1
|
Schatten H. The Impact of Centrosome Pathologies on Ovarian Cancer Development and Progression with a Focus on Centrosomes as Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:37-64. [PMID: 38805124 DOI: 10.1007/978-3-031-58311-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The impact of centrosome abnormalities on cancer cell proliferation has been recognized as early as 1914 (Boveri, Zur Frage der Entstehung maligner Tumoren. Jena: G. Fisher, 1914), but vigorous research on molecular levels has only recently started when it became fully apparent that centrosomes can be targeted for new cancer therapies. While best known for their microtubule-organizing capabilities as MTOC (microtubule organizing center) in interphase and mitosis, centrosomes are now further well known for a variety of different functions, some of which are related to microtubule organization and consequential activities such as cell division, migration, maintenance of cell shape, and vesicle transport powered by motor proteins, while other functions include essential roles in cell cycle regulation, metabolic activities, signal transduction, proteolytic activity, and several others that are now heavily being investigated for their role in diseases and disorders (reviewed in Schatten and Sun, Histochem Cell Biol 150:303-325, 2018; Schatten, Adv Anat Embryol Cell Biol 235:43-50, 2022a; Schatten, Adv Anat Embryol Cell Biol 235:17-35, 2022b).Cancer cell centrosomes differ from centrosomes in noncancer cells in displaying specific abnormalities that include phosphorylation abnormalities, overexpression of specific centrosomal proteins, abnormalities in centriole and centrosome duplication, formation of multipolar spindles that play a role in aneuploidy and genomic instability, and several others that are highlighted in the present review on ovarian cancer. Ovarian cancer cell centrosomes, like those in other cancers, display complex abnormalities that in part are based on the heterogeneity of cells in the cancer tissues resulting from different etiologies of individual cancer cells that will be discussed in more detail in this chapter.Because of the critical role of centrosomes in cancer cell proliferation, several lines of research are being pursued to target centrosomes for therapeutic intervention to inhibit abnormal cancer cell proliferation and control tumor progression. Specific centrosome abnormalities observed in ovarian cancer will be addressed in this chapter with a focus on targeting such aberrations for ovarian cancer-specific therapies.
Collapse
Affiliation(s)
- Heide Schatten
- University of Missouri-Columbia Department of Veterinary Pathobiology, Columbia, MO, USA.
| |
Collapse
|
2
|
Weiss JD, McVey SL, Stinebaugh SE, Sullivan CF, Dawe RK, Nannas NJ. Frequent Spindle Assembly Errors Require Structural Rearrangement to Complete Meiosis in Zea mays. Int J Mol Sci 2022; 23:ijms23084293. [PMID: 35457112 PMCID: PMC9031645 DOI: 10.3390/ijms23084293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The success of an organism is contingent upon its ability to faithfully pass on its genetic material. In the meiosis of many species, the process of chromosome segregation requires that bipolar spindles be formed without the aid of dedicated microtubule organizing centers, such as centrosomes. Here, we describe detailed analyses of acentrosomal spindle assembly and disassembly in time-lapse images, from live meiotic cells of Zea mays. Microtubules organized on the nuclear envelope with a perinuclear ring structure until nuclear envelope breakdown, at which point microtubules began bundling into a bipolar form. However, the process and timing of spindle assembly was highly variable, with frequent assembly errors in both meiosis I and II. Approximately 61% of cells formed incorrect spindle morphologies, with the most prevalent being tripolar spindles. The erroneous spindles were actively rearranged to bipolar through a coalescence of poles before proceeding to anaphase. Spindle disassembly occurred as a two-state process with a slow depolymerization, followed by a quick collapse. The results demonstrate that maize meiosis I and II spindle assembly is remarkably fluid in the early assembly stages, but otherwise proceeds through a predictable series of events.
Collapse
Affiliation(s)
- Jodi D. Weiss
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Shelby L. McVey
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Sarah E. Stinebaugh
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Caroline F. Sullivan
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - R. Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Natalie J. Nannas
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
- Correspondence:
| |
Collapse
|
3
|
Shen YR, Wang HY, Tsai YC, Kuo YC, Wu SR, Wang CY, Kuo PL. The SEPT12 complex is required for the establishment of a functional sperm head-tail junction. Mol Hum Reprod 2021; 26:402-412. [PMID: 32392324 DOI: 10.1093/molehr/gaaa031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/30/2020] [Indexed: 01/11/2023] Open
Abstract
The connecting pieces of the sperm neck link the flagellum and the sperm head, and they are important for initiating flagellar beating. The connecting pieces are important building blocks for the sperm neck; however, the mechanism of connecting piece assembly is poorly understood. In the present study, we explored the role of septins in sperm motility and found that Sept12D197N knock-in (KI) mice produce acephalic and immotile spermatozoa. Electron microscopy analysis showed defective connecting pieces in sperm from KI mice, indicating that SEPT12 is required for the establishment of connecting pieces. We also found that SEPT12 formed a complex with SEPT1, SEPT2, SEPT10 and SEPT11 at the sperm neck and that the D197N mutation disrupted the complex, suggesting that the SEPT12 complex is involved in the assembly of connecting pieces. Additionally, we found that SEPT12 interacted and colocalized with γ-tubulin in elongating spermatids, implying that SEPT12 and pericentriolar materials jointly contribute to the formation of connecting pieces. Collectively, our findings suggest that SEPT12 is required for the formation of striated columns, and the capitulum and for maintaining the stability of the sperm head-tail junction.
Collapse
Affiliation(s)
- Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-Yu Wang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Sport Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yung-Che Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, National Cheng-Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
4
|
Wellard SR, Zhang Y, Shults C, Zhao X, McKay M, Murray SA, Jordan PW. Overlapping roles for PLK1 and Aurora A during meiotic centrosome biogenesis in mouse spermatocytes. EMBO Rep 2021; 22:e51023. [PMID: 33615678 PMCID: PMC8024899 DOI: 10.15252/embr.202051023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
The establishment of bipolar spindles during meiotic divisions ensures faithful chromosome segregation to prevent gamete aneuploidy. We analyzed centriole duplication, as well as centrosome maturation and separation during meiosis I and II using mouse spermatocytes. The first round of centriole duplication occurs during early prophase I, and then, centrosomes mature and begin to separate by the end of prophase I to prime formation of bipolar metaphase I spindles. The second round of centriole duplication occurs at late anaphase I, and subsequently, centrosome separation coordinates bipolar segregation of sister chromatids during meiosis II. Using a germ cell-specific conditional knockout strategy, we show that Polo-like kinase 1 and Aurora A kinase are required for centrosome maturation and separation prior to metaphase I, leading to the formation of bipolar metaphase I spindles. Furthermore, we show that PLK1 is required to block the second round of centriole duplication and maturation until anaphase I. Our findings emphasize the importance of maintaining strict spatiotemporal control of cell cycle kinases during meiosis to ensure proficient centrosome biogenesis and, thus, accurate chromosome segregation during spermatogenesis.
Collapse
Affiliation(s)
- Stephen R Wellard
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Yujiao Zhang
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Chris Shults
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Xueqi Zhao
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | | | | | - Philip W Jordan
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| |
Collapse
|
5
|
Li Y, Miao Y, Chen J, Xiong B. SIRT6 Maintains Redox Homeostasis to Promote Porcine Oocyte Maturation. Front Cell Dev Biol 2021; 9:625540. [PMID: 33718364 PMCID: PMC7947247 DOI: 10.3389/fcell.2021.625540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
SIRT6, the sixth member of the sirtuin family proteins, has been characterized as a crucial regulator in multiple molecular pathways related to aging, including genome stability, DNA damage repair, telomere maintenance, and inflammation. However, the exact roles of SIRT6 during female germ cell development have not yet been fully determined. Here, we assessed the acquisition of meiotic competency of porcine oocytes by inhibition of SIRT6 activity. We observed that SIRT6 inhibition led to the oocyte meiotic defects by showing the impairment of polar body extrusion and cumulus cell expansion. Meanwhile, the compromised spindle/chromosome structure and actin dynamics were also present in SIRT6-inhibited oocytes. Moreover, SIRT6 inhibition resulted in the defective cytoplasmic maturation by displaying the disturbed distribution dynamics of cortical granules and their content ovastacin. Notably, we identified that transcript levels of genes related to oocyte meiosis, oxidative phosphorylation, and cellular senescence were remarkably altered in SIRT6-inhibited oocytes by transcriptome analysis and validated that the meiotic defects caused by SIRT6 inhibition might result from the excessive reactive oxygen species (ROS)-induced early apoptosis in oocytes. Taken together, our findings demonstrate that SIRT6 promotes the porcine oocyte meiotic maturation through maintaining the redox homeostasis.
Collapse
Affiliation(s)
- Yu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingyue Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Inhibitory effects of astaxanthin on postovulatory porcine oocyte aging in vitro. Sci Rep 2020; 10:20217. [PMID: 33214659 PMCID: PMC7677382 DOI: 10.1038/s41598-020-77359-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mammalian oocytes represent impaired quality after undergoing a process of postovulatory aging, which can be alleviated through various effective ways such as reagent treatment. Accumulating evidences have revealed the beneficial effects of astaxanthin (Ax) as a potential antioxidant on reproductive biology. Here, porcine matured oocytes were used as a model to explore whether Ax supplement can protect against oocyte aging in vitro and the underlying mechanism, and therefore they were cultured with or without 2.5 μM Ax for an additional 24 h. Aged oocytes treated with Ax showed improved yield and quality of blastocysts as well as recovered expression of maternal genes. Importantly, oxidative stress in aged oocytes was relieved through Ax treatment, based on reduced reactive oxygen species and enhanced glutathione and antioxidant gene expression. Moreover, inhibition in apoptosis and autophagy of aged oocyte by Ax was confirmed through decreased caspase-3, cathepsin B and autophagic activities. Ax could also maintain spindle organization and actin expression, and rescue functional status of organelles including mitochondria, endoplasmic reticulum, Golgi apparatus and lysosomes according to restored fluorescence intensity. In conclusion, Ax might provide an alternative for ameliorating the oocyte quality following aging in vitro, through the mechanisms mediated by its antioxidant properties.
Collapse
|
7
|
Zhang Y, Tian J, Qu C, Peng Y, Lei J, Sun L, Zong B, Liu S. A look into the link between centrosome amplification and breast cancer. Biomed Pharmacother 2020; 132:110924. [PMID: 33128942 DOI: 10.1016/j.biopha.2020.110924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumors, but it is not clear whether this is a cause or a consequence of cancer. The centrosome amplification observed in tumor cells may be explained by a series of events, such as failure of cell division, dysregulation of centrosome cycle checkpoints, and de novo centriole biogenesis disorder. The formation and progression of breast cancer are characterized by genomic abnormality. The centrosomes in breast cancer cells show characteristic structural aberrations, caused by centrosome amplification, which include: an increase in the number and volume of centrosomes, excessive increase of pericentriolar material (PCM), inappropriate phosphorylation of centrosomal molecular, and centrosome clustering formation induced by the dysregulation of important genes. The mechanism of intracellular centrosome amplification, the impact of which on breast cancer and the latest breast cancer target treatment options for centrosome amplification are exhaustively elaborated in this review.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jiao Tian
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Chi Qu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Yang Peng
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jinwei Lei
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Lu Sun
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Beige Zong
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Shengchun Liu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
8
|
Lv M, Liu W, Chi W, Ni X, Wang J, Cheng H, Li WY, Yang S, Wu H, Zhang J, Gao Y, Liu C, Li C, Yang C, Tan Q, Tang D, Zhang J, Song B, Chen YJ, Li Q, Zhong Y, Zhang Z, Saiyin H, Jin L, Xu Y, Zhou P, Wei Z, Zhang C, He X, Zhang F, Cao Y. Homozygous mutations in DZIP1 can induce asthenoteratospermia with severe MMAF. J Med Genet 2020; 57:445-453. [PMID: 32051257 PMCID: PMC7361034 DOI: 10.1136/jmedgenet-2019-106479] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Asthenoteratospermia, one of the most common causes for male infertility, often presents with defective sperm heads and/or flagella. Multiple morphological abnormalities of the sperm flagella (MMAF) is one of the common clinical manifestations of asthenoteratospermia. Variants in several genes including DNAH1, CEP135, CATSPER2 and SUN5 are involved in the genetic pathogenesis of asthenoteratospermia. However, more than half of the asthenoteratospermia cases cannot be explained by the known pathogenic genes. METHODS AND RESULTS Two asthenoteratospermia-affected men with severe MMAF (absent flagella in >90% spermatozoa) from consanguineous families were subjected to whole-exome sequencing. The first proband had a homozygous missense mutation c.188G>A (p.Arg63Gln) of DZIP1 and the second proband had a homozygous stop-gain mutation c.690T>G (p.Tyr230*). Both of the mutations were neither detected in the human population genome data (1000 Genomes Project, Exome Aggregation Consortium) nor in our own data of a cohort of 875 Han Chinese control populations. DZIP1 encodes a DAZ (a protein deleted in azoospermia) interacting protein, which was associated with centrosomes in mammalian cells. Immunofluorescence staining of the centriolar protein Centrin1 indicated that the spermatozoa of the proband presented with abnormal centrosomes, including no concentrated centriolar dot or more than two centriolar dots. HEK293T cells transfected with two DZIP1-mutated constructs showed reduced DZIP1 level or truncated DZIP1. The Dzip1-knockout mice, generated by the CRSIPR-Cas9, revealed consistent phenotypes of severe MMAF. CONCLUSION Our study strongly suggests that homozygous DZIP1 mutations can induce asthenoteratospermia with severe MMAF. The deficiency of DZIP1 induces sperm centrioles dysfunction and causes the absence of flagella.
Collapse
Affiliation(s)
- Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Wangjie Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wangfei Chi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaoqing Ni
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Jiajia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Huiru Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Wei-Yu Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shenmin Yang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caihua Li
- Genesky Biotechnologies Inc, Shanghai, Shanghai, China
| | - Chenyu Yang
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yu-Jie Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Qiang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Yading Zhong
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hexige Saiyin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, China
| | - Chuanmao Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
9
|
Kahraman S, Sahin Y, Yelke H, Kumtepe Y, Tufekci MA, Yapan CC, Yesil M, Cetinkaya M. High rates of aneuploidy, mosaicism and abnormal morphokinetic development in cases with low sperm concentration. J Assist Reprod Genet 2020; 37:629-640. [PMID: 31901112 PMCID: PMC7125256 DOI: 10.1007/s10815-019-01673-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose The aim of our study was to evaluate the impact of severe male infertility (SMF) on the chromosomal status of embryos and any possible correlation between chromosomal status and embryo morphokinetics in younger women using data obtained from comprehensive preimplantation genetic tests. Methods The trial was conducted in an ART and Reproductive Genetics Centre between 2011 and 2018. A total of 326 cycles in cases with SMF where the female partner’s age was ≤ 35 years were evaluated. SMF is defined as sperm concentration below 5 mil/ml (million per milliliter) and divided into three subgroups according to sperm concentrations: 1–5 mil/ml, < 1mil/ml and testicular sperm. The control group of 190 cycles had normal sperm parameters. Results Significantly lower chromosomal euploidy rates were found in the testicular sperm group compared with the normal sperm controls when the female age was ≤ 35 years. In SMF, statistically significantly affected chromosomes were 2, 10, 11, 17, 21 and sex chromosomes. The mosaicism and abnormal morphokinetic development rates were higher in the SMF group than in control group, and this difference was significant when testicular sperm was used. Conclusion Lower euploidy rates, higher mosaicism rates and a higher incidence of abnormal morphokinetic development were observed in cases with testicular sperm with female partners ≤ 35 years compared with normal sperm controls. These findings suggest that PGT-A may be advisable in severe male infertility cases. Furthermore, the correlation between morphokinetics and chromosomal status was greatly reduced or absent in these most severe forms of male infertility, thus the need for new morphokinetic models. Electronic supplementary material The online version of this article (10.1007/s10815-019-01673-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Semra Kahraman
- Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul Memorial Hospital, Piyalepasa Bulvari, Sisli, 34384, Istanbul, Turkey.
| | - Yucel Sahin
- Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul Memorial Hospital, Piyalepasa Bulvari, Sisli, 34384, Istanbul, Turkey
| | - Hakan Yelke
- Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul Memorial Hospital, Piyalepasa Bulvari, Sisli, 34384, Istanbul, Turkey
| | - Yesim Kumtepe
- Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul Memorial Hospital, Piyalepasa Bulvari, Sisli, 34384, Istanbul, Turkey
| | - Mehmet A Tufekci
- Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul Memorial Hospital, Piyalepasa Bulvari, Sisli, 34384, Istanbul, Turkey
| | - Cigdem C Yapan
- Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul Memorial Hospital, Piyalepasa Bulvari, Sisli, 34384, Istanbul, Turkey
| | - Mesut Yesil
- Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul Memorial Hospital, Piyalepasa Bulvari, Sisli, 34384, Istanbul, Turkey
| | - Murat Cetinkaya
- Assisted Reproductive Technologies and Reproductive Genetics Center, Istanbul Memorial Hospital, Piyalepasa Bulvari, Sisli, 34384, Istanbul, Turkey
| |
Collapse
|
10
|
Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet 2018; 35:1953-1968. [PMID: 30206748 PMCID: PMC6240539 DOI: 10.1007/s10815-018-1304-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Advancing maternal and paternal age leads to a decrease in fertility, and hence, many infertile couples opt for assisted reproductive technologies [ART] to achieve biological parenthood. One of the key determinants of achieving a live outcome of ART, embryo quality, depends on both the quality of the oocyte and sperm that have created the embryo. Several studies have explored the effect of oocyte parameters on embryo quality, but the effects of sperm quality on the embryo have not been comprehensively evaluated. METHOD In this review, we assess the effect of various genetic factors of paternal origin on the quality and development of the embryo. RESULTS The effects of sperm aneuploidy, sperm chromatin structure, deoxyribonucleic acid [DNA] fragmentation, role of protamines and histones, sperm epigenetic profile, and Y chromosome microdeletions were explored and found to negatively affect embryo quality. CONCLUSION We propose that careful assessment of spermatozoal parameters is essential to achieve embryo development and a healthy live birth. However, the heterogeneity in test results and the different approaches of assessing a single sperm parameter highlight the need for more research and the development of standardized protocols to assess the role of sperm factors affecting embryo quality.
Collapse
Affiliation(s)
- Stacy Colaco
- Molecular and Cellular Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, India.
| | | |
Collapse
|
11
|
Mitochondrial activity and cytoskeleton organization in three pronuclei oocytes after intracytoplasmic sperm injection. ZYGOTE 2018; 26:319-325. [DOI: 10.1017/s0967199418000278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryDigyny, the presence of a third pronucleus due to the failure of second polar body extrusion, is problematic after intracytoplasmic sperm injection (ICSI) practices. Mitochondria have critical roles such as production of adenosine triphosphate (ATP) and regulation of Ca2+ homeostasis during oocyte maturation, fertilization and the following development, while the regulation of meiotic spindle formation, chromosome segregation, pronuclear apposition and cytokinesis is closely associated with the cytoskeleton. In this study, mitochondrial membrane potential, distribution of F-actin and γ-tubulin, and the ultrastructure of three pronuclear (3PN) oocytes were investigated. 3PN oocytes after ICSI procedure were taken from patients who were enrolled in assisted reproduction programmes. For mitochondrial membrane potential analysis, fresh oocytes stained with the mitochondrial membrane potential probe JC-1, were evaluated under fluorescence microscopy. The mitochondrial membrane potential of three pronuclear oocytes showed similar results to normal zygotes. γ-Tubulin was stained strongly at the subplasmalemmal domain and microfilaments were localized at the cortical, but not the perinuclear, area. Cytoplasmic halos were moderately or not detected by electron microscopy; lipofuscin granules, degenerated mitochondria, and multilamellated bodies were seen in the ooplasm. Immunohistochemistry and electron microscopic findings suggested that mitochondrial membrane potential has no direct effect on second polar body extrusion. This abnormality can be associated with an altered cytoskeleton due to poor oocyte quality.
Collapse
|
12
|
Xie Y, Cheng M, Lu S, Yuan Q, Yang D, Chen Y, Pan C, Qiu Y, Xiong B. Eg5 orchestrates porcine oocyte maturational progression by maintaining meiotic organelle arrangement. Cell Div 2018; 13:4. [PMID: 29796058 PMCID: PMC5966870 DOI: 10.1186/s13008-018-0037-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background Kinesin superfamily proteins are microtubule-based molecular motors essential for the intracellular transport of various cargos, including organelles, proteins, and RNAs. However, their exact roles during mammalian oocyte meiosis have not been fully clarified. Results Herein, we investigated the critical events during porcine oocyte meiotic maturation with the treatment of Eg5-specific inhibitor monastrol. We found that Eg5 inhibition resulted in oocyte meiotic failure by displaying the poor expansion of cumulus cells and reduced rate of polar body extrusion. In the meantime, the spindle assembly and chromosome alignment were compromised, accompanied by the decreased level of acetylated α-tubulin, indicative of less stable microtubules. Impaired actin dynamics and mitochondria integrity were also observed in Eg5-inhibited oocytes. Additionally, inhibition of Eg5 caused the abnormal distribution of cortical granules and ovastacin, a cortical granule component, potentially leading to the fertilization failure. Conclusions Our findings reveal that Eg5 possesses an important function in porcine oocyte meiotic progression by regulating the organelle dynamics and arrangement.
Collapse
Affiliation(s)
- Yan Xie
- 1Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China.,2Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Minghui Cheng
- 3College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shan Lu
- 2Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Qilong Yuan
- 2Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Dongyu Yang
- 2Department of Reproductive Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Ying Chen
- 3College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Pan
- 3College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yurong Qiu
- 1Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bo Xiong
- 3College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
13
|
Miao Y, Zhou C, Cui Z, Zhang M, ShiYang X, Lu Y, Xiong B. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J 2018; 32:1328-1337. [PMID: 29109171 DOI: 10.1096/fj.201700908r] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Negative effects of postovulatory aging on fertilization ability and subsequent embryo development have been reported in rodents; however, the molecular and cellular changes during this process have not been fully defined. Here, we used porcine oocytes, a model that is physiologically and developmentally similar to humans, to explore the molecular mechanisms that underlie how postovulatory aging affects oocyte quality and fertilization capacity. We found that postovulatory aging caused the morphologic change of porcine oocytes by exhibiting the incompact expansion of cumulus cells and an increased occurrence of fragmentation. Aging also impaired oocyte quality by disrupting organelle structures, including the spindle assembly, actin polymerization, and mitochondrial integrity. Moreover, postovulatory aging led to the abnormal distribution of cortical granules and ovastacin, which, in turn, resulted in defective sperm binding and consequently compromised fertilization potential. Of note, we observed that postovulatory aging induced oxidative stress with a high level of reactive oxygen species and apoptotic rate in oocytes, thereby resulting in the deterioration of critical factors in the maintenance of oocyte quality and fertilization capacity. Taken together, our findings demonstrate that postovulatory aging perturbs a variety of molecular and cellular changes in porcine oocytes by inducing oxidative stress.-Miao, Y., Zhou, C., Cui, Z., Zhang, M., ShiYang, X., Lu, Y., Xiong, B. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress.
Collapse
Affiliation(s)
- Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
The Impact of Centrosome Pathologies on Prostate Cancer Development and Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1095:67-81. [DOI: 10.1007/978-3-319-95693-0_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Miao Y, Zhou C, Cui Z, Tang L, ShiYang X, Lu Y, Zhang M, Dai X, Xiong B. Dynein promotes porcine oocyte meiotic progression by maintaining cytoskeletal structures and cortical granule arrangement. Cell Cycle 2017; 16:2139-2145. [PMID: 28933593 DOI: 10.1080/15384101.2017.1380133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein is a family of cytoskeletal motor proteins that move towards the minus-end of the microtubules to perform functions in a variety of mitotic processes such as cargo transport, organelle positioning, chromosome movement and centrosome assembly. However, its specific roles during mammalian oocyte meiosis have not been fully defined. Herein, we investigated the critical events during porcine oocyte meiotic maturation after inhibition of dynein by Ciliobrevin D treatment. We found that oocyte meiotic progression was arrested when inhibited of dynein by showing the poor expansion of cumulus cells and decreased rate of polar body extrusion. Meanwhile, the spindle assembly and chromosome alignment were disrupted, accompanied by the reduced level of acetylated α-tubulin, indicative of weakened microtubule stability. Defective actin polymerization on the plasma membrane was also observed in dynein-inhibited oocytes. In addition, inhibition of dynein caused the abnormal distribution of cortical granules and precocious exocytosis of ovastacin, a cortical granule component, which predicts that ZP2, the sperm binding site in the zona pellucida, might be prematurely cleaved in the unfertilized dynein-inhibited oocytes, potentially leading to the fertilization failure. Collectively, our findings reveal that dynein plays a part in porcine oocyte meiotic progression by regulating the cytoskeleton dynamics including microtubule stability, spindle assembly, chromosome alignment and actin polymerization. We also find that dynein mediates the normal cortical granule distribution and exocytosis timing of ovastacin in unfertilized eggs which are the essential for the successful fertilization.
Collapse
Affiliation(s)
- Yilong Miao
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Changyin Zhou
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Zhaokang Cui
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Liansheng Tang
- b Shandong Institute of Pharmaceutical Industry, Shandong Provincial Key Laboratory of Chemical Drugs , Jinan , China
| | - Xiayan ShiYang
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Yajuan Lu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Mianqun Zhang
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xiaoxin Dai
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Bo Xiong
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
16
|
Ikami K, Nuzhat N, Lei L. Organelle transport during mouse oocyte differentiation in germline cysts. Curr Opin Cell Biol 2017; 44:14-19. [PMID: 28038435 DOI: 10.1016/j.ceb.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
During mammalian oogenesis, germ cells undergo oocyte differentiation and oocyte development to form mature oocytes that contain essential components for supporting early embryogenesis. However, only a small fraction of germ cells become mature oocytes and the mechanism of this massive germ cell loss has been unclear. Our recent studies suggested that the formation of functional oocytes and germ cell loss are interlinked by a 'nursing' process in germline cysts during oocyte differentiation in mouse fetal ovaries. 80% of the fetal germ cells sacrifice themselves by donating their cytoplasmic contents to the remaining sister germ cells that differentiate into primary oocytes with augmented developmental potential. In this review, we will summarize the process of mouse oocyte differentiation with a particular focus on organelle transport in germline cysts.
Collapse
Affiliation(s)
- Kanako Ikami
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States
| | - Nafisa Nuzhat
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3045, Ann Arbor, MI 48109, United States.
| |
Collapse
|
17
|
Schatten H, Sun QY. Cytoskeletal Functions, Defects, and Dysfunctions Affecting Human Fertilization and Embryo Development. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology; University of Missouri; Columbia MO USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
18
|
Direct Unequal Cleavages: Embryo Developmental Competence, Genetic Constitution and Clinical Outcome. PLoS One 2016; 11:e0166398. [PMID: 27907016 PMCID: PMC5132229 DOI: 10.1371/journal.pone.0166398] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022] Open
Abstract
Objective To investigate the prevalence, developmental potential, chromosomal constitution and clinical outcome of embryos with direct unequal cleavages (DUC). Design A retrospective observational study. Setting Academic Institution. Participant 21,261 embryos from 3,155 cycles cultured in EmbryoScope®. Results The total incidence of DUCs per embryo occupying the first three cleavages were 26.1%. Depending of the cell stage, DUC rate was 9.8% at first cleavage (DUC-1), 9.1% at second cleavage (DUC-2), and 3.7% at third cleavage (DUC-3) with 3.6% of embryos exhibiting multiple DUCs (DUC-Plus). The occurrence of DUCs was not correlated with female gamete age or source. The incidence of DUC-1 was significantly higher in embryos fertilized by epididymal and testicular sperm (13.6% and 11.4%, respectively) compared to ejaculated sperm (9.1%, all p<0.05). The total incidences of DUCs were strongly correlated with the onset of blastomere multinucleation (MNB) during the first three divisions. In MNB embryos, DUCs incidence are two to three times more likely to develop when compared to non-MNB embryos (OR = 3.11, 95% CI [2.64, 3.67] at 1-cell stage, OR = 2.64, 95% CI [2.39, 2.91] at 2-cell stage and OR = 2.51, 95% CI [1.84, 3.43] at 4-cell stage). The blastocyst formation rates gradually decreased from 61.0% in non-DUC to 40.2% in DUC-3, 18.8% in DUC-2, 8.2% in DUC-1 and 5.6% in multiple DUC embryos (DUC-Plus). The known implantation rates (FH) for day 3 (D3) transfers were 12.42% (n = 3172) in Non-DUC embryos, 6.3% (n = 127) in DUC-3, and 2.7% (n = 260) in DUC-2 embryos. No live births resulted from either DUC-1 (n = 225) or DUC-Plus (n = 100) embryo transfers. For blastocyst transfers, lower implantation rates (33.3%) but similar live birth (LB) rates (40%) were observed if DUC blastocysts were transferred. Comparatively rates in Non-DUC blastocyst were 45.2% and 34.8%, respectively. The euploid rate gradually increased from DUC-1, -2, -3 to Non-DUC (13.3%, 19.5%, 33.3%, 45.6%, p<0.001) for D3 biopsied embryos. Interestingly, the trend of decreased euploidy disappeared in DUC D5/6 biopsied embryos and similar rates were exemplified in DUC (D5 56.3%, D6 35.6%) vs. non-DUC (D5 51.4%, D6 33.8%) embryos. Conclusion Blastocyst formation, implantation potential and euploid rate were significantly reduced in DUC embryos. DUC embryos should be deselected for D3 transfers, but should be culture to blastocyst stage for possible ET.
Collapse
|
19
|
Simopoulou M, Gkoles L, Bakas P, Giannelou P, Kalampokas T, Pantos K, Koutsilieris M. Improving ICSI: A review from the spermatozoon perspective. Syst Biol Reprod Med 2016; 62:359-371. [PMID: 27646677 DOI: 10.1080/19396368.2016.1229365] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is the most frequently applied method for fertilization making the process of identifying the perfect spermatozoon fundamental. Herein we offer a critical and thorough presentation on the techniques reported regarding (i) handling and preparing semen samples, (ii) identifying and 'fishing' spermatozoa, and (iii) improving key factors, such as motility for a successful ICSI practice. These approaches are suggested to make the process easier and more effective especially in atypical and challenging circumstances. Furthermore, we present an epigrammatic opinion-where appropriate-based upon our collective experience. Techniques such as intracytoplasmic morphologically selected sperm injection, hyaluronic binding, polarized light microscopy, and annexin V agent identification for comparing sperm cells and their chromatin integrity are analyzed. Moreover, for the demanding cases of total sperm immotility the use of the hypoosmotic swelling test, methylxanthines, as well as the option of laser assisted immotile sperm selection are discussed. Finally, we refer to the employment of myoinositol as a way to bioreactively improve ICSI outcome for oligoasthenoteratozoospermic men. The diversity and the constant development of novel promising techniques to improve ICSI from the spermatozoon perspective, is certainly worth pursuing. The majority of the techniques discussed are still a long way from being established in routine practices of the standard IVF laboratory. In most cases an experienced embryologist could yield the same results. Although some of the techniques show great benefits, there is a need for large scale multicenter randomized control studies to be conducted in order to specify their importance before suggesting horizontal application. Taking into consideration the a priori invasive nature of ICSI, when clinical application becomes a possibility we need to proceed with caution and ensure that in the pursuit for innovation we are not sacrificing safety and the balance of the physiological and biological pathways of the spermatozoon's dynamic. ABBREVIATIONS ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; PGD: reimplantation genetic diagnosis; IVM: in vitro maturation; HCV/HIV: hepatitis C virus/human immunodeficiency virus; IMSI: intracytoplasmic morphologically selected sperm injection; DGC: density gradient centrifugations; S-U: swim-up; ART: assisted reproduction technology; IUI: intrauterine insemination; PVP: polyvinylpyrrolidone; HA: hyaluronic acid; MSOME: motile sperm organelle morphology examination; ZP: zona pellucida; MACS: magnetic activation cell sorting; HOST: hypo-osmotic swelling test; TESE: testicular sperm extraction; MMP: mitochondrial membrane potential; OAT: oligoasthenoteratozoospermic.
Collapse
Affiliation(s)
- Mara Simopoulou
- a Department of Physiology, Medical School, National and Kapodistrian University of Athens , Athens , Greece.,b Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology , Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Laertis Gkoles
- b Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology , Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Panagiotis Bakas
- b Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology , Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Polina Giannelou
- b Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology , Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Theodoros Kalampokas
- b Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology , Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | | | - Michael Koutsilieris
- a Department of Physiology, Medical School, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
20
|
Nannas NJ, Higgins DM, Dawe RK. Anaphase asymmetry and dynamic repositioning of the division plane during maize meiosis. J Cell Sci 2016; 129:4014-4024. [PMID: 27609836 DOI: 10.1242/jcs.194860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
The success of an organism is contingent upon its ability to transmit genetic material through meiotic cell division. In plant meiosis I, the process begins in a large spherical cell without physical cues to guide the process. Yet, two microtubule-based structures, the spindle and phragmoplast, divide the chromosomes and the cell with extraordinary accuracy. Using a live-cell system and fluorescently labeled spindles and chromosomes, we found that the process self- corrects as meiosis proceeds. Metaphase spindles frequently initiate division off-center, and in these cases anaphase progression is asymmetric with the two masses of chromosomes traveling unequal distances on the spindle. The asymmetry is compensatory, such that the chromosomes on the side of the spindle that is farthest from the cell cortex travel a longer distance at a faster rate. The phragmoplast forms at an equidistant point between the telophase nuclei rather than at the original spindle mid-zone. This asymmetry in chromosome movement implies a structural difference between the two halves of a bipolar spindle and could allow meiotic cells to dynamically adapt to errors in metaphase and accurately divide the cell volume.
Collapse
Affiliation(s)
- Natalie J Nannas
- Department of Plant Biology, University of Georgia, Athens, GA 30605, USA
| | - David M Higgins
- Department of Plant Biology, University of Georgia, Athens, GA 30605, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, GA 30605, USA .,Department of Genetics, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
21
|
Soley JT. A comparative overview of the sperm centriolar complex in mammals and birds: Variations on a theme. Anim Reprod Sci 2016; 169:14-23. [PMID: 26907939 DOI: 10.1016/j.anireprosci.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 12/01/2022]
Abstract
This paper presents an overview of the structure, function and anomalies of the sperm centriolar complex (CC) on a comparative basis between mammals and birds. The information is based on selected references from the literature supplemented by original observations on spermiogenesis and sperm structure in disparate mammalian (cheetah and cane rat) and avian (ostrich, rhea and emu) species. Whereas the basic structure of the CC (a diplosome surrounded by pericentriolar material) is similar in Aves and Mammalia, certain differences are apparent. Centriole reduction does not generally occur in birds, but when present as in oscines, involves the loss of the proximal centriole. In ratites, the distal centriole forms the core of the entire midpiece and incorporates the outer dense fibres in addition to initiating axoneme formation. The elements of the connecting piece are not segmented in birds and less complex in basic design than in mammals. The functions of the various components of the CC appear to be similar in birds and mammals. Despite obvious differences in sperm head shape, the centrosomal anomalies afflicting both vertebrate groups demonstrate structural uniformity across species and display a similar range of defects. Most abnormalities result from defective migration and alignment of the CC relative to the nucleus. The most severe manifestation is that of acephalic sperm, while angled tail attachment, abaxial and multiflagellate sperm reflect additional defective forms. The stump-tail defect is not observed in birds. A comparison of defective sperm formation and centrosomal dysfunction at the molecular level is currently difficult owing to the paucity of relevant information on avian sperm.
Collapse
Affiliation(s)
- John T Soley
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| |
Collapse
|
22
|
Sigala J, Jumeau F, Caillet-Boudin ML, Sergeant N, Ballot C, Rigot JM, Marcelli F, Tardivel M, Buée L, Mitchell V. Immunodetection of Tau microtubule-associated protein in human sperm and testis. Asian J Androl 2015; 16:927-8. [PMID: 25219911 PMCID: PMC4236348 DOI: 10.4103/1008-682x.136446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Valérie Mitchell
- EA 4308 Gamétogenèse et Qualité du Gamète, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| |
Collapse
|
23
|
Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21:455-85. [PMID: 25888788 DOI: 10.1093/humupd/dmv020] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF). METHODS A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014. RESULTS Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella. CONCLUSIONS The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.
Collapse
Affiliation(s)
- Charles Coutton
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Génétique Chromosomique, Grenoble, F-38000, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France Departments of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble, F-38000, France
| |
Collapse
|
24
|
Pennarossa G, Maffei S, Tettamanti G, Congiu T, deEguileor M, Gandolfi F, Brevini TAL. Intercellular bridges are essential for human parthenogenetic cell survival. Mech Dev 2015; 136:30-9. [PMID: 25700933 DOI: 10.1016/j.mod.2015.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022]
Abstract
Parthenogenetic cells, obtained from in vitro activated mammalian oocytes, display multipolar spindles, chromosome malsegregation and a high incidence of aneuploidy, probably due to the lack of paternal contribution. Despite this, parthenogenetic cells do not show high rates of apoptosis and are able to proliferate in a way comparable to their biparental counterpart. We hypothesize that a series of adaptive mechanisms are present in parthenogenetic cells, allowing a continuous proliferation and ordinate cell differentiation both in vitro and in vivo. Here we identify the presence of intercellular bridges that contribute to the establishment of a wide communication network among human parthenogenetic cells, providing a mutual exchange of missing products. Silencing of two molecules essential for intercellular bridge formation and maintenance demonstrates the key function played by these cytoplasmic passageways that ensure normal cell functions and survival, alleviating the unbalance in cellular component composition.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, UniStem, Center For Stem Cell Research, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Sara Maffei
- Laboratory of Biomedical Embryology, UniStem, Center For Stem Cell Research, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Science, Università degli Studi dell'Insubria, Varese, Italy
| | - Magda deEguileor
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, UniStem, Center For Stem Cell Research, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, UniStem, Center For Stem Cell Research, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc Natl Acad Sci U S A 2015; 112:E430-9. [PMID: 25605924 DOI: 10.1073/pnas.1424648112] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
"Pinhead sperm," or "acephalic sperm," a type of human teratozoospermia, refers to the condition in which ejaculate contains mostly sperm flagella without heads. Family clustering and homogeneity of this syndrome suggests a genetic basis, but the causative genes remain largely unknown. Here we report that Spata6, an evolutionarily conserved testis-specific gene, encodes a protein required for formation of the segmented columns and the capitulum, two major structures of the sperm connecting piece essential for linking the developing flagellum to the head during late spermiogenesis. Inactivation of Spata6 in mice leads to acephalic spermatozoa and male sterility. Our proteomic analyses reveal that SPATA6 is involved in myosin-based microfilament transport through interaction with myosin subunits (e.g., MYL6).
Collapse
|
26
|
Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci Rep 2014; 4:6598. [PMID: 25307782 PMCID: PMC4194434 DOI: 10.1038/srep06598] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.
Collapse
|
27
|
Irie N, Tang WWC, Azim Surani M. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reprod Med Biol 2014; 13:203-215. [PMID: 25298745 PMCID: PMC4182624 DOI: 10.1007/s12522-014-0184-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022] Open
Abstract
Germ cells are unique cell types that generate a totipotent zygote upon fertilization, giving rise to the next generation in mammals and many other multicellular organisms. How germ cells acquire this ability has been of considerable interest. In mammals, primordial germ cells (PGCs), the precursors of sperm and oocytes, are specified around the time of gastrulation. PGCs are induced by signals from the surrounding extra-embryonic tissues to the equipotent epiblast cells that give rise to all cell types. Currently, the mechanism of PGC specification in mammals is best understood from studies in mice. Following implantation, the epiblast cells develop as an egg cylinder while the extra-embryonic ectoderm cells which are the source of important signals for PGC specification are located over the egg cylinder. However, in most cases, including humans, the epiblast cells develop as a planar disc, which alters the organization and the source of the signaling for cell fates. This, in turn, might have an effect on the precise mechanism of PGC specification in vivo as well as in vitro using pluripotent embryonic stem cells. Here, we discuss how the key early embryonic differences between rodents and other mammals may affect the establishment of the pluripotency network in vivo and in vitro, and consequently the basis for PGC specification, particularly from pluripotent embryonic stem cells in vitro.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - Walfred W. C. Tang
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| |
Collapse
|
28
|
Yamamoto A. Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 2014; 71:2119-34. [PMID: 24413667 PMCID: PMC11113538 DOI: 10.1007/s00018-013-1548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka, 422-8529, Japan,
| |
Collapse
|
29
|
Athayde Wirka K, Chen AA, Conaghan J, Ivani K, Gvakharia M, Behr B, Suraj V, Tan L, Shen S. Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril 2014; 101:1637-48.e1-5. [PMID: 24726214 DOI: 10.1016/j.fertnstert.2014.02.050] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To characterize atypical dynamic embryo phenotypes identified by time-lapse microscopy, evaluate their prevalence, and determine their association with embryo development. DESIGN Retrospective multicenter cohort study. SETTING Five IVF clinics in the United States. PATIENT(S) Sixty-seven women undergoing IVF treatment with 651 embryos. INTERVENTION(S) Embryo videos were retrospectively analyzed for atypical phenotypes. MAIN OUTCOME MEASURE(S) Identification of four groups of atypical embryo phenotypes: abnormal syngamy (AS), abnormal first cytokinesis (A1(cyt)), abnormal cleavage (AC), and chaotic cleavage (CC). Prevalence and association with embryo morphology and development potential were evaluated. RESULT(S) A high prevalence of atypical phenotypes was observed among embryos: AS 25.1% (163/649), A1(cyt) 31.0% (195/639), AC 18% (115/639) and CC 15% (96/639). A high percentage of embryos with atypical phenotype(s) had good quality on day 3 (overall grade good or fair): AS 78.6% (70/89); A1(cyt) 79.7% (94/119), AC 86.4% (70/81), and CC 35.2% (19/54), but the blastocyst formation rates for these embryos were significantly lower compared with their respective control groups: AS 21.5% vs. 44.9%, A1(cyt) 21.7% vs. 44.6%, AC 11.7% vs. 43.1%, and CC 14.0% vs. 42.3%. CONCLUSION(S) Embryos exhibiting atypical phenotypes are highly prevalent in human embryos and show significantly lower developmental potential than control embryos. CLINICAL TRIAL REGISTRATION NUMBER NCT01369446.
Collapse
Affiliation(s)
| | | | - Joe Conaghan
- Pacific Fertility Center, San Francisco, California
| | - Kristen Ivani
- Reproductive Science Center of the Bay Area, San Ramon, California
| | - Marina Gvakharia
- Fertility Physicians of Northern California, Palo Alto Medical Foundation, San Jose, California
| | - Barry Behr
- Stanford Fertility and Reproductive Medicine Center, Palo Alto, California
| | | | - Lei Tan
- Auxogyn, Menlo Park, California
| | | |
Collapse
|
30
|
Nakai M, Ozawa M, Maedomari N, Noguchi J, Kaneko H, Ito J, Onishi A, Kashiwazaki N, Kikuchi K. Delay in cleavage of porcine embryos after intracytoplasmic sperm injection (ICSI) shows poorer embryonic development. J Reprod Dev 2014; 60:256-9. [PMID: 24694523 PMCID: PMC4085392 DOI: 10.1262/jrd.2013-100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In pigs, the embryonic developmental ability after intracytoplasmic sperm injection (ICSI) is inferior to that resulting from in vitro fertilization (IVF). We evaluated the timing of cell division up to blastocyst formation on embryonic development after ICSI using either whole sperm (w-ICSI) or the sperm head alone (h-ICSI) and IVF as a control. At 10 h after ICSI or IVF, we selected only zygotes, and each of the zygotes/embryos was evaluated for cleavage every 24 h until 168 h. We then observed a delay in the 1st and 2nd cleavages of h-ICSI embryos and also in blastocoele formation by w-ICSI embryos in comparison with IVF embryos. The rate of blastocyst formation and the quality of blastocysts in both ICSI groups were inferior to those in the IVF group. In conclusion, the delay in cleavage of porcine ICSI embryos shows poorer embryonic development.
Collapse
Affiliation(s)
- Michiko Nakai
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schatten H, Sun QY. Posttranslationally modified tubulins and other cytoskeletal proteins: their role in gametogenesis, oocyte maturation, fertilization and Pre-implantation embryo development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:57-87. [PMID: 25030760 DOI: 10.1007/978-1-4939-0817-2_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytoskeleton, mainly consisting of microtubules, intermediate filaments and microfilaments, along with cytoskeleton associated and interconnecting proteins as well as the centrosome, plays enormously important roles in all stages of embryogenesis and undergoes significant changes to accommodate a diversity of cellular functions during gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. The varied functions of the cytoskeleton can be accomplished on many different levels, among which are a diversity of different posttranslational modifications (PTMs), chemical modifications that regulate activity, localization and interactions with other cellular molecules. PTMs of the cytoskeleton, including phosphorylation, glycosylation, ubiquitination, detyrosination/tyrosination, (poly)glutamylation and (poly)glycylation, acetylation, sumoylation, and palmitoylation, will be addressed in this chapter. Focus will be on (1) Microtubules, microtubule organizing centers (centrosomes), intermediate filaments, microfilaments and their PTMs; (2) Cytoskeletal functions and cytoskeletal PTMs during gametogenesis and oocyte maturation; and (3) Cytoskeletal functions and cytoskeletal PTMs during fertilization and pre-implantation embryo development.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO, 65211, USA,
| | | |
Collapse
|
32
|
Deubiquitinating enzymes in oocyte maturation, fertilization and preimplantation embryo development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:89-110. [PMID: 25030761 DOI: 10.1007/978-1-4939-0817-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications of cellular proteins by ubiquitin and ubiquitin-like protein modifiers are important regulatory events involved in diverse aspects of gamete and embryo physiology including oocyte maturation, fertilization and development of embryos to term. Deubiquitinating enzymes (DUBs) regulate proteolysis by reversing ubiquitination, which targets proteins to the 26S proteasome. The ubiquitin C-terminal hydrolases (UCHs) comprise are DUBs that play a role in the removal of multi-ubiquitin chains. We review here the roles of UCHs in oocytes maturation, fertilization and development in mouse, bovine, porcine and rhesus monkeys. Oocyte UCHs contributes to fertilization and embryogenesis by regulating the physiology of the oocyte and blastomere cortex as well as oocyte spindle. Lack of UCHs in embryos reduces fertilization, while mutant embryos fail to undergo compaction and blastocyst formation. In addition to advancing our understanding of reproductive process, research on the role of deubiquitinating enzymes will allow us to better understand and treat human infertility, and to optimize reproductive performance in agriculturally important livestock species.
Collapse
|
33
|
Brevini TAL, Pennarossa G, Maffei S, Tettamanti G, Vanelli A, Isaac S, Eden A, Ledda S, de Eguileor M, Gandolfi F. Centrosome amplification and chromosomal instability in human and animal parthenogenetic cell lines. Stem Cell Rev Rep 2013; 8:1076-87. [PMID: 22661117 DOI: 10.1007/s12015-012-9379-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Parthenotes have been proposed as a source of embryonic stem cells but they lack the centriole which is inherited through the sperm in all mammalian species, except for rodents. We investigated the centrosome of parthenotes and parthenogenetic embryonic stem cells using parthenogenetic and biparental pig pre-implantation embryos, human and pig parthenogenetic and biparental embryonic stem cells, sheep fibroblasts derived from post implantation parthenogenetic and biparental embryos developed in vivo. We also determined the level of aneuploidy in parthenogenetic cells. Oocytes of all species were activated using ionomycin and 6-dimethylaminopurine (6-DMAP). Over 60% of parthenogenetic blastomeres were affected by an excessive number of centrioles. Centrosome amplification, was observed by microscopical and ultrastructural analysis also in parthenogenetic cell lines of all three species. Over expression of PLK2 and down regulation of CCNF, respectively involved in the stimulation and inhibition of centrosome duplication, were present in all species. We also detected down regulation of spindle assembly checkpoint components such as BUB1, CENPE and MAD2. Centrosome amplification was accompanied by multipolar mitotic spindles and all cell lines were affected by a high rate of aneuploidy. These observations indicate a link between centrosome amplification and the high incidence of aneuploidy and suggest that parthenogenetic stem cells may be a useful model to investigate how aneuploidy can be compatible with cell proliferation and differentiation.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research (UniStem), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kogasaka Y, Hoshino Y, Hiradate Y, Tanemura K, Sato E. Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Mol Reprod Dev 2013; 80:334-48. [DOI: 10.1002/mrd.22166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/12/2013] [Indexed: 01/26/2023]
|
35
|
Miao YL, Zhang X, Zhao JG, Spate L, Zhao MT, Murphy CN, Prather RS, Sun QY, Schatten H. Effects of griseofulvin on in vitro porcine oocyte maturation and embryo development. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:561-566. [PMID: 22829310 DOI: 10.1002/em.21717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Griseofulvin is an orally administered antifungal drug that affects microtubule formation in vitro and interferes with microtubule dynamics in vivo as clearly shown for mitotic cells in several cell systems. This article reports the effects of griseofulvin on in vitro maturation of porcine oocytes and subsequent effects on embryo development. Our results revealed a concentration-dependent effect on meiotic spindles with 20-40 μM griseofulvin affecting oocyte maturation, and 40 μM affecting fertilization and embryo development. These concentrations of griseofulvin did not affect mitochondrial and cortical granule distribution that also depend on microtubule and cytoskeletal functions during oocyte maturation. Specific effects on the meiotic spindle included spindle disorganization and aberrant chromosome separation displayed as prominent chromosome clusters in oocytes treated with 40 μM griseofulvin. These results strongly suggested that griseofulvin affected porcine oocyte in vitro maturation and following embryo development by disturbing microtubule dynamics.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chichinadze K, Tkemaladze J, Lazarashvili A. Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:172-83. [PMID: 22356233 DOI: 10.1080/15257770.2011.648362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In 2006, a group of scientists studying centrosomes of Spisula solidissima mollusc oocytes under the leadership of Alliegro (Alliegro, M.C.; Alliegro, M.A.; Palazzo, R.E. Centrosome-associated RNA in surf clam oocytes. Proc. Natl. Acad. Sci. USA 2006, 103(24), 9034-9038) reliably demonstrated the existence of specific RNA in centrosome, called centrosomal RNA (cnRNA). In their first article, five different RNAs (cnRNAs 11, 102, 113, 170, and 184) were described. During the process of full sequencing of the first transcript (cnRNA 11), it was discovered that the transcript contained a conserved structure-a reverse transcriptase domain located together with the most important centrosomal protein, γ-tubulin. In an article published in 2005, we made assumptions about several possible mechanisms for determining the most important functions of centrosomal structures and referred to one of them as a "RNA-dependent mechanism." This idea about participation of hypothetic centrosomal small interference RNA and/or microRNA in the process was made one year prior to the discovery of cnRNA by Alliegro's group. The discovery of specific RNA in a centrosome is indirect evidence of a centrosomal hypothesis of cellular ageing and differentiation. The presence of a reverse transcriptase domain in this type of RNA, together with its uniqueness and specificity, makes the centrosome a place of information storage and reproduction.
Collapse
|
37
|
Schatten H, Rawe VY, Sun QY. The Sperm Centrosome: Its Role and Significance in Nature and Human Assisted Reproduction. ACTA ACUST UNITED AC 2011. [DOI: 10.1177/205891581100200206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In humans and other non-rodent mammalian species, the sperm's centriole-centrosome complex is an essential component for successful fertilization and serves as template for all centrioles during subsequent cell divisions, embryo development, divisions of most adult somatic cells, as well as in primary cilia formation and functions. Dysfunctions of this complex can be causes for infertility, developmental disorders, and play a role in various adulthood diseases. While assisted reproductive technology (ART) has been able to overcome sperm motility dysfunctions by employing intracytoplasmic sperm injection (ICSI), we currently do not yet have therapies to overcome dysfunctions of the centriole-centrosome complex although several lines of investigations have addressed the causes for centriole-centrosome dysfunctions and implications for sperm aster formation and union of the parental genomes. The present review highlights the importance of the centriole-centrosome complex and its significance for fertilization and embryo development.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Vanesa Y. Rawe
- REPROTEC, Buenos Aires, Argentina
- CREA, Medicina de la Reproducción, Valencia, Spain
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
38
|
Schatten H, Sun QY. New insights into the role of centrosomes in mammalian fertilization and implications for ART. Reproduction 2011; 142:793-801. [PMID: 21911443 DOI: 10.1530/rep-11-0261] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In non-rodent mammalian species, including humans, the oocyte and sperm both contribute centrosomal components that are most important for successful fertilization. Centrosome pathologies in sperm and the oocyte can be causes for infertility which may be overcome by assisted reproductive technologies based on proper diagnosis of specific centrosomal pathologies. However, we do not yet fully understand the cell and molecular mechanisms underlying centrosome functions in germ cells and in the developing embryo, which calls for directed specific investigations to identify centrosome-related pathologies that include components in sperm, egg, or centrosome regulation within the fertilized oocyte. The present review highlights cellular and molecular aspects of centrosomes and centrosome-nuclear interactions focused on nuclear mitotic apparatus protein during fertilization and proposes future directions in expanding therapeutic approaches related to centrosome pathologies that may play a role in still unexplained causes of infertility.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | |
Collapse
|
39
|
Schatten H, Sun QY. Centrosome dynamics during mammalian oocyte maturation with a focus on meiotic spindle formation. Mol Reprod Dev 2011; 78:757-68. [DOI: 10.1002/mrd.21380] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/02/2011] [Indexed: 01/10/2023]
|
40
|
Schatten H, Sun QY. The significant role of centrosomes in stem cell division and differentiation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:506-512. [PMID: 21740616 DOI: 10.1017/s1431927611000018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The role of centrosomes in stem cell division has recently been highlighted and further ascribes important functions to centrosomes in stem cell maintenance, cellular differentiation, and development. Advanced cell and molecular studies coupled with immunofluorescence, electron microscopy, and live cell imaging of specific centrosome proteins have contributed greatly to our knowledge of centrosome composition, structure, and dynamics and have uncovered new insights into mechanisms of centrosome functions in asymmetric cell division. The establishment of asymmetry and differential positioning of mother and daughter centrosomes during stem cell mitosis is important for allowing one cell to maintain stem cell characteristics while the sibling cell undergoes differentiation. Another key role for centrosomes has been revealed in primary cilia of embryonic stem cells that play significant roles in cellular signaling and are therefore critically important for stem cell decisions. Studies of signaling through primary cilia may contribute important information that may aid in the production of specific cells that are suitable for tissue repair and regeneration in the field of regenerative medicine.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
41
|
Alvarez Sedó C, Schatten H, Combelles CM, Rawe VY. The nuclear mitotic apparatus (NuMA) protein: localization and dynamics in human oocytes, fertilization and early embryos. Mol Hum Reprod 2011; 17:392-8. [PMID: 21297155 DOI: 10.1093/molehr/gar009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The oocyte's meiotic spindle is a dynamic structure that relies on microtubule organization and regulation by centrosomes. Disorganization of centrosomal proteins, including the nuclear mitotic apparatus (NuMA) protein and the molecular motor complex dynein/dynactin, can lead to chromosomal instability and developmental abnormalities. The present study reports the distribution and function of these proteins in human oocytes, zygotes and early embryos. A total of 239 oocytes, 90 zygotes and discarded embryos were fixed and analyzed with confocal microscopy for NuMA and dynactin distribution together with microtubules and chromatin. Microtubule-associated dynein-dependent transport functions were explored by inhibiting phosphatase and ATPase activity with sodium-orthovanadate (SOV). At germinal vesicle (GV) stages, NuMA was dispersed across the nucleoplasm. After GV breaks down, NuMA became cytoplasmic before localizing at the spindle poles in metaphase I and II oocytes. Aberrant NuMA localization patterns were found during oocyte in vitro maturation. After fertilization, normal and abnormal pronuclear stage zygotes and embryos displayed translocation of NuMA to interphase nuclei. SOV treatment for up to 2 h induced lower maturation rates with chromosomal scattering and ectopic localization of NuMA. Accurate distribution of NuMA is important for oocyte maturation, zygote and embryo development in humans. Proper assembly of NuMA is likely necessary for bipolar spindle organization and human oocyte developmental competence.
Collapse
|
42
|
Sakai C, Hoshino Y, Sato Y, Sato E. Evaluation of maturation competence of metaphase II oocytes in mice based on the distance between pericentriolar materials of meiotic spindle: distance of PCM during oocyte maturation. J Assist Reprod Genet 2010; 28:157-66. [PMID: 21082234 DOI: 10.1007/s10815-010-9496-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/13/2010] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To ascertain whether metaphase II (MII) spindle shape influences oocyte competence, we examined the meiotic spindle organization in in vivo ovulated (IVO) oocytes and in spontaneously matured or follicle stimulating hormone (FSH)-induced oocytes. METHODS FSH-induced oocytes matured in Waymouth's MB752/1 or human tubal fluid (HTF) media and oocytes matured spontaneously in the basal medium were obtained, and spindles were detected by immunofluorescence. To evaluate the fertilization-associated differences in spindle morphology, we performed in vitro fertilization and analysed integrin mRNA expression. RESULTS The distance between the pericentriolar materials (PCMs) in oocytes matured under all conditions was initially more, but it reduced gradually and increased again thereafter. Therefore, oocytes exhibiting a reduction in the distance between PCMs had the highest development rate to blastocyst in each condition. CONCLUSION These results indicate that the 'maturation competence' of MII oocytes can be evaluated on the basis of the distance between PCMs.
Collapse
Affiliation(s)
- Chizuka Sakai
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan.
| | | | | | | |
Collapse
|
43
|
Debec A, Sullivan W, Bettencourt-Dias M. Centrioles: active players or passengers during mitosis? Cell Mol Life Sci 2010; 67:2173-94. [PMID: 20300952 PMCID: PMC2883084 DOI: 10.1007/s00018-010-0323-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/31/2022]
Abstract
Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as "the organ for cell division". However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues.
Collapse
Affiliation(s)
- Alain Debec
- Polarity and Morphogenesis Group, Jacques Monod Institute, University Paris Diderot, UPMC Univ Paris 6, Bâtiment Buffon, 15 rue Hélène Brion, 75205, Paris Cedex 13, France.
| | | | | |
Collapse
|
44
|
Tang SS, Gao H, Zhao Y, Ma S. Aneuploidy and DNA fragmentation in morphologically abnormal sperm. ACTA ACUST UNITED AC 2009; 33:e163-79. [DOI: 10.1111/j.1365-2605.2009.00982.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Schatten H, Sun QY. The role of centrosomes in mammalian fertilization and its significance for ICSI. Mol Hum Reprod 2009; 15:531-8. [PMID: 19549764 DOI: 10.1093/molehr/gap049] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Centrosome integrity is critically important for successful fertilization and embryo development. In humans, the sperm contributes the dominant centrosomal material containing centrioles and centrosomal components onto which oocyte centrosomal proteins assemble after sperm incorporation to form the sperm aster that is essential for uniting sperm and oocyte pronuclei. Increasingly, dysfunctional sperm centrosomes have been identified as a factor for sperm-derived infertility and heterologous Intracytoplasmic Sperm Injection (ICSI) has been used to assess centrosome and sperm aster formation and clearly established a relationship between infertility and sperm centrosomal dysfunction. ICSI has been used successfully to provide novel treatment to overcome male factor infertility and it may open up new possibilities to correct specific sperm-related centrosome dysfunctions at molecular levels. New data indicate that it is now possible to replace dysfunctional centrosomes with functional donor sperm centrosomes which may provide new treatment for couples in which infertility is a result of centrosome-related sperm dysfunctions.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|