epithelium at a number of sites and transitional epithelium of urinary bladder and kidney. A seven-day time course study in rats showed morphologic evidence of epithelial proliferation in the nonglandular stomach within four to five hours after a single dose of C-1. Similar indications of cellular proliferation were observed in the urinary bladder by day 2 and in the heart, kidney, and liver by day 3. Transcriptional evidence of proliferation in the urinary bladder was detected within four to five hours after a single dose consistent with activation of the PI3K/AKT and ERK/MAPK pathways. In a twenty-eight-day rat toxicity study of C-1, hyperplasia was observed in the esophagus, nonglandular stomach, skin, urinary bladder, kidney, and heart. Hyperplasia of transitional epithelium of the urinary bladder was particularly severe and in one female rat was accompanied by the presence of a transitional cell carcinoma. These results suggest that these Raf inhibitors induce early transcriptional changes driving unchecked cell proliferation, resulting in marked tissue hyperplasia that can progress to carcinoma within a short time frame.
Collapse
Affiliation(s)
- John A. Wisler
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Cynthia Afshari
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Mark Fielden
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Cameron Zimmermann
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Scott Taylor
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Josette Carnahan
- Departments of Hematology & Oncology Research, Amgen Inc., Thousand Oaks, California, USA
| | - Steven Vonderfecht
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
26
|
Koturbash I, Scherhag A, Sorrentino J, Sexton K, Bodnar W, Tryndyak V, Latendresse JR, Swenberg JA, Beland FA, Pogribny IP, Rusyn I. Epigenetic alterations in liver of C57BL/6J mice after short-term inhalational exposure to 1,3-butadiene. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:635-40. [PMID: 21147608 PMCID: PMC3094413 DOI: 10.1289/ehp.1002910] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 12/13/2010] [Indexed: 05/25/2023]
Abstract
BACKGROUND 1,3-Butadiene (BD) is a high-volume industrial chemical and a known human carcinogen. The main mode of BD carcinogenicity is thought to involve formation of genotoxic epoxides. OBJECTIVES In this study we tested the hypothesis that BD may be epigenotoxic (i.e., cause changes in DNA and histone methylation) and explored the possible molecular mechanisms for the epigenetic changes. METHODS AND RESULTS We administered BD (6.25 and 625 ppm) to C57BL/6J male mice by inhalation for 2 weeks (6 hr/day, 5 days a week) and then examined liver tissue from these mice for signs of toxicity using histopathology and gene expression analyses. We observed no changes in mice exposed to 6.25 ppm BD, but glycogen depletion and dysregulation of hepatotoxicity biomarker genes were observed in mice exposed to 625 ppm BD. We detected N-7-(2,3,4-trihydroxybut-1-yl)guanine (THB-Gua) adducts in liver DNA of exposed mice in a dose-responsive manner, and also observed extensive alterations in the cellular epigenome in the liver, including demethylation of global DNA and repetitive elements and a decrease in histone H3 and H4 lysine methylation. In addition, we observed down-regulation of DNA methyltransferase 1 (Dnmt1) and suppressor of variegation 3-9 homolog 1, a histone lysine methyltransferase (Suv39h1), and up-regulation of the histone demethylase Jumonji domain 2 (Jmjd2a), proteins responsible for the accurate maintenance of the epigenetic marks. Although the epigenetic effects were most pronounced in the 625-ppm exposure group, some effects were evident in mice exposed to 6.25 ppm BD. CONCLUSIONS This study demonstrates that exposure to BD leads to epigenetic alterations in the liver, which may be important contributors to the mode of BD carcinogenicity.
Collapse
Affiliation(s)
- Igor Koturbash
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Anne Scherhag
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Technical University of Kaiserslautern, Kaiserslautern, Rheinland-Pfalz, Germany
| | - Jessica Sorrentino
- Curriculum in Toxicology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth Sexton
- Department of Environmental Sciences and Engineering, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wanda Bodnar
- Department of Environmental Sciences and Engineering, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - John R. Latendresse
- Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - James A. Swenberg
- Curriculum in Toxicology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Ivan Rusyn
- Curriculum in Toxicology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Koturbash I, Beland FA, Pogribny IP. Role of epigenetic events in chemical carcinogenesis—a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol Mech Methods 2011; 21:289-97. [DOI: 10.3109/15376516.2011.557881] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Retrotransposon-specific DNA hypomethylation and two-step loss-of-imprinting during WW45 haploinsufficiency-induced hepatocarcinogenesis. Biochem Biophys Res Commun 2011; 404:728-34. [DOI: 10.1016/j.bbrc.2010.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 12/31/2022]
|
29
|
Lahousse SA, Hoenerhoff M, Collins J, Ton TVT, Masinde T, Olson D, Rebolloso Y, Koujitani T, Tomer KB, Hong HHL, Bucher J, Sills RC. Gene expression and mutation assessment provide clues of genetic and epigenetic mechanisms in liver tumors of oxazepam-exposed mice. Vet Pathol 2010; 48:875-84. [PMID: 21147764 DOI: 10.1177/0300985810390019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver tumors from a previous National Toxicology Program study were examined using global gene expression and mutation analysis to define the mechanisms of carcinogenesis in mice exposed to oxazepam. Five hepatocellular adenomas and 5 hepatocellular carcinomas from male B6C3F1 mice exposed to 5000 ppm oxazepam and 6 histologically normal liver samples from control animals were examined. One of the major findings in the study was upregulation of the Wnt/β-catenin signaling pathway. Genes that activate β-catenin, such as Sox4, were upregulated, whereas genes that inhibit Wnt signaling, such as APC and Crebbp, were downregulated. In addition, liver tumors from oxazepam-exposed mice displayed β-catenin mutations and increased protein expression of glutamine synthetase, a downstream target in the Wnt signaling pathway. Another important finding in this study was the altered expression of oxidative stress-related genes, specifically increased expression of cytochrome p450 genes, including Cyp1a2 and Cyp2b10, and decreased expression of genes that protect against oxidative stress, such as Sod2 and Cat. Increased oxidative stress was confirmed by measuring isoprostane expression using mass spectrometry. Furthermore, global gene expression identified altered expression of genes that are associated with epigenetic mechanisms of cancer. There was decreased expression of genes that are hypermethylated in human liver cancer, including tumor suppressors APC and Pten. Oxazepam-induced tumors also exhibited decreased expression of genes involved in DNA methylation (Crebbp, Dnmt3b) and histone modification (Sirt1). These data suggest that formation of hepatocellular adenomas and carcinomas in oxazepam-exposed mice involves alteration of the Wnt signaling pathway, oxidative stress, and potential epigenetic alterations.
Collapse
Affiliation(s)
- S A Lahousse
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dobrovolsky VN, Miura D, Heflich RH, Dertinger SD. The in vivo Pig-a gene mutation assay, a potential tool for regulatory safety assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:825-835. [PMID: 20857433 DOI: 10.1002/em.20627] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Pig-a (phosphatidylinositol glycan, Class A) gene codes for a catalytic subunit of the N-acetylglucosamine transferase complex involved in an early step of glycosylphosphatidyl inositol (GPI) cell surface anchor synthesis. Pig-a is the only gene involved in GPI anchor synthesis that is on the X-chromosome, and research into the origins of an acquired genetic disease involving GPI anchor deficiency (paroxysmal nocturnal hemoglobinuria) indicates that cells lacking GPI anchors, or GPI-anchored cell surface proteins, almost always have mutations in the Pig-a gene. These properties of the Pig-a gene and the GPI anchor system have been exploited in a series of assays for measuring in vivo gene mutation in blood cells from humans, rats, mice, and monkeys. In rats, flow cytometric measurement of Pig-a mutation in red blood cells requires microliter volumes of blood and data can be generated in hours. Spontaneous mutant frequencies are relatively low (<5 × 10(-6)) and rats treated with multiple doses of the potent mutagen, N-ethyl-N-nitrosourea, display Pig-a mutant frequencies that are close to the sum of the frequencies produced by the individual exposures. A general observation is that induced mutant frequencies are manifested earlier in reticulocytes (about 2 weeks after treatment) than in total red blood cells (about 2 months after exposure). Based on data from a limited number of test agents, the assay shows promise for regulatory applications, including integration of gene mutation measurement into repeat-dose toxicology studies.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas 72279, USA.
| | | | | | | |
Collapse
|
31
|
Epigenetic side-effects of common pharmaceuticals: A potential new field in medicine and pharmacology. Med Hypotheses 2009; 73:770-80. [DOI: 10.1016/j.mehy.2008.10.039] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 11/22/2022]
|
32
|
Pogribny IP, Shpyleva SI, Muskhelishvili L, Bagnyukova TV, James SJ, Beland FA. Role of DNA damage and alterations in cytosine DNA methylation in rat liver carcinogenesis induced by a methyl-deficient diet. Mutat Res 2009; 669:56-62. [PMID: 19442675 DOI: 10.1016/j.mrfmmm.2009.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/27/2009] [Accepted: 05/04/2009] [Indexed: 12/16/2022]
Abstract
Currently, cancer is recognized as a disease provoked by both genetic and epigenetic events. However, the significance of early genetic and epigenetic alterations with respect to carcinogenic process in general and to liver carcinogenesis in particular remains unexplored. A lack of knowledge regarding how specific alterations during early preneoplasia may be mechanistically related to tumor formation creates a major gap in understanding the role of these genetic and epigenetic abnormalities in carcinogenesis. In the present study we investigated the contribution of DNA damage and epigenetic alterations to liver carcinogenesis induced by a methyl-deficient diet. Feeding Fisher 344 rats a methyl-deficient diet for 9 weeks resulted in DNA damage and aberrant DNA methylation. This was evidenced by an early up-regulation of the base excision DNA repair genes, accumulation of 8-oxodeoxyguanosine and 3'OH-end strand breaks in DNA, pronounced global loss of DNA methylation, and hypermethylation of CpG islands in the livers of methyl-deficient rats. These abnormalities were completely restored in the livers of rats exposed to methyl-deficiency for 9 weeks after removal of the methyl-deficient diet and re-feeding a methyl-sufficient diet. However, when rats were fed a methyl-deficient diet for 18 week and then given a methyl-sufficient diet, only DNA lesions were repaired. The methyl-sufficient diet failed to restore completely the altered DNA methylation status and prevent the progression of liver carcinogenesis. These results suggest that stable alterations in DNA methylation are a factor that promotes the progression of liver carcinogenesis. Additionally, the results indicate that epigenetic changes may be more reliable markers than DNA lesions of the carcinogenic process and carcinogen exposure.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Lawrence A. Loeb
- Department of Pathology, The Gottstein Memorial Cancer Research Laboratory, University of Washington, Seattle, Washington
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH Bethesda, Maryland
| |
Collapse
|
34
|
Pogribny IP, Tryndyak VP, Boureiko A, Melnyk S, Bagnyukova TV, Montgomery B, Rusyn I. Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liver. Mutat Res 2008; 644:17-23. [PMID: 18639561 DOI: 10.1016/j.mrfmmm.2008.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/11/2008] [Accepted: 06/19/2008] [Indexed: 01/05/2023]
Abstract
Genomic hypomethylation is a consistent finding in both human and animal tumors and mounting experimental evidence suggests a key role for epigenetic events in tumorigenesis. Furthermore, it has been suggested that early changes in DNA methylation and histone modifications may serve as sensitive predictive markers in animal testing for carcinogenic potency of environmental agents. Alterations in metabolism of methyl donors, disturbances in activity and/or expression of DNA methyltransferases, and presence of DNA single-strand breaks could contribute to the loss of cytosine methylation during carcinogenesis; however, the precise mechanisms of genomic hypomethylation induced by chemical carcinogens remain largely unknown. This study examined the mechanism of DNA hypomethylation during hepatocarcinogenesis induced by peroxisome proliferators WY-14,643 (4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid) and DEHP (di-(2-ethylhexyl)phthalate), agents acting through non-genotoxic mode of action. In the liver of male Fisher 344 rats exposed to WY-14,643 (0.1% (w/w), 5 months), the level of genomic hypomethylation increased by approximately 2-fold, as compared to age-matched controls, while in the DEHP group (1.2% (w/w), 5 months) DNA methylation did not change. Global DNA hypomethylation in livers from WY-14,643 group was accompanied by the accumulation of DNA single-strand breaks, increased cell proliferation, and diminished expression of DNA methyltransferase 1, while the metabolism of methyl donors was not affected. In contrast, none of these parameters changed significantly in rats fed DEHP. Since WY-14,643 is much more potent carcinogen than DEHP, we conclude that the extent of loss of DNA methylation may be related to the carcinogenic potential of the chemical agent, and that accumulation of DNA single-strand breaks coupled to the increase in cell proliferation and altered DNA methyltransferase expression may explain genomic hypomethylation during peroxisome proliferator-induced carcinogenesis.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | |
Collapse
|