1
|
Peng Y, Xiang X, Liu W, Zeng Z. Transcriptomic and metabolomic profiles of Pirata subpiraticus in response to copper exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116498. [PMID: 38805829 DOI: 10.1016/j.ecoenv.2024.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Copper (Cu) contamination represents a persistent and significant form of heavy metal pollution in agricultural ecosystems, posing serious threats to organisms in current society. Spiders serve as crucial biological indicators for assessing the impact of heavy metals-induced toxicity. However, the specific molecular responses of spiders to Cu exposure and the mechanisms involved are not well understood. In our study, the wolf pond spiders, Pirata subpiraticus, were exposed to Cu for 21 d, resulting in a notable decline in survival rates compared with the control (n = 50, p < 0.05). We observed an increased expression of enzymes like glutathione peroxidase and superoxide dismutase (p < 0.05), signaling a strong oxidative stress response crucial for counteracting the harmful effects of reactive oxygen species. This response was corroborated by a rise in malondialdehyde levels (p < 0.05), a marker of lipid peroxidation and oxidative damage. Transcriptomic and metabolomic analyses revealed 2004 differentially expressed genes (DEGs) and 220 metabolites (DEMs). A significant number of these DEGs were involved in the glutathione biosynthetic process and antioxidant activity. A conjoint analysis revealed that under the Cu stress, several important enzymes and metabolites were altered (e.g., cathepsin A, legumain, and lysosomal acid lipase), affecting the activities of key biological processes and components, such as lysosome and insect hormone biosynthesis. Additionally, the protein interaction network analysis showed an up-regulation of processes like the apoptotic process, glutamate synthase activity, and peroxisome, suggesting that spiders activate cellular protective strategies to cope with stress and maintain homeostasis. This study not only deepens our understanding of spider biology in the context of environmental stress but also makes a significant contribution to the field of environmental stress biology.
Collapse
Affiliation(s)
- Yong Peng
- Hunan University of Humanities, Science and Technology, Loudi 417000, China.
| | - Xinglong Xiang
- Hunan Qingyang Lake Forestry Technology Co., LTD, Ningxiang 410600, China
| | - Wei Liu
- College of Urban and Environment Sciences, Hunan University of Technology, Zhuzhou 412007, China
| | - Zengri Zeng
- Hunan University of Humanities, Science and Technology, Loudi 417000, China
| |
Collapse
|
2
|
Demir E, Turna Demir F. Genotoxicity responses of single and mixed exposure to heavy metals (cadmium, silver, and copper) as environmental pollutants in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104390. [PMID: 38367919 DOI: 10.1016/j.etap.2024.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Heavy metals are now persistently present in living things' environments, in addition to their potential toxicity. Therefore, the aim of this study was to utilize D. melanogaster to determine the biological effects induced by different heavy metals including cadmium chloride (CdCl2), copper (II) sulfate pentahydrate (CuSO 4.5 H2O), and silver nitrate (AgNO3). In vivo experiments were conducted utilizing three low and environmentally relevant concentrations from 0.01 to 0.5 mM under single and combined exposure scenarios on D. melanogaster larvae. The endpoints measured included viability, reactive oxygen species (ROS) generation and genotoxic effects using Comet assay and the wing-spot test. Results indicated that tested heavy metals were not toxic in the egg-to adult viability. However, combined exposure (CdCl2+AgNO3 and CdCl2+AgNO3+CuSO 4.5 H2O) resulted in significant genotoxic and unfavorable consequences, as well as antagonistic and/or synergistic effects on oxidative damage and genetic damage.
Collapse
Affiliation(s)
- Eşref Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya 07190, Turkey.
| | - Fatma Turna Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Dosemealti, Antalya 07190, Turkey
| |
Collapse
|
3
|
Hanumanthappa R, Venugopal DM, P C N, Shaikh A, B.M S, Heggannavar GB, Patil AA, Nanjaiah H, Suresh D, Kariduraganavar MY, Raghu SV, Devaraju KS. Polyvinylpyrrolidone-Capped Copper Oxide Nanoparticles-Anchored Pramipexole Attenuates the Rotenone-Induced Phenotypes in a Drosophila Parkinson's Disease Model. ACS OMEGA 2023; 8:47482-47495. [PMID: 38144104 PMCID: PMC10734007 DOI: 10.1021/acsomega.3c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Parkinson's disease (PD) is a progressive, age-related neurodegenerative disease. The disease is characterized by the loss of dopaminergic neurons in the substantia nigra, pars compacta of the midbrain. Pramipexole (PPX) is a novel drug used for the treatment of PD. It has a high affinity for the dopamine (DA) D2 receptor subfamily and acts as a targeted mitochondrial antioxidant. It is less effective in the treatment of PD due to its short half-life, highly inconvenient dosing schedule, and long-term side effects. In recent years, PPX-loaded nanoformulations have been actively reported to overcome these limitations. In the current study, we focused on increasing the effectiveness of PPX by minimizing the dosing frequency and improving the treatment strategy for PD. Herein, we report the synthesis of biodegradable polyvinylpyrrolidone (PVP)-capped copper oxide nanoparticles (PVP-CuO NPs), followed by PPX anchoring on the surface of the PVP-CuO NPs (PPX-PVP-CuO NC), in a simple and inexpensive method. The newly formulated PPX-PVP-CuO NC complex was analyzed for its chemical and physical properties. The PPX-PVP-CuO NC was tested to protect against rotenone (RT)-induced toxicity in the Drosophila PD model. The in vivo studies using the RT-induced Drosophila PD model showed significant changes in negative geotaxis behavior and the level of DA and acetylcholinesterase. In addition, oxidative stress markers such as glutathione-S-transferase, total glutathione, thiobarbituric acid reactive species, and protein carbonyl content showed significant amelioration. The positive changes of PPX-PVP-CuO NC treatment in behavior, neurotransmitter level, and antioxidant level suggest its potential role in mitigating the PD phenotype. The formulation can be used for treatment or pharmacological intervention against PD.
Collapse
Affiliation(s)
- Ramesha Hanumanthappa
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Deepa Mugudthi Venugopal
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
| | - Nethravathi P C
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | - Ahesanulla Shaikh
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Siddaiah B.M
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | | | - Akshay A. Patil
- Department
of Botany, Karnataka Science College, Dharwad, Karnataka 580001, India
| | - Hemalatha Nanjaiah
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, 685 W. Baltimore St. HSFI-380, Baltimore, Maryland 21201, United States
| | - D. Suresh
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | | | - Shamprasad Varija Raghu
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
- Division
of Neuroscience, Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | | |
Collapse
|
4
|
Demir E, Kansız S, Doğan M, Topel Ö, Akkoyunlu G, Kandur MY, Turna Demir F. Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physiology of Drosophila: Novel Insights into the Cellular Internalization and Biological Effects. Int J Mol Sci 2022; 23:ijms23169121. [PMID: 36012388 PMCID: PMC9408976 DOI: 10.3390/ijms23169121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022] Open
Abstract
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila—a non-target in vivo eukaryotic model organism—in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.
Collapse
Affiliation(s)
- Eşref Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
- Correspondence: ; Tel.: +90-242-245-0088; Fax: +90-242-245-0100
| | - Seyithan Kansız
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
- Faculty of Science, Department of Chemistry, Ankara University, Ankara 07100, Turkey
| | - Mehmet Doğan
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kırklareli University, Kırklareli 39100, Turkey
| | - Önder Topel
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
| | - Gökhan Akkoyunlu
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
| | - Muhammed Yusuf Kandur
- Industrial Biotechnology and Systems Biology Research Group, Faculty of Engineering, Department of Bioengineering, Marmara University, İstanbul 34854, Turkey
| | - Fatma Turna Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
| |
Collapse
|
5
|
Rampin A, Carrabba M, Mutoli M, Eman CL, Testa G, Madeddu P, Spinetti G. Recent Advances in KEAP1/NRF2-Targeting Strategies by Phytochemical Antioxidants, Nanoparticles, and Biocompatible Scaffolds for the Treatment of Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:707-728. [PMID: 35044251 DOI: 10.1089/ars.2021.0134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Modulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response is a key aspect in the onset of diabetes-related cardiovascular complications. With this review, we provide an overview of the recent advances made in the development of Nrf2-targeting strategies for the treatment of diabetes, with particular attention toward the activation of Nrf2 by natural antioxidant compounds, nanoparticles, and oxidative stress-modulating biocompatible scaffolds. Recent Advances: In the past 30 years, studies addressing the use of antioxidant therapies to treat diabetes have grown exponentially, showing promising but yet inconclusive results. Animal studies and clinical trials on the Nrf2 pathway have shown promising results, suggesting that its activation can delay or reverse some of the cardiovascular impairments in diabetes. Critical Issues: Hyperglycemia- and oscillating glucose levels-induced reactive oxygen species (ROS) accumulation is progressively emerging as a central factor in the onset and progression of diabetes-related cardiovascular complications, including endothelial dysfunction, retinopathy, heart failure, stroke, critical limb ischemia, ulcers, and delayed wound healing. In this context, accumulating evidence suggests a central role for Nrf2-mediated antioxidant response, one of the most studied cellular defensive mechanisms against ROS accumulation. Future Directions: Innovative approaches such as tissue engineering and nanotechnology are converging toward targeting oxidative stress in diabetes. Antioxid. Redox Signal. 36, 707-728.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Michele Carrabba
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Martina Mutoli
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Charlotte L Eman
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Gianluca Testa
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy.,Interdepartmental Center for Nanotechnology Research-NanoBem, University of Molise, Campobasso, Italy
| | - Paolo Madeddu
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
6
|
Muhammad A, He J, Yu T, Sun C, Shi D, Jiang Y, Xianyu Y, Shao Y. Dietary exposure of copper and zinc oxides nanoparticles affect the fitness, enzyme activity, and microbial community of the model insect, silkworm Bombyx mori. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152608. [PMID: 34973320 DOI: 10.1016/j.scitotenv.2021.152608] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 05/24/2023]
Abstract
Copper and Zinc oxides nanoparticles (CuO and ZnO NPs, respectively) are among the most produced and commonly used engineered nanomaterials. They can be released into the environment, thereby causing health concerns and risks to biodiversity that indicate a need to evaluate their toxicological effects in a complex situation. Here, we used the insect model organism silkworm Bombyx mori to address the concerns about the biological effects associated with dietary exposure of CuO and ZnO NPs. ICP-MS analysis revealed significant accumulation of Cu and Zn (the latter being more accumulated) in silkworms' tissues (gut, fat body, silk gland, and malpighian tubule), and some elimination through feces in the respective NPs-exposed groups. NPs-exposures led to a decrease in larval body mass, survivorship, and cocoon production, where the effects of ZnO NPs were more pronounced. We also found that NPs-exposure induced gene expression changes (Attacin, lysozyme, SOD, and Dronc) and altered the activities of antioxidant enzymes (SOD, GST, and CAT), as well as impaired nutrient metabolism (alpha-amylase). Given their antibacterial property, CuO and ZnO NPs decreased species richness and diversity of the gut bacterial community and shifted their configuration to overt microbiome i.e., decreased abundance of probiotics (e.g., Acetobacter) and increased pathobionts (e.g., Pseudomonas, Bacillus, Escherichia, Enterococcus, Ralstonia, etc.) proportions. Overall, this integrated study revealed the unintended negative effects of CuO and ZnO NPs on silkworms and highlighted the potential to inevitably affect all living things due to intensive and possible mishandling of nanomaterials.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Dier Shi
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
7
|
Tagorti G, Kaya B. Publication trends of somatic mutation and recombination tests research: a bibliometric analysis (1984‒2020). Genomics Inform 2022; 20:e10. [PMID: 35399009 PMCID: PMC9001991 DOI: 10.5808/gi.21083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Human exposure to pollutants has been on the rise. Thus, researchers have been focused on understanding the effect of these compounds on human health, especially on the genetic information by using various tests, among them the somatic mutation and recombination tests (SMARTs). It is a sensitive and accurate method applicable to genotoxicity analysis. Here, a comprehensive bibliometric analysis of SMART assays in genotoxicity studies was performed to assess publication trends of this field. Data were extracted from the Web of Science database and analyzed by the bibliometric tools HistCite, Biblioshiny (RStudio), VOSViewer, and CiteSpace. Results have shown an increase in the last 10 years in terms of publication. A total of 392 records were published in 96 sources mainly from Brazil, Spain, and Turkey. Research collaboration networks between countries and authors were performed. Based on document co-citation, five large research clusters were identified and analyzed. The youngest research frontier emphasized on nanoparticles. With this study, how research trends evolve over years was demonstrated. Thus, international collaboration could be enhanced, and a promising field could be developed.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Faculty of Sciences, Akdeniz University, 07058 Campus, Antalya, Turkey
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, 07058 Campus, Antalya, Turkey
| |
Collapse
|
8
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Siivola KM, Suhonen S, Hartikainen M, Catalán J, Norppa H. Genotoxicity and cellular uptake of nanosized and fine copper oxide particles in human bronchial epithelial cells in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 856-857:503217. [PMID: 32928365 DOI: 10.1016/j.mrgentox.2020.503217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
We studied the genotoxicity and cellular uptake of nanosized (<50 nm) and fine (<10 μm) copper oxide (CuO) particles in vitro in human bronchial epithelial (BEAS-2B) cells. In addition, the effect of dispersing the particles using bovine serum albumin (BSA) on DNA damage induction was investigated. DNA damage was assessed by the alkaline comet (single cell gel electrophoresis) assay after 3-h, 6-h and 24-h exposures. The cytokinesis-block micronucleus assay was applied to study chromosome damage. Both fine- and nanosized CuO particles induced a dose-dependent increase in DNA damage at all timepoints tested. However, nanosized CuO damaged DNA at lower doses and higher levels compared with fine CuO. Dispersing the nanoparticles in the presence of BSA (0.6 mg/mL) resulted in a small and inconsistent decrease in DNA damage compared with dispersions in serum-free cell culture medium only. CuO nanoparticles induced a clear dose-dependent increase in micronucleated cells at doses that strongly increased cytostasis and were markedly cytotoxic at 24 and 48 h. Fine CuO showed a slight induction of micronuclei. Hyperspectral microscopy indicated a substantial cellular uptake of both types of particles after a 3-h exposure to a dose of 20 μg/cm2. The number of particles internalized by the cells was higher for nanosized than fine CuO, as quantified by the frequency of spectral matches in the total cell area and by the number of spectrally matched visible particles or agglomerates per cell. The particle uptake was limited by particle size. The stronger genotoxic activity of nanosized than fine CuO particles is likely to derive from the higher cellular uptake and more effective intracellular dissolution of nanoparticles.
Collapse
Affiliation(s)
- Kirsi M Siivola
- Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Satu Suhonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Julia Catalán
- Finnish Institute of Occupational Health, Helsinki, Finland; Department of Anatomy Embryology and Genetics, University of Zaragoza, 50009 Zaragoza, Spain
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|
10
|
Keshavarzi M, Khodaei F, Siavashpour A, Saeedi A, Mohammadi-Bardbori A. Hormesis Effects of Nano- and Micro-sized Copper Oxide. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:2042-2054. [PMID: 32184868 PMCID: PMC7059066 DOI: 10.22037/ijpr.2019.13971.12030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concerns about the possible risk of manufactured nanoparticles (NPs) have been raised recently. Nano- and micro-sized copper oxide (CO and CONP) are widely used in many industries. In this regard, in-vitro studies have demonstrated that CONP is a toxic compound in different cell lines. Despite their unique properties, NPs possess unexpected toxicity profiling relative to the bulk materials. This study was designed to examine and compare the toxic effects of CO and CONPs in-vivo and in isolated rat mitochondria. Male Wistar albino rats received 50 to 1000 mg/kg CO or CONP by gavage and several toxicological endpoints including biochemical indices and oxidative stress markers. Then, the pathological parameters in the multiple organs such as liver, brain, spleen, kidney, and intestine were assessed. Mitochondria were isolated from the rat liver and several mitochondrial indices were measured. The results of this study demonstrated that CO and CONP exhibited biphasic dose-response effects. CONPs showed higher toxicity compared with the bulk material. There were no significant changes in the results of CONP and CO in isolated rat liver mitochondria. The present studies provided more information regarding the hormetic effects of CO and CONPs in-vivo and in isolated rat mitochondria.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Siavashpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arastoo Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Halmenschelager PT, da Rocha JBT. Biochemical CuSO 4 Toxicity in Drosophila melanogaster Depends on Sex and Developmental Stage of Exposure. Biol Trace Elem Res 2019; 189:574-585. [PMID: 30178145 DOI: 10.1007/s12011-018-1475-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023]
Abstract
Copper is a transition metal that exists in different chemical forms (e.g., Cu2+,Cu+, and Cu0) and at high concentrations it is toxic. Here, we investigated the Cu2+-induced toxicity in Drosophila melanogaster, evaluating the survival, locomotion, and the activity of acetylcholinesterase (AChE) and glutathione S-transferase (GST) enzymes. Flies were exposed to Cu2+(0.1-1 mmol CuSO4/kg of diet or approximately 0.1-1 mM Cu2+) and allowed to mate during 24 h. GST and AChE enzymes were evaluated in the larvae and in the head and the body (thorax + abdomen) of the adult male and females flies. The total number of adult females (0.4-1 mM) and males (0.75 and 1 mM) was decreased by CuSO4. The climbing ability was hampered in flies exposed to 1 mM Cu2+. In larvae, Cu2+(0.4-1 mM) increased AChE activity (P < 0.002). In males' heads, 0.4 mM Cu2+ increased the AChE activity (P < 0.01). In adults' bodies, Cu2+inhibited the activity in both sexes, but with greater effectiveness in males (0.1 to 1 mM) than in females (1 mM). Regarding GST activity, 0.1 mM Cu2+increased, but 1 mM decrease GST in larvae. In the head of flies, Cu2+decreased the GST activity at intermediate (0.4 mM) and increased GST at the highest concentration (1 mM) in males. In the bodies, the effect of Cu2+was similar. In conclusion, Cu2+exposure in D. melanogaster disrupted locomotion and enzymatic parameters that can be related to changes in AChE and in the detoxifying GST enzyme.
Collapse
Affiliation(s)
- Paula Tais Halmenschelager
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, Danquah MK. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:755-771. [PMID: 31098696 DOI: 10.1007/s00210-019-01666-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
Collapse
Affiliation(s)
- Swetha Andra
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Jaison Jeevanandham
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Murugesan Muthalagu
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Manisha Vidyavathy
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | | |
Collapse
|
13
|
Ertuğrul H, Yalçın B, Güneş M, Kaya B. Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug Chem Toxicol 2019; 43:279-286. [DOI: 10.1080/01480545.2019.1585444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Havva Ertuğrul
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Bülent Kaya
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
14
|
Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3407375. [PMID: 30050652 PMCID: PMC6040303 DOI: 10.1155/2018/3407375] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Hyperglycemia-induced overproduction of reactive oxygen species (ROS) is an important contributor to type 2 diabetes (T2D) pathogenesis. The conventional antioxidant therapy, however, proved to be ineffective for its treatment. This may likely be due to limited absorption profiles and low bioavailability of orally administered antioxidants. Therefore, novel antioxidant agents that may be delivered to specific target organs are actively developed now. Metallic nanoparticles (NPs), nanosized materials with a dimension of 1–100 nm, appear very promising for the treatment of T2D due to their tuned physicochemical properties and ability to modulate the level of oxidative stress. An excessive generation of ROS is considered to be the most common negative outcome related to the application of NPs. Several nanomaterials, however, were shown to exhibit enzyme-like antioxidant properties in animal models. Such NPs are commonly referred to as “nanoantioxidants.” Since NPs can provide specifically targeted or localized therapy, their use is a promising therapeutic option in addition to conventional therapy for T2D. NP-based therapies should certainly be used with caution given their potential toxicity and risk of adverse health outcomes. However, despite these challenges, NP-based therapeutic approaches have a great clinical potential and further translational studies are needed to confirm their safety and efficacy.
Collapse
|