1
|
Lionaki E, Gkikas I, Tavernarakis N. Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond. Bioessays 2023; 45:e2200160. [PMID: 36709422 DOI: 10.1002/bies.202200160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive responses inside and outside mitochondria. In this review, we discuss recent developments, relevant to the mechanisms of mitochondrial protein import regulation, with a particular focus on quality control, proteostatic and metabolic cellular responses, triggered upon impairment of mitochondrial protein import.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
2
|
Eaglesfield R, Tokatlidis K. Targeting and Insertion of Membrane Proteins in Mitochondria. Front Cell Dev Biol 2022; 9:803205. [PMID: 35004695 PMCID: PMC8740019 DOI: 10.3389/fcell.2021.803205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial membrane proteins play an essential role in all major mitochondrial functions. The respiratory complexes of the inner membrane are key for the generation of energy. The carrier proteins for the influx/efflux of essential metabolites to/from the matrix. Many other inner membrane proteins play critical roles in the import and processing of nuclear encoded proteins (∼99% of all mitochondrial proteins). The outer membrane provides another lipidic barrier to nuclear-encoded protein translocation and is home to many proteins involved in the import process, maintenance of ionic balance, as well as the assembly of outer membrane components. While many aspects of the import and assembly pathways of mitochondrial membrane proteins have been elucidated, many open questions remain, especially surrounding the assembly of the respiratory complexes where certain highly hydrophobic subunits are encoded by the mitochondrial DNA and synthesised and inserted into the membrane from the matrix side. This review will examine the various assembly pathways for inner and outer mitochondrial membrane proteins while discussing the most recent structural and biochemical data examining the biogenesis process.
Collapse
Affiliation(s)
- Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| |
Collapse
|
3
|
Shvetsova A, Masud AJ, Schneider L, Bergmann U, Monteuuis G, Miinalainen IJ, Hiltunen JK, Kastaniotis AJ. A hunt for OM45 synthetic petite interactions in Saccharomyces cerevisiae reveals a role for Miro GTPase Gem1p in cristae structure maintenance. Microbiologyopen 2021; 10:e1238. [PMID: 34713605 PMCID: PMC8501180 DOI: 10.1002/mbo3.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Om45 is a major protein of the yeast's outer mitochondrial membrane under respiratory conditions. However, the cellular role of the protein has remained obscure. Previously, deletion mutant phenotypes have not been found, and clear amino acid sequence similarities that would allow inferring its functional role are not available. In this work, we describe synthetic petite mutants of GEM1 and UGO1 that depend on the presence of OM45 for respiratory growth, as well as the identification of several multicopy suppressors of the synthetic petite phenotypes. In the analysis of our mutants, we demonstrate that Om45p and Gem1p have a collaborative role in the maintenance of mitochondrial morphology, cristae structure, and mitochondrial DNA maintenance. A group of multicopy suppressors rescuing the synthetic lethal phenotypes of the mutants on non-fermentable carbon sources additionally supports this result. Our results imply that the synthetic petite phenotypes we observed are due to the disturbance of the inner mitochondrial membrane and point to this mitochondrial sub-compartment as the main target of action of Om45p, Ugo1p, and the yeast Miro GTPase Gem1p.
Collapse
Affiliation(s)
- Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ali J. Masud
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Laura Schneider
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
- Present address:
Department of Biochemistry and Developmental BiologyUniversity of HelsinkiHelsinkiFinland
| | - Ilkka J. Miinalainen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - J. Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | | |
Collapse
|
4
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
5
|
Maity S, Chakrabarti O. Mitochondrial protein import as a quality control sensor. Biol Cell 2021; 113:375-400. [PMID: 33870508 DOI: 10.1111/boc.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are organelles involved in various functions related to cellular metabolism and homoeostasis. Though mitochondria contain own genome, their nuclear counterparts encode most of the different mitochondrial proteins. These are synthesised as precursors in the cytosol and have to be delivered into the mitochondria. These organelles hence have elaborate machineries for the import of precursor proteins from cytosol. The protein import machineries present in both mitochondrial membrane and aqueous compartments show great variability in pre-protein recognition, translocation and sorting across or into it. Mitochondrial protein import machineries also interact transiently with other protein complexes of the respiratory chain or those involved in the maintenance of membrane architecture. Hence mitochondrial protein translocation is an indispensable part of the regulatory network that maintains protein biogenesis, bioenergetics, membrane dynamics and quality control of the organelle. Various stress conditions and diseases that are associated with mitochondrial import defects lead to changes in cellular transcriptomic and proteomic profiles. Dysfunction in mitochondrial protein import also causes over-accumulation of precursor proteins and their aggregation in the cytosol. Multiple pathways may be activated for buffering these harmful consequences. Here, we present a comprehensive picture of import machinery and its role in cellular quality control in response to defective mitochondrial import. We also discuss the pathological consequences of dysfunctional mitochondrial protein import in neurodegeneration and cancer.
Collapse
Affiliation(s)
- Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| |
Collapse
|
6
|
Mitochondrial control of cellular protein homeostasis. Biochem J 2021; 477:3033-3054. [PMID: 32845275 DOI: 10.1042/bcj20190654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Mitochondria are involved in several vital functions of the eukaryotic cell. The majority of mitochondrial proteins are coded by nuclear DNA. Constant import of proteins from the cytosol is a prerequisite for the efficient functioning of the organelle. The protein import into mitochondria is mediated by diverse import pathways and is continuously under watch by quality control systems. However, it is often challenged by both internal and external factors, such as oxidative stress or energy shortage. The impaired protein import and biogenesis leads to the accumulation of mitochondrial precursor proteins in the cytosol and activates several stress response pathways. These defense mechanisms engage a network of processes involving transcription, translation, and protein clearance to restore cellular protein homeostasis. In this review, we provide a comprehensive analysis of various factors and processes contributing to mitochondrial stress caused by protein biogenesis failure and summarize the recovery mechanisms employed by the cell.
Collapse
|
7
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Grevel A, Pfanner N, Becker T. Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol Chem 2020; 401:117-129. [PMID: 31513529 DOI: 10.1515/hsz-2019-0310] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Biogenesis and function of mitochondria depend on the import of about 1000 precursor proteins that are produced on cytosolic ribosomes. The translocase of the outer membrane (TOM) forms the entry gate for most proteins. After passage through the TOM channel, dedicated preprotein translocases sort the precursor proteins into the mitochondrial subcompartments. Many proteins have to be assembled into oligomeric membrane-integrated complexes in order to perform their functions. In this review, we discuss a dual role of mitochondrial preprotein translocases in protein translocation and oligomeric assembly, focusing on the biogenesis of the TOM complex and the respiratory chain. The sorting and assembly machinery (SAM) of the outer mitochondrial membrane forms a dynamic platform for coupling transport and assembly of TOM subunits. The biogenesis of the cytochrome c oxidase of the inner membrane involves a molecular circuit to adjust translation of mitochondrial-encoded core subunits to the availability of nuclear-encoded partner proteins. Thus, mitochondrial protein translocases not only import precursor proteins but can also support their assembly into functional complexes.
Collapse
Affiliation(s)
- Alexander Grevel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
9
|
Linden A, Deckers M, Parfentev I, Pflanz R, Homberg B, Neumann P, Ficner R, Rehling P, Urlaub H. A Cross-linking Mass Spectrometry Approach Defines Protein Interactions in Yeast Mitochondria. Mol Cell Proteomics 2020; 19:1161-1178. [PMID: 32332106 PMCID: PMC7338081 DOI: 10.1074/mcp.ra120.002028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins, but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labeling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labeled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly because of the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8Δ mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.
Collapse
Affiliation(s)
- Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Pflanz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 602] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Vitali DG, Drwesh L, Cichocki BA, Kolb A, Rapaport D. The Biogenesis of Mitochondrial Outer Membrane Proteins Show Variable Dependence on Import Factors. iScience 2019; 23:100779. [PMID: 31945731 PMCID: PMC6965732 DOI: 10.1016/j.isci.2019.100779] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Biogenesis of mitochondrial outer membrane proteins involves their integration into the lipid bilayer. Among these proteins are those that form a single-span topology, but our understanding of their biogenesis is scarce. In this study, we found that the MIM complex is required for the membrane insertion of some single-span proteins. However, other such proteins integrate into the membrane in a MIM-independent manner. Moreover, the biogenesis of the studied proteins was dependent to a variable degree on the TOM receptors Tom20 and Tom70. We found that Atg32 C-terminal domain mediates dependency on Tom20, whereas the cytosolic domains of Atg32 and Gem1 facilitate MIM involvement. Collectively, our findings (1) enlarge the repertoire of MIM substrates to include also tail-anchored proteins, (2) provide new mechanistic insights to the functions of the MIM complex and TOM import receptors, and (3) demonstrate that the biogenesis of MOM single-span proteins shows variable dependence on import factors.
Collapse
Affiliation(s)
- Daniela G Vitali
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Bogdan A Cichocki
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Antonia Kolb
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| |
Collapse
|
12
|
Molecular pathways of mitochondrial outer membrane protein degradation. Biochem Soc Trans 2019; 47:1437-1447. [DOI: 10.1042/bst20190275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
Abstract
Mitochondrial outer membrane (MOM) encloses inner compartments of mitochondria and integrates cytoplasmic signals to regulate essential mitochondrial processes, such as protein import, dynamics, metabolism, cell death, etc. A substantial understanding of MOM associated proteostatic stresses and quality control pathways has been obtained in recent years. Six MOM associated protein degradation (MAD) pathways center on three AAA ATPases: Cdc48 in the cytoplasm, Msp1 integral to MOM, and Yme1 integral to the inner membrane. These pathways survey MOM proteome from the cytoplasmic and the inter-membrane space (IMS) sides. They detect and degrade MOM proteins with misfolded cytoplasmic and IMS domains, remove mistargeted tail-anchored proteins, and clear mitochondrial precursor proteins clogged in the TOM import complex. These MOM associated protein quality control pathways collaboratively maintain mitochondrial proteostasis and cell viability.
Collapse
|
13
|
Sato TK, Kawano S, Endo T. Role of the membrane potential in mitochondrial protein unfolding and import. Sci Rep 2019; 9:7637. [PMID: 31114030 PMCID: PMC6529458 DOI: 10.1038/s41598-019-44152-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/10/2019] [Indexed: 12/02/2022] Open
Abstract
Newly synthesized mitochondrial precursor proteins have to become unfolded to cross the mitochondrial membranes. This unfolding is achieved primarily by mitochondrial Hsp70 (mtHsp70) for presequence-containing precursor proteins. However, the membrane potential across the inner membrane (ΔΨ) could also contribute to unfolding of short-presequence containing mitochondrial precursor proteins. Here we investigated the role of ΔΨ in mitochondrial protein unfolding and import. We found that the effects of mutations in the presequence on import rates are correlated well with the hydrophobicity or ability to interact with import motor components including mtHsp70, but not with ΔΨ (negative inside). A spontaneously unfolded precursor protein with a short presequence is therefore trapped by motor components including mtHsp70, but not ΔΨ, which could cause global unfolding of the precursor protein. Instead, ΔΨ may contribute the precursor unfolding by holding the presequence at the inner membrane for trapping of the unfolded species by the import motor system.
Collapse
Affiliation(s)
- Takehiro K Sato
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.,Spiber Inc. 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Shin Kawano
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.,Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan. .,Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
14
|
A mutagenesis analysis of Tim50, the major receptor of the TIM23 complex, identifies regions that affect its interaction with Tim23. Sci Rep 2019; 9:2012. [PMID: 30765764 PMCID: PMC6375917 DOI: 10.1038/s41598-018-38353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/27/2018] [Indexed: 12/03/2022] Open
Abstract
Maintenance of the mitochondrial proteome depends on import of newly made proteins from the cytosol. More than half of mitochondrial proteins are made as precursor proteins with N-terminal extensions called presequences and use the TIM23 complex for translocation into the matrix, the inner mitochondrial membrane and the intermembrane space (IMS). Tim50 is the central receptor of the complex that recognizes precursor proteins in the IMS. Additionally, Tim50 interacts with the IMS domain of the channel forming subunit, Tim23, an interaction that is essential for protein import across the mitochondrial inner membrane. In order to gain deeper insight into the molecular function of Tim50, we used random mutagenesis to determine residues that are important for its function. The temperature-sensitive mutants isolated were defective in import of TIM23-dependent precursor proteins. The residues mutated map to two distinct patches on the surface of Tim50. Notably, mutations in both patches impaired the interaction of Tim50 with Tim23. We propose that two regions of Tim50 play a role in its interaction with Tim23 and thereby affect the import function of the complex.
Collapse
|
15
|
Sinzel M, Zeitler A, Dimmer KS. Interaction network of the mitochondrial outer membrane protein Mcp3. FEBS Lett 2018; 592:3210-3220. [PMID: 30192984 DOI: 10.1002/1873-3468.13243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/04/2023]
Abstract
Mitochondria are organelles containing two membranes that are distinct in composition and function. A role of the mitochondrial outer membrane (MOM) is to mediate contact of the organelle with the rest of the cell. In yeast, the MOM contains about 40 different integral proteins. Recently, we described the MOM protein Mcp3, which can serve as a multicopy suppressor of loss of ERMES complex that mediates mitochondria-endoplasmic reticulum contacts. To shed further light on the role of Mcp3 in the MOM, we analyzed its physical interaction with other proteins. We show that Mcp3 interacts with the MOM protein Om45 and the inner membrane protein Aim19. Our observations hint toward a potential involvement of Mcp3 in a structural and/or functional link between both mitochondrial membranes.
Collapse
Affiliation(s)
- Monika Sinzel
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Andreas Zeitler
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| | - Kai S Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany
| |
Collapse
|
16
|
Becker T, Wagner R. Mitochondrial Outer Membrane Channels: Emerging Diversity in Transport Processes. Bioessays 2018; 40:e1800013. [DOI: 10.1002/bies.201800013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Becker
- Faculty of MedicineInstitute of Biochemistry and Molecular Biology, ZBMZUniversity of FreiburgFreiburgD‐79104Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgD‐79104Germany
| | - Richard Wagner
- Biophysics, Life Sciences & ChemistryJacobs University BremenBremenD‐28759Germany
| |
Collapse
|
17
|
Wu X, Li L, Jiang H. Mitochondrial inner-membrane protease Yme1 degrades outer-membrane proteins Tom22 and Om45. J Cell Biol 2017; 217:139-149. [PMID: 29138251 PMCID: PMC5748973 DOI: 10.1083/jcb.201702125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/03/2017] [Accepted: 10/18/2017] [Indexed: 01/26/2023] Open
Abstract
The turnover of mitochondrial outer-membrane proteins is known to be mediated by the cytoplasmic ubiquitin–proteasome pathway. Wu et al. report the unexpected finding that two outer-membrane proteins Tom22 and Om45 are inwardly translocated into mitochondria and degraded by the inner-membrane protease Yme1. Mitochondria are double-membraned organelles playing essential metabolic and signaling functions. The mitochondrial proteome is under surveillance by two proteolysis systems: the ubiquitin–proteasome system degrades mitochondrial outer-membrane (MOM) proteins, and the AAA proteases maintain the proteostasis of intramitochondrial compartments. We previously identified a Doa1–Cdc48-Ufd1-Npl4 complex that retrogradely translocates ubiquitinated MOM proteins to the cytoplasm for degradation. In this study, we report the unexpected identification of MOM proteins whose degradation requires the Yme1-Mgr1-Mgr3i-AAA protease complex in mitochondrial inner membrane. Through immunoprecipitation and in vivo site-specific photo–cross-linking experiments, we show that both Yme1 adapters Mgr1 and Mgr3 recognize the intermembrane space (IMS) domains of the MOM substrates and facilitate their recruitment to Yme1 for proteolysis. We also provide evidence that the cytoplasmic domain of substrate can be dislocated into IMS by the ATPase activity of Yme1. Our findings indicate a proteolysis pathway monitoring MOM proteins from the IMS side and suggest that the MOM proteome is surveilled by mitochondrial and cytoplasmic quality control machineries in parallel.
Collapse
Affiliation(s)
- Xi Wu
- School of Life Sciences, Peking University, Beijing, China .,National Institute of Biological Sciences, Beijing, China
| | - Lanlan Li
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
18
|
Malhotra K, Modak A, Nangia S, Daman TH, Gunsel U, Robinson VL, Mokranjac D, May ER, Alder NN. Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50. SCIENCE ADVANCES 2017; 3:e1700532. [PMID: 28879236 PMCID: PMC5580885 DOI: 10.1126/sciadv.1700532] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/04/2017] [Indexed: 05/07/2023]
Abstract
The phospholipid cardiolipin mediates the functional interactions of proteins that reside within energy-conserving biological membranes. However, the molecular basis by which this lipid performs this essential cellular role is not well understood. We address this role of cardiolipin using the multisubunit mitochondrial TIM23 protein transport complex as a model system. The early stages of protein import by this complex require specific interactions between the polypeptide substrate receptor, Tim50, and the membrane-bound channel-forming subunit, Tim23. Using analyses performed in vivo, in isolated mitochondria, and in reductionist nanoscale model membrane systems, we show that the soluble receptor domain of Tim50 interacts with membranes and with specific sites on the Tim23 channel in a manner that is directly modulated by cardiolipin. To obtain structural insights into the nature of these interactions, we obtained the first small-angle x-ray scattering-based structure of the soluble Tim50 receptor in its entirety. Using these structural insights, molecular dynamics simulations combined with a range of biophysical measurements confirmed the role of cardiolipin in driving the association of the Tim50 receptor with lipid bilayers with concomitant structural changes, highlighting the role of key structural elements in mediating this interaction. Together, these results show that cardiolipin is required to mediate specific receptor-channel associations in the TIM23 complex. Our results support a new working model for the dynamic structural changes that occur within the complex during transport. More broadly, this work strongly advances our understanding of how cardiolipin mediates interactions among membrane-associated proteins.
Collapse
Affiliation(s)
- Ketan Malhotra
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Arnab Modak
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Tyler H. Daman
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Umut Gunsel
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Victoria L. Robinson
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Dejana Mokranjac
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
- Corresponding author.
| |
Collapse
|
19
|
Abstract
Mitochondria have to import the vast majority of their proteins, which are synthesized as precursors on cytosolic ribosomes. The translocase of the outer membrane (TOM complex) forms the general entry gate for the precursor proteins, which are subsequently sorted by protein machineries into the mitochondrial subcompartments: the outer and inner membrane, the intermembrane space and the mitochondrial matrix. The transport across and into the inner membrane is driven by the membrane potential, which is generated by the respiratory chain. Recent studies revealed that the lipid composition of mitochondrial membranes is important for the biogenesis of mitochondrial proteins. Cardiolipin and phosphatidylethanolamine exhibit unexpectedly specific functions for the activity of distinct protein translocases. Both phospholipids are required for full activity of respiratory chain complexes and thus to maintain the membrane potential for protein import. In addition, cardiolipin is required to maintain structural integrity of mitochondrial protein translocases. Finally, the low sterol content in the mitochondrial outer membrane may contribute to the targeting of some outer membrane proteins with a single α-helical membrane anchor. Altogether, mitochondrial lipids modulate protein import on various levels involving precursor targeting, membrane potential generation, stability and activity of protein translocases.
Collapse
|
20
|
Schuler MH, Di Bartolomeo F, Mårtensson CU, Daum G, Becker T. Phosphatidylcholine Affects Inner Membrane Protein Translocases of Mitochondria. J Biol Chem 2016; 291:18718-29. [PMID: 27402832 DOI: 10.1074/jbc.m116.722694] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Indexed: 01/31/2023] Open
Abstract
Two protein translocases transport precursor proteins into or across the inner mitochondrial membrane. The presequence translocase (TIM23 complex) sorts precursor proteins with a cleavable presequence either into the matrix or into the inner membrane. The carrier translocase (TIM22 complex) inserts multispanning proteins into the inner membrane. Both protein import pathways depend on the presence of a membrane potential, which is generated by the activity of the respiratory chain. The non-bilayer-forming phospholipids cardiolipin and phosphatidylethanolamine are required for the activity of the respiratory chain and therefore to maintain the membrane potential for protein import. Depletion of cardiolipin further affects the stability of the TIM23 complex. The role of bilayer-forming phospholipids like phosphatidylcholine (PC) in protein transport into the inner membrane and the matrix is unknown. Here, we report that import of presequence-containing precursors and carrier proteins is impaired in PC-deficient mitochondria. Surprisingly, depletion of PC does not affect stability and activity of respiratory supercomplexes, and the membrane potential is maintained. Instead, the dynamic TIM23 complex is destabilized when the PC levels are reduced, whereas the TIM22 complex remains intact. Our analysis further revealed that initial precursor binding to the TIM23 complex is impaired in PC-deficient mitochondria. We conclude that reduced PC levels differentially affect the TIM22 and TIM23 complexes in mitochondrial protein transport.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine
| | - Francesca Di Bartolomeo
- the Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria
| | - Christoph U Mårtensson
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Faculty of Biology, and
| | - Günther Daum
- the Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria
| | - Thomas Becker
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany and
| |
Collapse
|
21
|
Sinzel M, Tan T, Wendling P, Kalbacher H, Özbalci C, Chelius X, Westermann B, Brügger B, Rapaport D, Dimmer KS. Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway. EMBO Rep 2016; 17:965-81. [PMID: 27226123 DOI: 10.15252/embr.201541273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/26/2016] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER-mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES-related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane.
Collapse
Affiliation(s)
- Monika Sinzel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tao Tan
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philipp Wendling
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Cagakan Özbalci
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Xenia Chelius
- Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
23
|
Müller CS, Bildl W, Haupt A, Ellenrieder L, Becker T, Hunte C, Fakler B, Schulte U. Cryo-slicing Blue Native-Mass Spectrometry (csBN-MS), a Novel Technology for High Resolution Complexome Profiling. Mol Cell Proteomics 2015; 15:669-81. [PMID: 26598645 DOI: 10.1074/mcp.m115.054080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 11/06/2022] Open
Abstract
Blue native (BN) gel electrophoresis is a powerful method for protein separation. Combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), it enables large scale identification of protein complexes and their subunits. Current BN-MS approaches, however, are limited in size resolution, comprehensiveness, and quantification. Here, we present a new methodology combining defined sub-millimeter slicing of BN gels by a cryo-microtome with high performance LC-MS/MS and label-free quantification of protein amounts. Application of this cryo-slicing BN-MS approach to mitochondria from rat brain demonstrated a high degree of comprehensiveness, accuracy, and size resolution. The technique provided abundance-mass profiles for 774 mitochondrial proteins, including all canonical subunits of the oxidative respiratory chain assembled into 13 distinct (super-)complexes. Moreover, the data revealed COX7R as a constitutive subunit of distinct super-complexes and identified novel assemblies of voltage-dependent anion channels/porins and TOM proteins. Together, cryo-slicing BN-MS enables quantitative profiling of complexomes with resolution close to the limits of native gel electrophoresis.
Collapse
Affiliation(s)
- Catrin S Müller
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg
| | - Wolfgang Bildl
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg
| | - Alexander Haupt
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg
| | - Lars Ellenrieder
- §Institute for Biochemistry and Molecular Biology, Stefan-Meier-Strasse 17, 79104 Freiburg
| | - Thomas Becker
- §Institute for Biochemistry and Molecular Biology, Stefan-Meier-Strasse 17, 79104 Freiburg; ¶Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104 Freiburg
| | - Carola Hunte
- §Institute for Biochemistry and Molecular Biology, Stefan-Meier-Strasse 17, 79104 Freiburg; ¶Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104 Freiburg
| | - Bernd Fakler
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg; ¶Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104 Freiburg
| | - Uwe Schulte
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg; ¶Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104 Freiburg; ‖Logopharm GmbH, Schlossstrasse 14, 79232 March-Buchheim, Germany
| |
Collapse
|
24
|
Schuler MH, Di Bartolomeo F, Böttinger L, Horvath SE, Wenz LS, Daum G, Becker T. Phosphatidylcholine affects the role of the sorting and assembly machinery in the biogenesis of mitochondrial β-barrel proteins. J Biol Chem 2015; 290:26523-32. [PMID: 26385920 DOI: 10.1074/jbc.m115.687921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
Two protein translocases drive the import of β-barrel precursor proteins into the mitochondrial outer membrane: The translocase of the outer membrane (TOM complex) promotes transport of the precursor to the intermembrane space, whereas the sorting and assembly machinery (SAM complex) mediates subsequent folding of the β-barrel and its integration into the target membrane. The non-bilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) are required for the biogenesis of β-barrel proteins. Whether bilayer-forming phospholipids such as phosphatidylcholine (PC), the most abundant phospholipid of the mitochondrial outer membrane, play a role in the import of β-barrel precursors is unclear. In this study, we show that PC is required for stability and function of the SAM complex during the biogenesis of β-barrel proteins. PC further promotes the SAM-dependent assembly of the TOM complex, indicating a general role of PC for the function of the SAM complex. In contrast to PE-deficient mitochondria precursor accumulation at the TOM complex is not affected by depletion of PC. We conclude that PC and PE affect the function of distinct protein translocases in mitochondrial β-barrel biogenesis.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | - Lena Böttinger
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne E Horvath
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lena-Sophie Wenz
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Günther Daum
- Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria,
| | - Thomas Becker
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
25
|
Böttinger L, Oeljeklaus S, Guiard B, Rospert S, Warscheid B, Becker T. Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes. J Biol Chem 2015; 290:11611-22. [PMID: 25792736 DOI: 10.1074/jbc.m115.642017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings.
Collapse
Affiliation(s)
- Lena Böttinger
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the Fakultät für Biologie
| | - Silke Oeljeklaus
- Institut für Biologie II, Abteilung Biochemie und Funktionelle Proteomik, Universität Freiburg, 79104 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, and
| | - Bernard Guiard
- the Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Sabine Rospert
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the BIOSS Centre for Biological Signalling Studies, and
| | - Bettina Warscheid
- Institut für Biologie II, Abteilung Biochemie und Funktionelle Proteomik, Universität Freiburg, 79104 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, and
| | - Thomas Becker
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, the Fakultät für Biologie, the BIOSS Centre for Biological Signalling Studies, and
| |
Collapse
|
26
|
Horvath SE, Rampelt H, Oeljeklaus S, Warscheid B, van der Laan M, Pfanner N. Role of membrane contact sites in protein import into mitochondria. Protein Sci 2015; 24:277-97. [PMID: 25514890 DOI: 10.1002/pro.2625] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022]
Abstract
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Audano M, Ferrari A, Fiorino E, Kuenzl M, Caruso D, Mitro N, Crestani M, De Fabiani E. Energizing Genetics and Epi-genetics: Role in the Regulation of Mitochondrial Function. Curr Genomics 2015; 15:436-56. [PMID: 25646072 PMCID: PMC4311388 DOI: 10.2174/138920291506150106151119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022] Open
Abstract
Energy metabolism and mitochondrial function hold a core position in cellular homeostasis. Oxidative metabolism is regulated at multiple levels, ranging from gene transcription to allosteric modulation. To accomplish the fine tuning of these multiple regulatory circuits, the nuclear and mitochondrial compartments are tightly and reciprocally controlled. The fact that nuclear encoded factors, PPARγ coactivator 1α and mitochondrial transcription factor A, play pivotal roles in the regulation of oxidative metabolism and mitochondrial biogenesis is paradigmatic of this crosstalk. Here we provide an updated survey of the genetic and epigenetic mechanisms involved in the control of energy metabolism and mitochondrial function. Chromatin dynamics highly depends on post-translational modifications occurring at specific amino acids in histone proteins and other factors associated to nuclear DNA. In addition to the well characterized enzymes responsible for histone methylation/demethylation and acetylation/deacetylation, other factors have gone on the "metabolic stage". This is the case of the new class of α-ketoglutarate-regulated demethylases (Jumonji C domain containing demethylases) and of the NAD+-dependent deacetylases, also known as sirtuins. Moreover, unexpected features of the machineries involved in mitochondrial DNA (mtDNA) replication and transcription, mitochondrial RNA processing and maturation have recently emerged. Mutations or defects of any component of these machineries profoundly affect mitochondrial activity and oxidative metabolism. Finally, recent evidences support the importance of mtDNA packaging in replication and transcription. These observations, along with the discovery that non-classical CpG islands present in mtDNA undergo methylation, indicate that epigenetics also plays a role in the regulation of the mitochondrial genome function.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Alessandra Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Erika Fiorino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Martin Kuenzl
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|
28
|
Gornicka A, Bragoszewski P, Chroscicki P, Wenz LS, Schulz C, Rehling P, Chacinska A. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria. Mol Biol Cell 2014; 25:3999-4009. [PMID: 25318675 PMCID: PMC4263444 DOI: 10.1091/mbc.e14-06-1155] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The TOM translocase serves as a portal for proteins destined to the mitochondrial membranes and matrix. This study determines how proteins targeted to the MIA pathway arrive in the intermembrane space. A different mode of the transport across the outer membrane for intermembrane space proteins with the help of Tom40 is postulated. Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex.
Collapse
Affiliation(s)
- Agnieszka Gornicka
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Piotr Bragoszewski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Piotr Chroscicki
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Lena-Sophie Wenz
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, D-79104 Freiburg, Germany
| | - Christian Schulz
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
29
|
Ulrich T, Oberhettinger P, Schütz M, Holzer K, Ramms AS, Linke D, Autenrieth IB, Rapaport D. Evolutionary conservation in biogenesis of β-barrel proteins allows mitochondria to assemble a functional bacterial trimeric autotransporter protein. J Biol Chem 2014; 289:29457-70. [PMID: 25190806 DOI: 10.1074/jbc.m114.565655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal β-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of β-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial β-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp.
Collapse
Affiliation(s)
- Thomas Ulrich
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Oberhettinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Monika Schütz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Katharina Holzer
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Anne S Ramms
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Dirk Linke
- Department of Protein Evolution, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ingo B Autenrieth
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany, and
| | - Doron Rapaport
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany,
| |
Collapse
|
30
|
Mitochondrial protein translocases for survival and wellbeing. FEBS Lett 2014; 588:2484-95. [DOI: 10.1016/j.febslet.2014.05.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
|
31
|
Song J, Tamura Y, Yoshihisa T, Endo T. A novel import route for an N-anchor mitochondrial outer membrane protein aided by the TIM23 complex. EMBO Rep 2014; 15:670-7. [PMID: 24781694 DOI: 10.1002/embr.201338142] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The membrane topology of Om45 in the yeast mitochondrial outer membrane (OM) is under debate. Here, we confirm that Om45 is anchored to the OM from the intermembrane space (IMS) by its N-terminal hydrophobic segment. We show that import of Om45 requires the presequence receptors, Tom20 and Tom22, and the import channel of Tom40. Unlike any of the known OM proteins, Om45 import requires the TIM23 complex in the inner membrane, a translocator for presequence-containing proteins, and the membrane potential (ΔΨ). Therefore, Om45 is anchored to the OM via the IMS by a novel import pathway involving the TIM23 complex.
Collapse
Affiliation(s)
- Jiyao Song
- Department of Chemistry, Graduate School of Science Nagoya University, Chikusa-ku Nagoya, Japan
| | - Yasushi Tamura
- Research Center for Materials Science Nagoya University, Chikusa-ku Nagoya, Japan
| | - Tohru Yoshihisa
- Graduate School of Life Science University of Hyogo, Hyogo, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science Nagoya University, Chikusa-ku Nagoya, Japan Structural Biology Research Center Nagoya University, Chikusa-ku Nagoya, Japan JST CREST Nagoya University, Chikusa-ku Nagoya, Japan
| |
Collapse
|