1
|
Cartus AT, Lachenmeier DW, Guth S, Roth A, Baum M, Diel P, Eisenbrand G, Engeli B, Hellwig M, Humpf HU, Joost HG, Kulling SE, Lampen A, Marko D, Steinberg P, Wätjen W, Hengstler JG, Mally A. Acetaldehyde as a Food Flavoring Substance: Aspects of Risk Assessment. Mol Nutr Food Res 2023; 67:e2200661. [PMID: 37840378 DOI: 10.1002/mnfr.202200661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/31/2023] [Indexed: 10/17/2023]
Abstract
The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) has reviewed the currently available data in order to assess the health risks associated with the use of acetaldehyde as a flavoring substance in foods. Acetaldehyde is genotoxic in vitro. Following oral intake of ethanol or inhalation exposure to acetaldehyde, systemic genotoxic effects of acetaldehyde in vivo cannot be ruled out (induction of DNA adducts and micronuclei). At present, the key question of whether acetaldehyde is genotoxic and mutagenic in vivo after oral exposure cannot be answered conclusively. There is also insufficient data on human exposure. Consequently, it is currently not possible to reliably assess the health risk associated with the use of acetaldehyde as a flavoring substance. However, considering the genotoxic potential of acetaldehyde as well as numerous data gaps that need to be filled to allow a comprehensive risk assessment, the SKLM considers that the use of acetaldehyde as a flavoring may pose a safety concern. For reasons of precautionary consumer protection, the SKLM recommends that the scientific base for approval of the intentional addition of acetaldehyde to foods as a flavoring substance should be reassessed.
Collapse
Affiliation(s)
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805, Krefeld, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | | - Barbara Engeli
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Schwarzenburgstrasse 155, Bern, 3003, Switzerland
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Straße 8-10, Berlin, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| |
Collapse
|
2
|
Lynch HN, Kozal JS, Vincent MJ, Freid RD, Beckett EM, Brown S, Mathis C, Schoeny RS, Maier A. Systematic review of the human health hazards of propylene dichloride. Regul Toxicol Pharmacol 2023; 144:105468. [PMID: 37562533 DOI: 10.1016/j.yrtph.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Propylene dichloride (PDC) is a chlorinated substance used primarily as an intermediate in basic organic chemical manufacturing. The United States Environmental Protection Agency (EPA) is currently evaluating PDC as a high-priority substance under the Toxic Substances Control Act (TSCA). We conducted a systematic review of the non-cancer and cancer hazards of PDC using the EPA TSCA and Integrated Risk Information System (IRIS) frameworks. We identified 12 epidemiological, 16 toxicokinetic, 34 experimental animal, and 49 mechanistic studies. Point-of-contact respiratory effects are the most sensitive non-cancer effects after inhalation exposure, and PDC is neither a reproductive nor a developmental toxicant. PDC is not mutagenic in vivo, and while in vitro evidence is mixed, DNA strand breaks consistently occur. Nasal tumors in rats and lung tumors in mice occurred after lifetime high-level inhalation exposure. Cholangiocarcinoma (CCA) was observed in Japanese print workers exposed to high concentrations of PDC. However, co-exposures, as well as liver parasites, hepatitis, and other risk factors, may also have contributed. The cancer mode of action (MOA) analysis revealed that PDC may act through multiple biological pathways occurring sequentially and/or simultaneously, although chronic tissue damage and inflammation likely dominate. Critically, health benchmarks protective of non-cancer effects are expected to protect against cancer in humans.
Collapse
|
3
|
Stellungnahme zu Acetaldehyd als Aromastoff: Aspekte der Risikobewertung. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractOpinion on acetaldehyde as a flavouring substance: considerations for risk assessmentAcetaldehyde occurs naturally in many foods and is also used as a flavouring due to its fruity aroma. The International Agency for Research on Cancer (IARC) classified acetaldehyde as possibly carcinogenic to humans and, in combination with oral intake via alcoholic beverages, as carcinogenic to humans. Therefore, the question arises whether the use of acetaldehyde as a flavouring agent is still justifiable. The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) reviewed the scientific basis for health risk assessment of the use of acetaldehyde as a flavouring substance and adopted an opinion. Based on the available data, it is at present not possible to conclude if acetaldehyde is genotoxic and mutagenic in vivo after oral exposure. There is also uncertainty regarding the contribution of acetaldehyde as a flavouring substance to the overall exposure to acetaldehyde. Therefore, a science-based assessment on health risk related to the use of acetaldehyde as a flavouring is not possible at present. Considering the genotoxic potential as well as numerous data gaps that need to be closed for a full risk assessment, the SKLM is concerned about the safety of acetaldehyde as a flavouring substance. For reasons of precautionary consumer protection, the SKLM considers that the use of acetaldehyde as a food additive should be re-evaluated.
Collapse
|
4
|
Api AM, Belsito D, Biserta S, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, Lapczynski A, Lavelle M, Liebler DC, Na M, O'Brien D, Patel A, Penning TM, Ritacco G, Rodriguez-Ropero F, Romine J, Sadekar N, Salvito D, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y, Tsang S. RIFM fragrance ingredient safety assessment, p-tolualdehyde, CAS Registry Number 104-87-0. Food Chem Toxicol 2021; 149 Suppl 1:111982. [PMID: 33454360 DOI: 10.1016/j.fct.2021.111982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/01/2020] [Accepted: 01/10/2021] [Indexed: 12/01/2022]
Abstract
The existing information supports the use of this material as described in this safety assessment. p-Tolualdehyde was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, and environmental safety. Data from read-across analog benzaldehyde (CAS # 100-52-7) show that p-tolualdehyde is not expected to be genotoxic. Data from read-across analog cuminaldehyde (CAS # 122-03-2) provided p-tolualdehyde a No Expected Sensitization Induction Level (NESIL) of 1100 μg/cm2 for the skin sensitization endpoint. The repeated dose toxicity, developmental and reproductive toxicity, and local respiratory toxicity endpoints were completed using the threshold of toxicological concern (TTC) for a Cramer Class I material, and the exposure to p-tolualdehyde is below the TTC (0.03 mg/kg/day, 0.03 mg/kg/day, and 1.4 mg/day, respectively). The phototoxicity/photoallergenicity endpoints were evaluated based on data from read-across analog 4-ethylbenzaldehyde (CAS # 4748-78-1); p-tolualdehyde is not expected to be phototoxic/photoallergenic. The environmental endpoints were evaluated; p-tolualdehyde was found not to be persistent, bioaccumulative, and toxic (PBT) as per the International Fragrance Association (IFRA) Environmental Standards, and its risk quotients, based on its current volume of use in Europe and North America (i.e., Predicted Environmental Concentration/Predicted No Effect Concentration [PEC/PNEC]), are <1.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Biserta
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St, Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Oregon Health Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - S Gadhia
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D O'Brien
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Patel
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Rodriguez-Ropero
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr, Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - S Tsang
- Research Institute for Fragrance Materials, Inc, 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
5
|
Api AM, Belsito D, Biserta S, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, phenol, CAS Registry Number 108-95-2. Food Chem Toxicol 2020; 149 Suppl 1:111909. [PMID: 33307118 DOI: 10.1016/j.fct.2020.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Biserta
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - S Gadhia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
6
|
Chae Y, Kim L, Kim D, Cui R, Lee J, An YJ. Deriving hazardous concentrations of phenol in soil ecosystems using a species sensitivity distribution approach. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123036. [PMID: 32526444 DOI: 10.1016/j.jhazmat.2020.123036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Phenol is widely used in many industries, and chemical accidents involving phenol have frequently occurred around the world, resulting in the investigation of phenol toxicity in humans, mammals, and aquatic organisms. However, very few studies have investigated phenol toxicity in terrestrial ecosystems. Therefore, we investigated the acute and chronic toxicity of phenol using various soil organisms, including Chlamydomonas reinhardtii, Chlorococcum infusionum, Folsomia candida, Oryza sativa, Raphanus sativus, Pinus densiflora, and Eisenia fetida. The data obtained were used to calculate hazardous concentrations for 5% of species (HC5) for phenol based on a species sensitivity distribution approach. The acute and chronic soil HC5 values for phenol were estimated to be 18.4 and 0.3 mg kg-1, respectively. To the best of our knowledge, this is the first study to conduct battery testing and calculate hazardous concentrations to assess the risk posed by phenol in terrestrial ecosystems. The results can be used to establish standards or strategies to protect terrestrial environments against unintended phenol contamination.
Collapse
Affiliation(s)
- Yooeun Chae
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rongxue Cui
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jieun Lee
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
RIFM fragrance ingredient safety assessment, 4-ethylbenzaldehyde, CAS Registry Number 4748-78-1. Food Chem Toxicol 2020; 146 Suppl 1:111700. [PMID: 32860860 DOI: 10.1016/j.fct.2020.111700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022]
|
8
|
Api AM, Belsito D, Biserta S, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, Lapczynski A, Lavelle M, Liebler DC, Na M, O'Brien D, Patel A, Penning TM, Ritacco G, Rodriguez-Ropero F, Romine J, Sadekar N, Salvito D, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y, Tsang S. RIFM fragrance ingredient safety assessment, cuminic aldehyde, CAS Registry Number 122-03-2. Food Chem Toxicol 2020; 144 Suppl 1:111498. [PMID: 32640342 DOI: 10.1016/j.fct.2020.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Biserta
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - S Gadhia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D O'Brien
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Patel
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Rodriguez-Ropero
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - S Tsang
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
9
|
Api AM, Belsito D, Biserta S, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, Lapczynski A, Lavelle M, Liebler DC, Na M, O'Brien D, Patel A, Penning TM, Ritacco G, Rodriguez-Ropero F, Romine J, Sadekar N, Salvito D, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y, Tsang S. RIFM fragrance ingredient safety assessment, benzaldehyde, CAS Registry Number 100-52-7. Food Chem Toxicol 2019; 134 Suppl 2:110878. [PMID: 31622729 DOI: 10.1016/j.fct.2019.110878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/10/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Biserta
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - S Gadhia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D O'Brien
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Patel
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Rodriguez-Ropero
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - S Tsang
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
10
|
Abstract
HC Yellow No. 4 is a colorant for use mostly in hair dyes and colors, but also in a few hair tints. Concentrations at which the ingredient is used range from 0.1 % to 1.0%. Confusion has existed regarding the proper structure for this ingredient, but was resolved through additional analysis; the correct CAS number is 59820-43-8. Commercially available HC Yellow No. 4 may contain a nitroaniline impurity. Percutaneous absorption studies using commercial products containing 1% HC Yellow No. 4 found little absorption. Body weight decreases were noted in short-term oral toxicity studies and in a subchronic oral toxicity study. HC Yellow No. 4 did not produce irritation, sensitization, or photosensitization in animal tests (primarily using guinea pigs). In some feeding studies, fetal toxicity was observed, but no such effect was found in other feeding studies. HC Yellow No. 4 was mutagenic in several assays, but no evidence of carcinogenesis was found in oral or dermal studies. Two repeated insult patch tests, totalling over 200 human volunteers, found no sensitization reactions. While there was concern expressed over the reproduction and developmental toxicity found in feeding studies, such adverse responses would not be expected from the use of this ingredient in hair coloring products because so little HC Yellow No. 4 is absorbed. The presence of a low level of nitroaniline derivative impurity (0.3 to 7%) is not considered to present a human health risk because the products containing HC Yellow No. 4 are used in a brief and discontinuous manner, followed by rinsing. On the basis of the available data, therefore, it is concluded that HC Yellow No. 4 is safe as a hair colorant in the present practices of use.
Collapse
Affiliation(s)
- F.A. Andersen
- Cosmetic Ingredient Review, 1101 17th Street, NW, Suite
310, Washington, DC 20036 USA
| |
Collapse
|
11
|
Scherer G, Urban M, Hagedorn HW, Feng S, Kinser RD, Sarkar M, Liang Q, Roethig HJ. Determination of two mercapturic acids related to crotonaldehyde in human urine: influence of smoking. Hum Exp Toxicol 2016; 26:37-47. [PMID: 17334178 DOI: 10.1177/0960327107073829] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crotonaldehyde, an αβ-unsaturated aldehyde, and a potent alkylating agent, is present in many foods and beverages, ambient air and tobacco smoke. A previous study indicated that two metabolites, 3-hydroxy-1- methylpropylmercapturic acid (HMPMA) and 2-carboxy1-1-methylethylmercapturic acid (CMEMA), were excreted in rat urine after subcutaneous injection of crotonaldehyde. Herein, we report the development of a method based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) and deuterated analytes as internal standards, for the determination of HMPMA and CMEMA in human urine. The limits of quantification of the method were 92 and 104 ng/mL for HMPMA and CMEMA, respectively. The calibration curves for both compounds were linear up to 7500 ng/mL with R2 >0.99. It was found that cigarette smokers excreted about three to five-fold more HMPMA, and only slightly elevated amounts of CMEMA, in their urine compared to non-smokers. In smokers, we also found significant correlations between the urinary excretion levels of HMPMA (but not CMEMA) and several markers of exposure for smoking, including the daily cigarette consumption, carbon monoxide in exhaled breath, salivary cotinine, and nicotine plus five of its major metabolites in urine. Smoking cessation or switching from smoking conventional cigarettes to experimental cigarettes with lower crotonaldehyde delivery led to significant reductions of urinary HMPMA excretion, but not CMEMA excretion. Alcohol consumption did not influence either urinary HMPMA or CMEMA excretion. We conclude that HMPMA is a potentially useful biomarker for smoking-related exposure to crotonaldehyde.
Collapse
Affiliation(s)
- G Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Goethestrasse 20, 80336 Muenchen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gi M, Fujioka M, Yamano S, Shimomura E, Ishii N, Kakehashi A, Takeshita M, Wanibuchi H. Determination of Hepatotoxicity and Its Underlying Metabolic Basis of 1,2-Dichloropropane in Male Syrian Hamsters and B6C3F1 Mice. Toxicol Sci 2015; 145:196-208. [PMID: 25711234 PMCID: PMC4833043 DOI: 10.1093/toxsci/kfv045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1,2-Dichloropropane (1,2-DCP) has recently been reclassified from not classifiable as to its carcinogenicity to humans (Group 3) to carcinogenic to humans (Group 1) by the International Agency for Research on Cancer. This was based on the findings of epidemiological studies in Japan that occupational exposure to paint stripers containing 1,2-DCP was associated with increased cholangiocarcinomas. It is known that 1,2-DCP is negative for cholangiocarcinogenicity in rats and mice. However, its toxicity and carcinogenicity has not been examined in hamsters and little is known about the regulation of its metabolism in hamsters. The purpose of this study was to determine the hepatobiliary toxicity of 1,2-DCP in hamsters and to characterize and compare the altered patterns of hepatic xenometabolic enzymes in hamsters and mice. Male Syrian hamsters and male B6C3F1 mice were treated with various doses of 1,2-DCP for 4 h or 3 days or 4 weeks. These experiments demonstrated that a high dose of 1,2-DCP induced centrilobular hepatocellular necrosis in hamsters. CYP2E1 is possibly the key enzyme responsible for bioactivation and the consequent hepatocytotoxicity of 1,2-DCP, and GSH conjugation catalyzed by GST-T1 may exert a cytoprotective role in hamsters and mice. Notably, the expression pattern of GST-T1 in bile duct epithelial cells differed between hamsters and mice: GST-T1 was expressed in bile duct epithelial cells of mice but not hamsters. This indicates that responses to 1,2-DCP in the bile duct of hamsters might differ from that of mice, and suggests that long-term studies are necessary to clarify the chalangiocarcinogenicity of 1,2-DCP in hamsters, though no biliary toxicity was observed in the present short-term experiments.
Collapse
Affiliation(s)
- Min Gi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Eri Shimomura
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Naomi Ishii
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Takeshita
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
Scientific Opinion on Flavouring Group Evaluation 67 Revision 2 (FGE.67Rev2): Consideration of 28 furan‐substituted compounds evaluated by JECFA at the 55th, 65th and 69th meetings (JECFA, 2001, 2006a, 2009b). EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Granvogl M. Development of three stable isotope dilution assays for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1272-1282. [PMID: 24428123 DOI: 10.1021/jf404902m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Three stable isotope dilution assays (SIDAs) were developed for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food using synthesized [¹³C₄]-crotonaldehyde as internal standard. First, a direct headspace GC-MS method, followed by two indirect methods on the basis of derivatization with either pentafluorophenylhydrazine (GC-MS) or 2,4-dinitrophenylhydrazine (LC-MS/MS), was developed. All methods are also suitable for the quantitation of acrolein using the standard [¹³C₃]-acrolein. Applying these three methods on five different types of fats and oils varying in their fatty acid compositions revealed significantly varying crotonaldehyde concentrations for the different samples, but nearly identical quantitative data for all methods. Formed amounts of crotonaldehyde were dependent not only on the type of oil, e.g., 0.29-0.32 mg/kg of coconut oil or 33.9-34.4 mg/kg of linseed oil after heat-processing for 24 h at 180 °C, but also on the applied temperature and time. The results indicated that the concentration of formed crotonaldehyde seemed to be correlated with the amount of linolenic acid in the oils. Furthermore, the formation of crotonaldehyde was compared to that of its homologue acrolein, demonstrating that acrolein was always present in higher amounts in heat-processed oils, e.g., 12.3 mg of crotonaldehyde/kg of rapeseed oil in comparison to 23.4 mg of acrolein/kg after 24 h at 180 °C. Finally, crotonaldehyde was also quantitated in fried food, revealing concentrations from 12 to 25 μg/kg for potato chips and from 8 to 19 μg/kg for donuts, depending on the oil used.
Collapse
Affiliation(s)
- Michael Granvogl
- Lehrstuhl für Lebensmittelchemie, Technische Universität München , Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| |
Collapse
|
15
|
Albertini RJ. Vinyl acetate monomer (VAM) genotoxicity profile: Relevance for carcinogenicity. Crit Rev Toxicol 2013; 43:671-706. [DOI: 10.3109/10408444.2013.827151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Ulker Z, Alpsoy L, Mihmanli A. Assessment of cytotoxic and apoptotic effects of benzaldehyde using different assays. Hum Exp Toxicol 2012; 32:858-64. [DOI: 10.1177/0960327112470271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Benzaldehyde (BA) occurs naturally in a number of plants, including cherry, fig and peach fruit and carnation flowers at therapeutic doses. In addition, it is used in cosmetics, personal care products and food as a preservative. In this study, we aimed to determine the cytotoxic and apoptotic effects of different concentrations of BA on cultured human lymphocytes using lactate dehydrogenase assay, cell proliferation (water-soluble tetrazolium salts-1) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test (apoptotic test) as a group of cytotoxicity tests at 6th and 24th h on human lymphocyte cell culture. The cytotoxicity increased when cells were treated with 10, 25 and 50 μg/mL concentrations of BA ( p < 0.05). Moreover, treatment of the cells with the same concentrations significantly decreased the cell number at the 6th and 24th hours ( p < 0.05). TUNEL assay results also show that the concentration of BA at 10, 25 and 50 μg/mL caused DNA damage significantly ( p < 0.05). According to our results, the toxic and genotoxic effects of BA have to be further evaluated before using in cosmetic and food products.
Collapse
Affiliation(s)
- Z. Ulker
- Fatih University, Science and Art Faculty, Biology Department, Istanbul, Turkey
| | - L. Alpsoy
- Fatih University, Science and Art Faculty, Biology Department, Istanbul, Turkey
| | - A. Mihmanli
- Bezmialem University, Faculty of Dentistry, Istanbul, Turkey
| |
Collapse
|
17
|
Demir E, Turna F, Kaya B, Creus A, Marcos R. Mutagenic/recombinogenic effects of four lipid peroxidation products in Drosophila. Food Chem Toxicol 2012; 53:221-7. [PMID: 23238235 DOI: 10.1016/j.fct.2012.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 11/17/2022]
Abstract
The human diet is an important factor in the development of different diseases. Lipid peroxidation during frying in edible vegetable liquid oils of food components is a mechanism leading to the formation of free radicals. Such radicals induce tissue damage and are implicated in diverse pathological conditions, including aging, atherosclerosis, brain disorders, cancer, lung disorders and various liver disorders. In the present study, we decided to investigate the genotoxic effects of four lipid peroxidation products in the in vivo Drosophila wing somatic mutation and recombination test. In this test, point mutation, chromosome breakage and mitotic recombination produce single spots; while twin spots are produced only by mitotic recombination. Drosophila is a suitable eukaryotic organism for mutagenicity studies and also its metabolism is quite similar to that of mammalians. Since conflicting data exist on the possible risk of several lipid peroxidation products for humans, we have selected four of them, namely acrolein, crotonaldehyde, 4-hydroxy-hexenal (4-HHE) and 4-oxo-2-nonenal (4-ONE). Especially at the highest concentrations tested all exert both mutagenic and recombinogenic effects in the Drosophila SMART assay, showing a direct dose-effect relationship. This is the first study reporting genotoxicity data in Drosophila for these compounds.
Collapse
Affiliation(s)
- Eşref Demir
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058 Campus, Antalya, Turkey.
| | | | | | | | | |
Collapse
|
18
|
Scientific Opinion on Flavouring Group Evaluation 20, Revision 4 (FGE.20Rev4): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
19
|
Behl M, Kadiiska MB, Hejtmancik MR, Vasconcelos D, Chhabra RS. Subacute oral and dermal toxicity of tert-butyl hydroperoxide in Fischer F344/N rats and B6C3F1 mice. Cutan Ocul Toxicol 2012; 31:204-13. [PMID: 22369679 DOI: 10.3109/15569527.2011.641194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tert-butyl hydroperoxide (TBHP) is a catalyst frequently used in oxidation and sulfonation reactions in the plastics industry. Since the toxicological evaluation of TBHP remains unknown, the National Toxicology Program (NTP) designed studies to characterize and compare TBHP toxicity by the dermal and oral (gavage) routes in male and female Fischer 344 rats and B6C3F1 mice in 14-day exposures. Rats and mice were administered TBHP at 22, 44, 88, 176 or 352 mg/kg in 0.5% aqueous methylcellulose for the gavage studies. In the dermal studies, mice were administered the same doses as above, while rats were administered four doses (22, 44, 88, 176 mg/kg) in 50% aqueous acetone. Results from the gavage studies revealed treatment-related decreases in survival in male rats and body weights in both male and female rats in the 352 mg/kg group. Clinical signs included post-treatment lethargy, thinness, abnormal breathing, ruffled fur, and/or ataxia which occurred sporadically. The male mice showed a statistically significant decrease in body weight in the 44, 88, 176, and 352 mg/kg groups. The major target organs of toxicity were the forestomach in male and female rats and mice, and the esophagus in male and female rats and in male mice. In addition, there was an increase in the absolute and relative liver weight in female mice with hepatocellular hypertrophy in the top-dose group only. Results from spin trapping experiments revealed the presence of electron paramagnetic resonance signals from radical adducts in the blood and organic extracts of the liver and kidneys of rats treated by gavage with 176 mg/kg TBHP, suggesting the involvement of free- radical generation. The no observed adverse effect level (NOAEL) was considered to be 22 mg/kg in rats and male mice, and 44 mg/kg in female mice. In the dermal studies, there was no effect on survival, body weight, or organ weights in either rats or mice. TBHP administration at the site of application resulted in dermal irritation, hyperkeratosis, hyperplasia, and/or inflammation of the epidermis and inflammation of the dermis at 176 mg/kg and above in male and female rats. Dermal irritation at the site of application was noted in all the mice exposed to 352 mg/kg TBHP. Histopathological lesions in the epidermis and dermis were seen in the 88-352 mg/kg males and in the 176-352 mg/kg females. The NOAEL was found to be 88 mg/kg for male rats and female mice, and 44 mg/kg for female rats and male mice. In conclusion, these studies demonstrate that TBHP is metabolized to free radicals and is a contact irritant affecting skin by the dermal route of exposure, and forestomach and esophagus by oral administration. There was no evidence of systemic absorption by the dermal route of exposure based on lack of pathological findings (Supported by National Institute of Environmental Health Sciences Contract No. N01-ES-65406).
Collapse
Affiliation(s)
- Mamta Behl
- Division of the National Toxicology Program, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
20
|
Ulbricht C, Seamon E, Windsor RC, Armbruester N, Bryan JK, Costa D, Giese N, Gruenwald J, Iovin R, Isaac R, Grimes Serrano JM, Tanguay-Colucci S, Weissner W, Yoon H, Zhang J. An Evidence-Based Systematic Review of Cinnamon (Cinnamomumspp.) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:378-454. [DOI: 10.3109/19390211.2011.627783] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Scientific Opinion on Flavouring Group Evaluation 67, Revision 1 (FGE.67Rev.1): Consideration of 40 furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers evaluated by J. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Scientific Opinion on Flavouring Group Evaluation 66, Revision 1 (FGE.66Rev1): Consideration of Furfuryl Alcohol and Related Flavouring Substances Evaluated by JECFA (55th meeting). EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
23
|
Scientific Opinion on Flavouring Group Evaluation 20, Revision 3(FGE.20Rev3): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
24
|
Scientific Opinion on Flavouring Group Evaluation 218, Revision 1 (FGE.218Rev1): alpha, beta‐Unsaturated aldehydes and precursors from subgroup 4.2 of FGE.19: Furfural derivatives. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Flavouring Group Evaluation 67 (FGE.67): Consideration of 40 furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers evaluated by JECFA at the 65th meeting (JECFA, 2006b). EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Scientific Opinion on Flavouring Group Evaluation 20, Revision 2 (FGE.20Rev2): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters from chemical groups 23 and 30. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Scientific Opinion on Flavouring Group Evaluation 65 (FGE.65): Consideration of sulfur-substituted furan derivatives used as flavouring agents evaluated by JECFA (59th meeting) structurally related to a subgroup of substances within the group of “Furfuryl. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Brüschweiler BJ, Märki W, Wülser R. In vitro genotoxicity of polychlorinated butadienes (Cl4–Cl6). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 699:47-54. [DOI: 10.1016/j.mrgentox.2010.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 11/16/2022]
|
29
|
Demir E, Kocaoğlu S, Kaya B. Assessment of genotoxic effects of benzyl derivatives by the comet assay. Food Chem Toxicol 2010; 48:1239-42. [DOI: 10.1016/j.fct.2010.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/10/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
30
|
Scientific Opinion on Flavouring Group Evaluation 13Rev1: Furfuryl and furan derivatives with and without additional side‐chain substituents and heteroatoms from chemical group 14. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
Scientific Opinion on Flavouring Group Evaluation 68 (FGE.68): Consideration of cinnamyl alcohol and related flavouring agents evaluated by JECFA (55th meeting) structurally related to aryl-substituted saturated and unsaturated primary alcohol/aldehyde/ac. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Flavouring Group Evaluation 61, Revision 1 (FGE.61Rev1): Consideration of aliphatic acetals evaluated by JECFA (57th meeting) structurally related to acetals of branched- and straight-chain aliphatic saturated primary alcohols and branched- and straight-c. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Flavouring Group Evaluation 54, Revision 1 (FGE.54Rev1): Consideration of benzyl derivatives evaluated by JECFA (57th meeting) structurally related to benzyl alcohols, benzaldehydes, a related acetal, benzoic acids and related esters evaluated by EFSA in. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Flavouring Group Evaluation 214: alpha, beta‐Unsaturated aldehydes and precursors from chemical subgroup 3.1 of FGE.19: Cinnamyl derivatives. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Flavouring Group Evaluation 20, Revision 1 (FGE.20Rev1): Benzyl alcohols, benzaldehydes, a related acetal, benzoic acids and related esters from chemical group 23. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Flavouring Group Evaluation 218: alpha, beta-Unsaturated aldehydes and precursors from subgroup 4.2 of FGE.19: Furfural derivatives - Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Flavouring Group Evaluation 66 (FGE.66):Consideration of furfuryl alcohol and related flavouring substances evaluated by JECFA (55th meeting) structurally related to Furfuryl and furan derivatives with and without additional side chain substituents and he. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Flavouring Group Evaluation 54 (FGE.54) ‐ Consideration of benzyl derivatives evaluated by JECFA (57th meeting) structurally related to benzyl alcohols, benzaldehydes, a related acetal, benzoic acids and related esters evaluated by EFSA in FGE.20 (2005) ‐ Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Flavouring Group Evaluation 61 (FGE.61): Consideration of aliphatic acyclic acetals evaluated by JECFA (57th meeting) structurally related to acetals of branched- and straight-chain aliphatic saturated primary alcohols and branched- and straight-chain sat. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Flavouring Group Evaluation 52 (FGE.52): Consideration of hydroxy‐ and alkoxy‐substituted benzyl derivatives evaluated by JECFA (57th meeting) structurally related to benzyl alcohols, benzaldehydes, a related acetal, benzoic acids, and related esters evaluated by EFSA in FGE.20 (2005) (Commission Regulation (EC) No 1565/2000 of 18 July 2000) ‐ Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in contact with Food (AFC). EFSA J 2008. [DOI: 10.2903/j.efsa.2008.637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Genotoxicity testing of four benzyl derivatives in the Drosophila wing spot test. Food Chem Toxicol 2008; 46:1034-41. [DOI: 10.1016/j.fct.2007.10.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 06/12/2007] [Accepted: 10/26/2007] [Indexed: 11/23/2022]
|
42
|
Jha AM, Singh AC, Sinha U, Kumar M. Genotoxicity of crotonaldehyde in the bone marrow and germ cells of laboratory mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 632:69-77. [PMID: 17543575 DOI: 10.1016/j.mrgentox.2007.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/09/2007] [Accepted: 04/14/2007] [Indexed: 11/22/2022]
Abstract
Genotoxicity of crotonaldehyde was evaluated by employing bone marrow and spermatocyte chromosomal aberration and dominant lethal mutation assays in Swiss albino mice. For bone marrow chromosomal aberration assay, animals were treated with 0.2ml olive oil containing 8, 16 and 32microl kg b.w. of crotonaldehyde for 6, 12 and 24h through single intraperitoneal injection. Treatment induced dose-dependent and statistically significant decrease in mitotic index and increase in chromosome aberrations per cell (CAs/cell excluding gaps and stickiness and pulverizations) and percent aberrant metaphase (excluding gaps) in the bone marrow cells at 6, 12 and 24h after treatment. For spermatocyte chromosomal aberration assay, male mice were treated with 8, 16 and 32microl/kg b.w. of crotonaldehyde for 24h through single intraperitoneal injection. The percentage of the induced chromosome aberrations in diakinesis-metaphase-I cells showed dose-dependent increase. For dominant lethal mutation assay, adult male mice were injected intraperitoneally with 0.2ml olive oil containing crotonaldehyde at the rate of 8, 16 and 32microl/kg b.w. for 5 consecutive days. The negative control animals received 0.2ml olive oil as above. In the dominant lethal mutation assay after the last dose, the treated males were allowed to mate with untreated virgin females. The mating continued for 5 consecutive weeks. At pregnancy days 14-16, the females were killed and uterine contents were examined for live and dead implants. Treatment of mice resulted in statistically significant decrease in the fertility indices and total number of implants per female. Statistically significant decrease in the number of live implants per female and increase in the number of dead implants per female were recorded in females mated with males during 8-14 and 15-21 and 22-28 days post-treatment mating. Crotonaldehyde treatment of males induced appreciably higher frequencies of dominant lethal mutation during 8-14, 15-21 and 22-28 days post-treatment mating periods. Percent dominant lethal mutation increased concomitantly with the dose. Dominant lethality was maximum in females mated with males treated with 5x32microl/kg b.w. during the 15-21 days post-treatment mating. The overall result suggests a positive dose-response relationship between treatment and induction of chromosomal aberrations in the somatic and germ cells and dominant lethal mutation in the germ cells.
Collapse
Affiliation(s)
- Anand M Jha
- Genetic Toxicology Laboratory, Department of Biotechnology, Samastipur College, Samastipur 848134, India.
| | | | | | | |
Collapse
|
43
|
Güleç M, Songur A, Sahin S, Ozen OA, Sarsilmaz M, Akyol O. Antioxidant enzyme activities and lipid peroxidation products in heart tissue of subacute and subchronic formaldehyde-exposed rats: a preliminary study. Toxicol Ind Health 2006; 22:117-24. [PMID: 16716041 DOI: 10.1191/0748233706th248oa] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The aim of this experimental study was to evaluate the oxidant/antioxidant status and lipid peroxidation in the heart of rats exposed to formaldehyde (FA) inhalation for four weeks (subacute) or 13 weeks (subchronic) continuously. METHODS AND RESULTS Sixty Wistar albino rats were divided into six groups randomly (ten in each group). The first and second groups were used as subacute and subchronic control groups. FA gas was generated from paraformaldehyde and pumped to a closed glass chamber. Rats were exposed to atmosphere containing 10 and 20 ppm FA (8 h/day, five days per week) during a four and 13 weeks period. After heart tissues were obtained and homogenized, thiobarbituric acid-reactant substances (TBARS) and nitric oxide (NO) levels, as well as superoxide dismutase (SOD) and catalase (CAT) activities, were measured. There were statistically significant findings in SOD and CAT activities in the study groups compared to the control group. Heart tissue SOD level was increased in the group exposed to subacute 10 and 20 ppm FA inhalation compared to the control group (P < 0.011 and <0.0001). In addition, heart tissue SOD level was increased in the group exposed to subchronic 10 and 20 ppm FA inhalation compared to the corresponding control group (P < 0.001). On the other hand, there were statistically significant decreases in CAT activity in subacute 10 and 20 ppm groups compared to the corresponding control group (P < 0.012 and < 0.039, respectively). Although not significant, TBARS levels were increased in both subacute 10 ppm (P = 0.100) and subchronic 20 ppm (P = 0.053) groups compared to their corresponding control groups. Tissue NO levels were unchanged upon FA inhalation. In the correlation analyses, a meaningful relationship between SOD and CAT activities in subchronic 10 ppm group (r = -0.685, P < 0.029); SOD activity and TBARS level in subchronic 20 ppm group (r = -0.675, P < 0.032); and CAT activity and NO level in subchronic 20 ppm group (r = -0.810, P < 0.005) were found. CONCLUSION From the findings of our study, it can be interpreted that subacute and subchronic FA inhalation may stimulate oxidative stress and thus, some secondary toxic effects in cardiac cells and tissue. This increase in the oxidative stress could not induce lipid peroxidation in the membranous structure of cardiac cells. An increased SOD enzyme activity was thought to be secondary to decreased CAT activity, as a compensation mechanism, preventing heart tissue from destruction induced by FA.
Collapse
Affiliation(s)
- Mukaddes Güleç
- Division of Biochemistry, Ankara Numune Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
44
|
Jha AM, Kumar M. In vivo evaluation of induction of abnormal sperm morphology in mice by an unsaturated aldehyde crotonaldehyde. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:159-63. [PMID: 16442836 DOI: 10.1016/j.mrgentox.2005.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/11/2005] [Accepted: 11/22/2005] [Indexed: 11/16/2022]
Abstract
Crotonaldehyde, a highly reactive unsaturated aldehyde is used for the manufacture of sorbic acid, synthesis of butyl alcohol, butylaldehyde, quinaldine, thiophenes, pyridines, dyes, pesticides, pharmaceuticals, rubber antioxidants, chemical warfare agents, etc. and also occurs naturally in meat, fish, in many fruits and vegetables, bread, cheese, milk, beer, wine and liquors. Human exposure to crotonaldehyde occurs from both man-made and natural sources. No human data was located describing carcinogenicity associated with crotonaldehyde exposure. In the present study we have evaluated whether or not exposure to crotonaldehyde results in a significant increase in the frequency of abnormal sperm heads in male Swiss albino mice. Adult male mice were treated with 8, 16 and 32 microl/kg b.w. of crotonaldehyde as a single intraperitoneal injection. The animals were killed 1, 3 and 5 weeks after treatment. Five animals were sacrificed per dose and time tested. Crotonaldehyde induced dose related increase in the percentage of abnormal sperm heads. Statistically significant increase in percentage of abnormal sperm heads was recoded at 16 and 32 microl/kg b.w. after 1 and 3 weeks of treatment and only at 32 microl/kg b.w. after 5 weeks of treatment.
Collapse
Affiliation(s)
- Anand M Jha
- Genetic Toxicology Laboratory, Department of Botany and Biotechnology, Samastipur College, Samastipur 848134, India.
| | | |
Collapse
|
45
|
Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to Flavouring Group Evaluation 20 (FGE.20): Benzyl alcohols, benzaldehydes, a related acetal,. EFSA J 2006. [DOI: 10.2903/j.efsa.2006.296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
46
|
Adams TB, Cohen SM, Doull J, Feron VJ, Goodman JI, Marnett LJ, Munro IC, Portoghese PS, Smith RL, Waddell WJ, Wagner BM. The FEMA GRAS assessment of benzyl derivatives used as flavor ingredients. Food Chem Toxicol 2005; 43:1207-40. [PMID: 15950815 DOI: 10.1016/j.fct.2004.11.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/22/2004] [Accepted: 11/26/2004] [Indexed: 11/22/2022]
Abstract
This publication is the eighth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of benzyl derivatives as flavoring ingredients is evaluated. The group of benzyl derivatives was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their rapid absorption, metabolic detoxication, and excretion in humans and other animals, their low level of flavor use, the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than their intake as intentionally added flavoring substances.
Collapse
Affiliation(s)
- T B Adams
- Flavor and Extract Manufacturers Association, 1620 I Street, N.W., Suite 925, Washington, DC 20006, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brusick D. Analysis of genotoxicity and the carcinogenic mode of action for ortho-phenylphenol. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:460-481. [PMID: 15714474 DOI: 10.1002/em.20116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ortho-phenylphenol (OPP) and its sodium salt (SOPP) are commercial products that have wide human exposure and have been shown in several studies to be rodent carcinogens. Genetic toxicology data were assessed in an attempt to understand the carcinogenic mode of action of OPP and SOPP. More than 130 studies were evaluated to determine if OPP, SOPP, or any of their enzymatic or nonenzymatic breakdown products react directly with DNA to induce mutation, changes in chromosome structure or number, DNA repair, or nonspecific DNA damage including strand breakage or covalent binding. The genotoxicity databases for OPP and SOPP are not only large but heterogeneous, requiring weight-of-evidence methods to arrive at a conclusion regarding their genotoxic properties and potential. Evidence derived from the available studies leads to the conclusion that study results showing OPP/SOPP directly interacting with DNA are equivocal. Clastogenicity was the most consistent type of genetic toxicity produced by OPP/SOPP (and their break-down products) and was consistently associated with other intracellular preneoplastic toxicity produced at super-threshold concentrations. The weight of evidence from the combined database supports the hypothesis that OPP/SOPP-induced DNA damage is a threshold-dependent response associated with target tissue toxicity, most likely induced by their breakdown products phenylhydroquinone and phenylbenzoquinone. It is possible that this threshold-dependent clastogenicity could contribute to the carcinogenic mode of action for OPP or SOPP.
Collapse
|
48
|
Bickers D, Calow P, Greim H, Hanifin JM, Rogers AE, Saurat JH, Sipes IG, Smith RL, Tagami H. A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients. Food Chem Toxicol 2005; 43:799-836. [PMID: 15811570 DOI: 10.1016/j.fct.2004.09.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 09/03/2004] [Accepted: 09/24/2004] [Indexed: 11/26/2022]
Affiliation(s)
- D Bickers
- Department of Dermatology, College of Physicians and Surgeons of Columbia University, 161 Fort Washington Avenue, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cocchiara J, Letizia CS, Lalko J, Lapczynski A, Api AM. Fragrance material review on cinnamaldehyde. Food Chem Toxicol 2005; 43:867-923. [PMID: 15811572 DOI: 10.1016/j.fct.2004.09.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 09/03/2004] [Accepted: 09/24/2004] [Indexed: 10/25/2022]
Abstract
A toxicologic and dermatologic review of cinnamaldehyde when used as a fragrance ingredient is presented.
Collapse
Affiliation(s)
- J Cocchiara
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | | | | | | | | |
Collapse
|
50
|
Woodruff RC, Phillips JP, Hilliker AJ. Increased spontaneous DNA damage in Cu/Zn superoxide dismutase (SOD1) deficientDrosophila. Genome 2004; 47:1029-35. [PMID: 15644960 DOI: 10.1139/g04-083] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The superoxide dismutases (SODs) protect oxygen-using cells against reactive oxygen species, the potentially toxic by-products of respiration, oxidative metabolism, and radiation. We have previously shown that genetic disruption of CuZn SOD (SOD1) in Drosophila imparts a recessive phenotype of reduced lifespan, infertility, and hypersensitivity to oxidative stress. We now show that the absence of SOD1 increases spontaneous genomic damage. The increase in spontaneous mutation rate occurs in SOD1-null mutants in somatic cells as well as in the germ line. Further, we show that specific DNA repair-defective mutations, which are easily tolerated in SOD1+flies, lead to high mortality when introduced into the SOD1-null homozygous mutant background.Key words: Drosophila melanogaster, superoxide dismutase, mutations, germ and somatic cells, lethal and somatic mutations, reactive oxygen.
Collapse
Affiliation(s)
- R C Woodruff
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | |
Collapse
|