1
|
DeMarini DM, Warren SH, Brooks LR. Mutagenicity of the organic fraction of World Trade Center dust. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:16-25. [PMID: 36433931 PMCID: PMC9989947 DOI: 10.1002/em.22519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 05/07/2023]
Abstract
Most studies of the health effects and chemical characterization of the dust resulting from the catastrophic collapse of the World Trade Center (WTC) on September 11, 2001, have focused on the large inorganic fraction of the dust; however, chemical analyses have identified mutagens and carcinogens in the smaller organic fraction. Here, we determined the mutagenicity of the organic fraction of WTC dust in Salmonella. Only 0.74% of the mass of the particulate matter (PM) <53 μm in diameter was extractable organic matter (EOM). Because the EOM was 10 times more mutagenic in TA100 +S9 than in TA98 +S9 and was negative in TA98 -S9, we inferred, respectively, that polycyclic aromatic hydrocarbons (PAHs) played a role in the mutagenicity and not nitroarenes. In TA98 +S9, the mutagenic potency of the EOM (0.1 revertant/μg EOM) was within the range of EOMs from air and combustion emissions. However, the EOM-based mutagenic potency of the particles (0.0007 revertants/μg PM) was 1-2 orders of magnitude lower than values from a review of 50 combustion emissions and various air samples. We calculated that 37 PAHs analyzed previously in WTC EOM were 5.4% of the EOM mass and 0.04% of the PM mass; some air contained 0.3 μg WTC EOM/m3 (0.02 μg PAHs/m3 ). Populations exposed to WTC dust have elevated levels of prostate and thyroid cancer but not lung cancer. Our data support earlier estimates that PAH-associated cancer risk among this population, for example, PAH-associated lung cancer, was unlikely to be significantly elevated relative to background PAH exposures.
Collapse
Affiliation(s)
- David M. DeMarini
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and ExposureOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| | - Sarah H. Warren
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and ExposureOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| | - Lance R. Brooks
- Homeland Security and Materials Management Division, Center for Environmental Solutions and Emergency ResponseOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
2
|
Caumo S, Yera AB, Vicente A, Alves C, Roubicek DA, de Castro Vasconcellos P. Particulate matter-bound organic compounds: levels, mutagenicity, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31293-31310. [PMID: 35001282 DOI: 10.1007/s11356-021-17965-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Increased industrialization and consumption of fossil fuels in the Metropolitan Region of São Paulo (MRSP), Brazil, have caused a growth of the particulate matter emissions to the atmosphere and an increase in population health problems. Particulate and gaseous phase samples were collected in different short campaigns (2015, 2016, and 2017) near an urban-industrial area. Organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAH), and its derivatives (nitro and oxy-PAH), n-alkanes, hopanes, and pesticides were determined. The Salmonella/microsome test confirmed the mutagenic activity of these samples. Among PAH, benzo(a)pyrene was detected as one of the most abundant compounds. Benzo(a)pyrene equivalent concentrations for PAH and nitro-PAH, and the associated risk of lung cancer, showed values above those recommended in the literature. The profile of n-alkanes confirmed the predominance of anthropogenic sources. Pesticide concentrations and estimated risks, such as the daily inhalation exposure and hazard quotient, suggest that exposure to these compounds in this area may be dangerous to human health.
Collapse
Affiliation(s)
- Sofia Caumo
- Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Aleinnys B Yera
- Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana Vicente
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Deborah A Roubicek
- Dept. Environmental Analyses, São Paulo State Environmental Agency, CETESB, São Paulo, Brazil
| | | |
Collapse
|
3
|
DeMarini DM, Linak WP. Mutagenicity and carcinogenicity of combustion emissions are impacted more by combustor technology than by fuel composition: A brief review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:135-150. [PMID: 35253926 PMCID: PMC9311424 DOI: 10.1002/em.22475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 05/17/2023]
Abstract
Studies during the past 50 years have characterized the carcinogenicity and mutagenicity of extractable organic material (EOM) of particulate matter (PM) in ambient air and from combustion emissions. We have summarized conclusions from these studies and present data supporting those conclusions for 50 combustion emissions, including carcinogenic potencies on mouse skin (papillomas/mouse/mg EOM), mutagenic potencies (revertants/μg EOM) in the Salmonella (Ames) mutagenicity assay, and mutagenicity emission factors (revertants/kg fuel or revertants/MJthermal ) in Salmonella. Mutagenic potencies of EOM from PM in ambient air and combustion emissions span 1-2 orders of magnitude, respectively. In contrast, the revertants/m3 span >5 orders of magnitude due to variable PM concentrations in ambient air. Carcinogenic potencies of EOM from combustion emissions on mouse skin and EOM-associated human lung cancer risk from those emissions both span ~3 orders of magnitude and are highly associated. The ubiquitous presence of polycyclic aromatic hydrocarbons (PAHs), nitroarenes, and aromatic amines results in mutagenic and carcinogenic potencies of PM that span only 1-3 orders of magnitude; most PM induces primarily G to T mutations. Mutagenicity emission factors of combustion emissions span 3-5 orders of magnitude and correlate with PAH emission factors (r > 0.9). Mutagenicity emission factors were largely a function of how material was burned (highly efficient modern combustors versus open burning) rather than what materials were burned. Combustion systems that minimize kinetic and mass-transfer limitations and promote complete oxidation also minimize the mutagenicity of their emissions. This fundamental engineering principle can inform environmental and public health assessments of combustion emissions.
Collapse
Affiliation(s)
- David M. DeMarini
- Air Methods and Characterization Division, Center for Environmental Measurement and ModelingU.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| | - William P. Linak
- Air Methods and Characterization Division, Center for Environmental Measurement and ModelingU.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
4
|
Morales DA, Massei R, Schulze T, Krauss M, Brack W, de Aragão Umbuzeiro G. Mutagenicity of the Danube River: The contribution of liquid phase and particulate suspended matter. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:162-168. [PMID: 35289431 DOI: 10.1002/em.22478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/25/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Bioassays have been used to complement the chemical characterization of aquatic mutagenicity, but the tests sometimes are done only with water liquid phase (LP). Particle-bound mutagens are important because they can be ingested by filtering organisms. Our objective was to evaluate the mutagenicity of organic extracts of the LP and the water suspended particulate matter (SPM) from 13 sites along Danube River with the Salmonella/microsome microsuspension assay using TA98, YG1041, TA1538, and YG5185 strains. A high incidence of mutagenicity was detected, 84% for LP and 92% for SPM samples. The contribution of SPM to the mutagenicity was relatively small when compared with LP however, for five sites SPM was responsible for the whole mutagenicity, highlighting the importance of analyzing SPM when assessing water mutagenicity. YG1041 was the most sensitive strain and should be considered in future water mutagenicity monitoring programs, but it will depend on the main pollution sources.
Collapse
Affiliation(s)
- Daniel A Morales
- School of Technology, State University of Campinas, Limeira, Sao Paulo, Brazil
| | - Riccardo Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Tobias Schulze
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University of Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
5
|
Maselli BS, Cunha V, Lim H, Bergvall C, Westerholm R, Dreij K, Watanabe T, Cardoso AA, Pozza SA, Umbuzeiro GA, Kummrow F. Similar polycyclic aromatic hydrocarbon and genotoxicity profiles of atmospheric particulate matter from cities on three different continents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:560-573. [PMID: 32285490 DOI: 10.1002/em.22377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The extractable organic material (EOM) from atmospheric total suspended particles (TSP) contains several organic compounds including non-substituted polycyclic aromatic hydrocarbons (PAHs), alkyl-PAHs, and nitro-PAHs. These chemicals seem to be among the key drivers of TSP genotoxicity. We have shown previously that the mutagenic potencies of the EOM from Limeira, Stockholm, and Kyoto, cities with markedly different meteorological conditions and pollution sources are similar. Here we compare the profiles of non-substituted PAHs (27 congeners), alkyl-PAHs (15 congeners), and nitro-PAHs (7 congeners) from the same EOM samples from these cities. We also compared the genotoxicity profiles using comet and micronucleus assays in human bronchial epithelial cells. The profiles of PAHs, as well as the cytotoxic and genotoxic potencies when expressed in EOM, were quite similar among the studied cities. It seems that despite the differences in meteorological conditions and pollution sources of the cities, removal, mixing, and different atmospheric transformation processes may be contributing to the similarity of the PAHs composition and genotoxicity profiles. More studies are required to verify if this would be a general rule applicable to other cities. Although these profiles were similar for all three cities, the EOM concentration in the atmospheres is markedly different. Thus, the population of Limeira (∼10-fold more EOM/m3 than Stockholm and ∼6-fold more than Kyoto) is exposed to higher concentrations of genotoxic pollutants, and Kyoto's population is 1.5-fold more exposed than Stockholm's. Therefore, to reduce the risk of human exposure to TSP genotoxins, the volume of emissions needs to be reduced.
Collapse
Affiliation(s)
- Bianca S Maselli
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, Brazil
| | - Virginia Cunha
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hwanmi Lim
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Christoffer Bergvall
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Roger Westerholm
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Arnaldo A Cardoso
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Simone A Pozza
- School of Technology, State University of Campinas (Unicamp), Limeira, Brazil
| | - Gisela A Umbuzeiro
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, Brazil
- School of Technology, State University of Campinas (Unicamp), Limeira, Brazil
| | - Fábio Kummrow
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, Brazil
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| |
Collapse
|