1
|
Marisa I, Asnicar D, Matozzo V, Parolini M, Brianese N, Fedorova M, Hoffman R, Sheehan D, Marin MG. Zinc oxide, titanium dioxide and C 60 fullerene nanoparticles, alone and in mixture, differently affect biomarker responses and proteome in the clam Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155873. [PMID: 35595145 DOI: 10.1016/j.scitotenv.2022.155873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Continuous release of nanoparticles (NPs) into marine coastal environments results in an increased risk of exposure to complex NP mixtures for marine organisms. However, to date, the information on the effects at molecular and biochemical levels induced by the exposure to NPs, singly and as a mixture, is still scant. The present work aimed at exploring the independent and combined effects and the mechanism(s) of action induced by 7-days exposure to 1 μg/L nZnO, 1 μg/L nTiO2 and 1 μg/L FC60 fullerene in the Manila clam Ruditapes philippinarum, using a battery of immunological and oxidative stress biomarkers in haemolymph, gills and digestive gland. In addition, proteomics analyses were performed in gills and the digestive gland, where NP bioaccumulation was also assessed. Increased bioaccumulation of single NPs and the mixture was linked with increased oxidative stress and higher damage to proteins, lipids and DNA in all tissues analysed. The proteomics approach highlighted protein modulation in terms of abundance and damage (higher redox-thiol and carbonylated groups content). In particular, the modulated proteins (16 in gills and 18 in digestive gland) were mostly related to cytoskeleton and energetic metabolism. The digestive gland was the tissue more affected. For all biomarkers measured, increased detrimental effects were observed in the mixture compared to single NP exposures.
Collapse
Affiliation(s)
- Ilaria Marisa
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Nicola Brianese
- Institute for Energetics and Interphases (IENI), CNR, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Ralf Hoffman
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - David Sheehan
- Proteomics Research Group, School of Biochemistry and Cell Biology and Environmental Research Institute, University College Cork, Western Rd., Cork, Ireland; Department of Chemistry and Biomedical Research Center, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
2
|
Nobre CR, Moreno BB, Alves AV, de Lima Rosa J, da Rosa Franco H, Abessa DMDS, Maranho LA, Choueri RB, Gusso-Choueri PK, Pereira CDS. Effects of Microplastics Associated with Triclosan on the Oyster Crassostrea brasiliana: An Integrated Biomarker Approach. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:101-110. [PMID: 32279094 DOI: 10.1007/s00244-020-00729-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Urban waste is a complex mixture of different substances, including microplastics and pharmaceuticals and personal care products. Microplastics have a high affinity for hydrophobic substances. One of these substances is triclosan, a bactericide used in a variety of hygiene products. Therefore, microplastics (MPs) may serve as a vector between triclosan and aquatic organisms. The current study sought to evaluate the effects of the interaction between microplastics and triclosan based on a mechanistic approach in which the oyster Crassostrea brasiliana was used as a model. The organisms were exposed to three conditions: the control, microplastic (MP), and microplastic contaminated with triclosan (MPT). The organisms were exposed for 3 or 7 days. After the exposure time, hemolymph was sampled for performing the neutral red retention time assay and, subsequently, the gills, digestive glands, and adductor muscles were dissected for measuring biomarkers responses (EROD, DBF, GST, GPx, GSH, lipid peroxidation, DNA strand breaks, and AChE). Our results demonstrate combined effects of MPs associated with triclosan on oyster physiology and biochemistry, as well as on lysosomal membrane stability. These results contribute to understanding the effects of contaminants of emerging concern and microplastics on aquatic organisms.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University, São Vicente, São Paulo, Brazil
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Jonas de Lima Rosa
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil
| | | | | | | | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Biosciences Institute, São Paulo State University, São Vicente, São Paulo, Brazil
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil.
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil.
| |
Collapse
|
3
|
López-Landavery EA, Amador-Cano G, Alejandri N, Ramirez-Álvarez N, Montelongo I, Díaz F, Galindo-Sánchez CE. Transcriptomic response and hydrocarbon accumulation in the eastern oyster (Crassostrea virginica) exposed to crude oil. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108571. [PMID: 31306803 DOI: 10.1016/j.cbpc.2019.108571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
The adverse effect of crude oil on marine invertebrates is well known. To have a better understanding of its effects on marine invertebrates, Crassostrea virginica was exposed to different concentrations (50, 100 and 200 μg/L) of a mixture of super-light and light crude oil for two weeks, evaluating the transcriptomic response of the digestive gland using RNA-Seq and their accumulation in soft tissues. A total of 33,469,374 reads were assembled, which resulted in 61,356 genome assemblies ('Genes'). Trinotate was used for transcript annotation. At the end of this process, 86,409 transcripts were maintained, comprising a broad set of enzymes from xenobiotics metabolism, oxidative stress, stress and immune responses, and energetic metabolism. The enrichment analysis revealed a change in biological processes and molecular functions, finding from 100 to 200 μg/L. Moreover, the differential gene expression analysis showed a dose-dependent transcriptional response, generally up to 100 μg/L and in some cases up to 200 μg/L, which suggested that oysters' response decreased after 100 μg/L; the analysis of crude oil presence in soft tissues indicated that C. virginica is a suitable candidate for ecotoxicology. Finally, these results should contribute to expanding current genomic resources for C. virginica. Furthermore, they will help to develop new studies in aquatic toxicology focused on knowledge in depth of metabolic pathways, jointly with other approaches (such as proteomics) to allow obtaining a complete idea about the eastern oyster response to crude oil.
Collapse
Affiliation(s)
- Edgar A López-Landavery
- Department of Marine Biotechnology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - Gerardo Amador-Cano
- Universidad Tecnológica del Mar de Tamaulipas (UTMART), La Pesca, Soto La Marina, Tamaulipas, Mexico
| | - Naholi Alejandri
- Department of Marine Biotechnology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - Nancy Ramirez-Álvarez
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Ensenada, BC, Mexico
| | - Isidro Montelongo
- Universidad Tecnológica del Mar de Tamaulipas (UTMART), La Pesca, Soto La Marina, Tamaulipas, Mexico
| | - Fernando Díaz
- Department of Marine Biotechnology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico
| | - Clara E Galindo-Sánchez
- Department of Marine Biotechnology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, BC, Mexico.
| |
Collapse
|
4
|
Piazza CE, Mattos JJ, de Toledo-Silva G, Flores-Nunes F, Tadra-Sfeir MZ, Trevisan R, Bittencourt AC, Bícego MC, Taniguchi S, Marques MRF, Dafré AL, Bianchini A, Souza EMD, Bainy ACD. Transcriptional effects in the estuarine guppy Poecilia vivipara exposed to sanitary sewage in laboratory and in situ. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109411. [PMID: 31299475 DOI: 10.1016/j.ecoenv.2019.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The urban growth has increased sanitary sewage discharges in coastal ecosystems, negatively affecting the aquatic biota. Mangroves, one of the most human-affected coastal biomes, are areas for reproduction and nursing of several species. In order to evaluate the effects of sanitary sewage effluents in mangrove species, this study assessed the hepatic transcriptional responses of guppy fish Poecilia vivipara exposed to sanitary sewage 33% (v:v), using suppressive subtraction hybridization (SSH), high throughput sequencing of RNA (Ion-proton) and quantification of transcript levels by qPCR of some identified genes in fish kept in a sewage-contaminated environment. Genes identified are related predominantly to xenobiotic biotransformation, immune system and sexual differentiation. The qPCR results confirmed the induction of cytochrome P450 1A (CYP1A), glutathione S transferase A-like (GST A-like) methyltransferase (MET) and UDP glycosyltransferase 1A (UDPGT1A), and repression of complement component C3 (C3), doublesex and mab-3 related transcription factor 1 (DMRT1), and transferrin (TF) in the laboratory experiment. In the field exposure, the transcript levels of CYP1A, DMRT1, MET, GST A-like and UDPGT1A were higher in fishes exposed at the contaminated sites compared to the reference site. Chemical analysis in fish from the laboratory and in situ experiments, and surface sediment from the sewage-contaminated sites revealed relevant levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and linear alkylbenzenes (LABs). These data reinforce the use of P. vivipara as a sentinel for monitoring environmental contamination in coastal regions.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Arnaldo Cechinel Bittencourt
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Maria Risoleta Freire Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Alcir Luiz Dafré
- Laboratory of Cellular Defenses, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adalto Bianchini
- Department of Physiological Sciences, Federal University of Rio Grande Foundation, Rio Grande, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Müller GDAES, Lüchmann KH, Razzera G, Toledo-Silva G, Bebianno MJ, Marques MRF, Bainy ACD. Proteomic response of gill microsomes of Crassostrea brasiliana exposed to diesel fuel water-accommodated fraction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:109-118. [PMID: 29906693 DOI: 10.1016/j.aquatox.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Diesel fuel water-accommodated fraction (diesel-WAF) is a complex mixture of organic compounds that may cause harmful effects to marine invertebrates. Expression of microsomal proteins can be changed by oil exposure, causing functional alterations in endoplasmic reticulum (ER). The aim of this study was to investigate changes in protein expression signatures in microsomes of oysterl Crassostrea brasiliana (=C.gasar) gill after exposure to 10% diesel-WAF for 24 and 72 h. Protein expression signatures of gills of oysters exposed to diesel-WAF were compared to those of unexposed oysters using two-dimensional electrophoresis (2-DE) to identify differentially expressed proteins. A total of 458 protein spots with molecular weights between 30-75 kDa were detected by 2-DE in six replicates of exposed oyster proteomes compared to unexposed ones. Fourteen differentially expressed proteins (six up-regulated and eight down-regulated) were identified. They are: proteins related to xenobiotic biotransformation (cytochrome P450 6 A, NADPH-cytochrome P450 reductase); cytoskeleton (α-tubulin, β-tubulin, gelsolin); processing and degradation of proteins pathways (thioredoxin domain-containing protein E3 ubiquitin-protein ligase MIB2); involved in the biosynthesis of glycolipids and glycoproteins (beta-1,3-galactosyltransferase 1); associated with stress responses (glutamate receptor 4 and 14-3-3 protein zeta, corticotropin-releasing factor-binding protein); plasmalogen biosynthesis (fatty acyl-CoA reductase 1), and sodium-and chloride-dependent glycine transporter 2 and glyoxylate reductase/hydroxypyruvate reductase. Different patterns of protein responses were observed between 24 and 72 h-exposed groups. Expression pattern of microsomal proteins provided a first insight on the potential diesel-WAF effects at protein level in microsomal fraction of oyster gills and indicated new potential biomarkers of exposure and effect. The present work can be a basis for future ecotoxicological studies in oysters aiming to elucidate the molecular mechanisms behind diesel-WAF toxicity and for environmental monitoring programs.
Collapse
Affiliation(s)
- Gabrielle do Amaral E Silva Müller
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Karim Hahn Lüchmann
- Laboratory of Biochemistry and Molecular Biology - LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Guilherme Razzera
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Guilherme Toledo-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Maria João Bebianno
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; Centre of Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Maria Risoleta Freire Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil.
| |
Collapse
|
6
|
Nogueira DJ, Mattos JJ, Dybas PR, Flores-Nunes F, Sasaki ST, Taniguchi S, Schmidt ÉC, Bouzon ZL, Bícego MC, Melo CMR, Toledo-Silva G, Bainy ACD. Effects of phenanthrene on early development of the Pacific oyster Crassostrea gigas (Thunberg, 1789). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:50-61. [PMID: 28800408 DOI: 10.1016/j.aquatox.2017.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Phenanthnere (PHE) is a polycyclic aromatic hydrocarbon continuously discarded in the marine environment and bioavailable to many aquatic species. Although studies about PHE toxicity have been documented for adult oysters, the effects on early developmental stages are poorly characterized in bivalves. In this study, the effects of PHE (0.02 and 2.0μg.L-1) were evaluated on the embryogenesis and larval development of Crassostrea gigas. Toxicity bioassays, growth and deformities assessment, analysis of shell calcium abundance and transcript levels of genes related to xenobiotic biotransformation (CYP2AU2, CYP30C1), immune system (Cg-Tal) and tissue growth and shell formation (Ferritin, Insulin-like, Cg-Try, Calmodulin and Nacrein) were assayed in D-shape larvae after 24h of PHE exposure. At the highest concentration (2.0μg.L-1), PHE decreased the frequency of normal development (19.7±2.9%) and shell size (53.5±2.8mm). Developmental deformities were mostly related to abnormal mantle and shell formation. Lower calcium levels in oyster shells exposed to PHE 2.0μg.L-1 were observed, suggesting effects on shell structure. At this same PHE concentration, CYP30C1, Cg-Tal, Cg-Tyr, Calmodulin were upregulated and CYP2AU2, Ferritin, Nacrein, and Insulin-Like were downregulated compared to control larvae. At the lowest PHE concentration (0.02μg.L-1), it was observed a minor decrease in normal larval development (89,6±6%) and the remaining parameters were not affected. This is the first study to provide evidences that exposure to PHE can affect early oyster development at the molecular and morphological levels, possibly threatening this bivalve species.
Collapse
Affiliation(s)
- Diego J Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Patrick R Dybas
- Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88051-000, Brazil
| | - Fabrıcio Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Éder C Schmidt
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Zenilda L Bouzon
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Claudio M R Melo
- Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88051-000, Brazil
| | - Guilherme Toledo-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil.
| |
Collapse
|
7
|
Müller GDAES, de Lima D, Zacchi FL, Piazza RS, Lüchmann KH, Mattos JJ, Schlenk D, Bainy ACD. Analysis of transcriptional responses of normalizing genes on Crassostrea brasiliana under different experimental conditions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2190-2198. [PMID: 28160493 DOI: 10.1002/etc.3755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/29/2016] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Bivalves show remarkable plasticity to environmental changes and have been proposed as sentinel organisms in biomonitoring. Studies related to transcriptional analysis using quantitative real-time polymerase chain reaction (qRT-PCR) in these organisms have notably increased, imposing a need to identify and validate adequate reference genes for an accurate and reliable analysis. In the present study, 9 reference genes were selected from transcriptome data of Crassostrea brasiliana to identify their suitability as qRT-PCR normalizer genes. The transcriptional patterns were analyzed in gills of oysters under 3 different conditions: different temperatures (18, 24, or 32 °C) and phenanthrene (100 µg L-1 ) combined exposure; different salinities (10, 25, or 35‰) and phenanthrene combined exposure; and 10% of diesel fuel water-accommodated fraction (diesel-WAF) exposure. Reference gene stability was calculated using 5 algorithms (geNorm, NormFinder, BestKeeper, ΔCt, RefFinder). Transcripts of ankyrin-like (ANK), glyceraldehyde 3-phosphate dehydrogenase-like (GAPDH), and α-tubulin-like (TUBA) genes showed minor changes in different temperature/phenanthrene treatment. Transcripts of ANK, β-actin-like, and β-tubulin-like genes showed better stability at salinity/phenanthrene treatment, and ANK, TUBA, and 28S ribosomal protein-like genes showed the most stable transcription pattern in oysters exposed to diesel-WAF exposure. The present study constitutes the first systematic analysis of reference gene selection for qRT-PCR normalization in C. brasiliana. These genes could be employed in studies using qRT-PCR analysis under similar experimental conditions. Environ Toxicol Chem 2017;36:2190-2198. © 2017 SETAC.
Collapse
Affiliation(s)
| | - Daína de Lima
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Flávia Lucena Zacchi
- Aquaculture Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rômi Sharon Piazza
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Karim Hahn Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna, Santa Catarina, Brazil
| | - Jacó Joaquim Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside California, United States
| | - Afonso Celso Dias Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
8
|
Gonzalez-Romero R, Suarez-Ulloa V, Rodriguez-Casariego J, Garcia-Souto D, Diaz G, Smith A, Pasantes JJ, Rand G, Eirin-Lopez JM. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:196-204. [PMID: 28315825 DOI: 10.1016/j.aquatox.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.
Collapse
Affiliation(s)
- Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Victoria Suarez-Ulloa
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Javier Rodriguez-Casariego
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Daniel Garcia-Souto
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gabriel Diaz
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Abraham Smith
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Juan Jose Pasantes
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gary Rand
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA.
| |
Collapse
|
9
|
Zhang L, Sun W, Cai W, Zhang Z, Chen H, Ma S, Jia X. Transcriptional response of four C1q domain containing protein (C1qDC) genes from Venerupis philippinarum exposed to the water soluble fraction of No.0 diesel oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:40-46. [PMID: 27261881 DOI: 10.1016/j.ecoenv.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
As pattern recognitionreceptors, the C1q-domain-containing (C1qDC) proteins play an important role in the pathogen recognition and complement pathway activation. In the present study, four novel C1q domain containing proteins (designated as VpC1qDC1, VpC1qDC2, VpC1qDC3 and VpC1qDC4) were cloned and characterized from clam Venerupis philippinarum. The four VpC1qDCs all possessed the conserved features critical for the fundamental structure and function of the C1q family. The four VpC1qDCs genes showed differential response profiles after exposure to the water soluble fraction of No.0 diesel oil (WSFD). More notably, VpC1qDC1 and VpC1qDC3 were more sensitive to low concentration of WSFD, as their mRNA level changed by higher magnitudes. In addition, VpC1qDC2 and VpC1qDC4 displayed notable increases with larger amplitude to high concentration of WSFD. All these results suggested that the transcriptional response of VpC1qDCs genes were probably a protective mechanism of the cell to oils pollution. The diverse expression patterns of VpC1qDCs demonstrated that VpC1qDC1 and VpC1qDC3 were sensitive responders to environmental stress in V. philippinarum.
Collapse
Affiliation(s)
- Linbao Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Wei Sun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wengui Cai
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Haigang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shengwei Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Xiaoping Jia
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Guangzhou 510300, PR China; Key Laboratory of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
10
|
Won EJ, Kim RO, Kang HM, Kim HS, Hwang DS, Han J, Lee YH, Hwang UK, Zhou B, Lee SJ, Lee JS. Adverse Effects, Expression of the Bk-CYP3045C1 Gene, and Activation of the ERK Signaling Pathway in the Water Accommodated Fraction-Exposed Rotifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6025-6035. [PMID: 27135705 DOI: 10.1021/acs.est.6b01306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To examine the deleterious effects of the water accommodated fraction (WAF) of crude oil, the growth curve, fecundity, and lifespan of the monogonont rotifer (Brachionus koreanus) were measured for 24 h in response to three different doses (0.2×, 0.4×, and 0.8×) of WAFs. A higher dose of WAFs significantly reduced the fecundity and lifespan. A rotifer 32K microarray chip showed that the Bk-CYP3045C1 gene had the highest expression. Of the 25 entire CYP genes, the Bk-CYP3045C1 gene showed a significant expression for different doses and times in response to WAFs and chemical components of WAFs (naphthalene and phenanthrene); also, glutathione S-transferase genes, ABC transporter, and other genes showed dose responses upon exposure to 80% WAF over time. Different doses of WAFs increased the oxidative stress with an induction of reactive oxygen species (ROS) and a depletion of glutathione (GSH). Exposure to WAFs did not show toxic effects on survivability in B. koreanus; however, toxicity to WAFs was shown when piperonyl butoxide, a potent inhibitor of cytochrome P450 (CYP) enzymes, was added. This toxicity was dose-dependent. After WAFs exposure, p-ERK was activated over time in response to WAFs, which suggests that WAFs can be activated by the p-ERK signaling pathway.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
- Marine Chemistry and Geochemistry Research Center, Korea Institute of Ocean Science and Technology , Ansan 15627, South Korea
| | - Ryeo-Ok Kim
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research and Development Institute , Incheon 22383, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, 430072, China
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University , Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU) , Suwon 16419, South Korea
| |
Collapse
|
11
|
Suarez-Ulloa V, Gonzalez-Romero R, Eirin-Lopez JM. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates. MARINE POLLUTION BULLETIN 2015; 98:5-13. [PMID: 26088539 DOI: 10.1016/j.marpolbul.2015.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans.
Collapse
Affiliation(s)
- Victoria Suarez-Ulloa
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Rodrigo Gonzalez-Romero
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Jose M Eirin-Lopez
- CHROMEVOL Group, Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
12
|
Anderson K, Taylor DA, Thompson EL, Melwani AR, Nair SV, Raftos DA. Meta-analysis of studies using suppression subtractive hybridization and microarrays to investigate the effects of environmental stress on gene transcription in oysters. PLoS One 2015; 10:e0118839. [PMID: 25768438 PMCID: PMC4358831 DOI: 10.1371/journal.pone.0118839] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 01/15/2015] [Indexed: 12/29/2022] Open
Abstract
Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.
Collapse
Affiliation(s)
- Kelli Anderson
- Sydney Institute of Marine Science, Chowder Bay, NSW, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Daisy A. Taylor
- Sydney Institute of Marine Science, Chowder Bay, NSW, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Emma L. Thompson
- Sydney Institute of Marine Science, Chowder Bay, NSW, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Aroon R. Melwani
- Sydney Institute of Marine Science, Chowder Bay, NSW, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Sham V. Nair
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - David A. Raftos
- Sydney Institute of Marine Science, Chowder Bay, NSW, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- * E-mail:
| |
Collapse
|
13
|
Lüchmann KH, Dafre AL, Trevisan R, Craft JA, Meng X, Mattos JJ, Zacchi FL, Dorrington TS, Schroeder DC, Bainy ACD. A light in the darkness: new biotransformation genes, antioxidant parameters and tissue-specific responses in oysters exposed to phenanthrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:324-334. [PMID: 24813265 DOI: 10.1016/j.aquatox.2014.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Phenanthrene (PHE), a major component of crude oil, is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems, and is readily bioavailable to marine organisms. Understanding the toxicity of PAHs in animals requires knowledge of the systems for xenobiotic biotransformation and antioxidant defence and these are poorly understood in bivalves. We report, for the first time, new transcripts and tissue-specific transcription in gill and digestive gland from the oyster Crassostrea brasiliana following 24h exposure to 100 and 1000μgL(-1) PHE, a model PAH. Six new cytochrome P450 (CYP) and four new glutathione S-transferase (GST) genes were analysed by means of quantitative reverse transcription PCR (qRT-PCR). Different antioxidant endpoints, including both enzymatic and non-enzymatic parameters, were assessed as potential biomarkers of oxidative stress. GST activity was measured as an indicator of phase II biotransformation. Rapid clearance of PHE was associated with upregulation of both phase I and II genes, with more pronounced effects in the gill at 1000μgL(-1) PHE. After 24h of exposure, PHE also caused impairment of the antioxidant system, decreasing non-protein thiols and glutathione levels. On the other hand, no change in antioxidant enzymes was observed. PHE treatment (100μgL(-1)) significantly decreased GST activity in the gill of exposed oysters. Both CYP and GST were transcribed in a tissue-specific manner, reflecting the importance of the gill in the detoxification of PAHs. Likewise, the antioxidant parameters followed a similar pattern. The data provide strong evidence that these genes play key roles in C. brasiliana biotransformation of PHE and highlight the importance of gill in xenobiotic metabolism.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna 88790-000, Brazil.
| | - Alcir L Dafre
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Rafael Trevisan
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Xiang Meng
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Jacó J Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Flávia L Zacchi
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Tarquin S Dorrington
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Afonso C D Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
14
|
Suárez-Ulloa V, Fernández-Tajes J, Manfrin C, Gerdol M, Venier P, Eirín-López JM. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs 2013; 11:4370-89. [PMID: 24189277 PMCID: PMC3853733 DOI: 10.3390/md11114370] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 12/26/2022] Open
Abstract
The extraordinary progress experienced by sequencing technologies and bioinformatics has made the development of omic studies virtually ubiquitous in all fields of life sciences nowadays. However, scientific attention has been quite unevenly distributed throughout the different branches of the tree of life, leaving molluscs, one of the most diverse animal groups, relatively unexplored and without representation within the narrow collection of well established model organisms. Within this Phylum, bivalve molluscs play a fundamental role in the functioning of the marine ecosystem, constitute very valuable commercial resources in aquaculture, and have been widely used as sentinel organisms in the biomonitoring of marine pollution. Yet, it has only been very recently that this complex group of organisms became a preferential subject for omic studies, posing new challenges for their integrative characterization. The present contribution aims to give a detailed insight into the state of the art of the omic studies and functional information analysis of bivalve molluscs, providing a timely perspective on the available data resources and on the current and prospective applications for the biomonitoring of harmful marine compounds.
Collapse
Affiliation(s)
- Victoria Suárez-Ulloa
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
| | - Juan Fernández-Tajes
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; E-Mail:
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Paola Venier
- Department of Biology, University of Padova, Padova 35121, Italy; E-Mail:
| | - José M. Eirín-López
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-919-4000; Fax: +1-305-919-4030
| |
Collapse
|
15
|
Diaz de Cerio O, Hands E, Humble J, Cajaraville MP, Craft JA, Cancio I. Construction and characterization of a forward subtracted library of blue mussels Mytilus edulis for the identification of gene transcription signatures and biomarkers of styrene exposure. MARINE POLLUTION BULLETIN 2013; 71:230-239. [PMID: 23623663 DOI: 10.1016/j.marpolbul.2013.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Transcriptional profiling can elucidate adaptive/toxicity pathways participating in achieving homeostasis or leading to pathogenesis in marine biota exposed to chemical substances. With the aim of analyzing transcriptional responses in the mussel Mytilus edulis exposed to the corrosive and putatively carcinogenic hydrocarbon styrene (3-5 ppm, 3days), a forward subtracted (SSH) cDNA library was produced. Female mussels were selected and digestive gland mRNA was isolated. A library with 1440 clones was produced and a total of 287 clones were sequenced, 53% being identified through BlastN analysis against Mytibase and DeepSeaVent databases. Those genes included GO terms such as 'response to drugs', 'immune defense' and 'cell proliferation'. Furthermore, sequences related to chitin and beta-1-3-glucan metabolism were also up-regulated by styrene. Many of the obtained sequences could not be annotated constituting new mussel sequences. In conclusion, this SSH study reveals novel sequences useful to generate molecular biomarkers of styrene exposure in mussels.
Collapse
Affiliation(s)
- O Diaz de Cerio
- CBET Res. Ctr. Experimental Marine Biology and Biotechnology of Plentzia (PIE-UPV/EHU) & Zoology & Cell Biology Dept. (Science and Technology Fac.), University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | |
Collapse
|