1
|
Müller AK, Markert N, Leser K, Kämpfer D, Schiwy S, Riegraf C, Buchinger S, Gan L, Abdallah AT, Denecke B, Segner H, Brinkmann M, Crawford SE, Hollert H. Bioavailability and impacts of estrogenic compounds from suspended sediment on rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105719. [PMID: 33360234 DOI: 10.1016/j.aquatox.2020.105719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/15/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Numerous environmental pollutants have the potential to accumulate in sediments, and among them are endocrine-disrupting chemicals (EDCs). It is well documented that water-borne exposure concentrations of some potent EDCs, more specifically estrogenic- active compounds (ECs), can impair the reproduction of fish. In contrast, little is known about the bioavailability and effects of sediment-associated ECs on fish. Particularly, when sediments are disturbed, e.g., during flood events, chemicals may be released from the sediment and become bioavailable. The main objectives of this study were to evaluate a) whether ECs from the sediment become bioavailable to fish when the sediment is suspended, and b) whether such exposure leads to endocrine responses in fish. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed over 21 days to constantly suspended sediments in the following treatments: i) a contaminated sediment from the Luppe River, representing a "hotspot" for EC accumulation, ii) a reference sediment (exhibiting only background contamination), iii) three dilutions, 2-, 4- and 8-fold of Luppe sediment diluted with the reference sediment, and iv) a water-only control. Measured estrogenic activity using in vitro bioassays as well as target analysis of nonylphenol and estrone via LC-MS/MS in sediment, water, fish plasma, as well as bile samples, confirmed that ECs became bioavailable from the sediment during suspension. ECs were dissolved in the water phase, as indicated by passive samplers, and were readily taken up by the exposed trout. An estrogenic response of fish to Luppe sediment was indicated by increased abundance of transcripts of typical estrogen responsive genes, i.e. vitelline envelope protein α in the liver and vitellogenin induction in the skin mucus. Altered gene expression profiles of trout in response to suspended sediment from the Luppe River suggest that in addition to ECs a number of other contaminants such as dioxins, polychlorinated biphenyls (PCBs) and heavy metals were remobilized during suspension. The results of the present study demonstrated that sediments not only function as a sink for ECs but can turn into a significant source of pollution when sediments are resuspended as during flood-events. This highlights the need for sediment quality criteria considering bioavailability sediment-bound contaminants in context of flood events.
Collapse
Affiliation(s)
- Anne-Katrin Müller
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany.
| | - Nele Markert
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany
| | - Katharina Leser
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany
| | - David Kämpfer
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany
| | - Sabrina Schiwy
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Carolin Riegraf
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany; Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | | | - Lin Gan
- IZKF Genomics Facility, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ali T Abdallah
- IZKF Genomics Facility, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Bernd Denecke
- IZKF Genomics Facility, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Helmut Segner
- University of Bern, Centre for Fish and Wildlife Health, Länggassstr. 122, 3012, Bern, Switzerland
| | - Markus Brinkmann
- University of Saskatchewan, School of the Environment and Sustainability & Toxicology Centre, Saskatoon, Canada
| | - Sarah E Crawford
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074, Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Müller AK, Markert N, Leser K, Kämpfer D, Crawford SE, Schäffer A, Segner H, Hollert H. Assessing endocrine disruption in freshwater fish species from a "hotspot" for estrogenic activity in sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113636. [PMID: 31780365 DOI: 10.1016/j.envpol.2019.113636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Little is known about sediment-bound exposure of fish to endocrine disrupting chemicals (EDC) under field conditions. This study aimed to investigate potential routes of EDC exposure to fish and whether sediment-bound contaminants contribute towards exposure in fish. Tench (Tinca tinca) and roach (Rutilus rutilus) as a benthic and pelagic living fish species, respectively, were sampled at the Luppe River, previously described as a "hotspot" for accumulation of EDC in sediment. A field reference site, the Laucha River, additionally to fish from a commercial fish farm as reference were studied. Blackworms, Lumbriculus variegatus, which are a source of prey for fish, were exposed to sediment of the Luppe River and estrogenic activity of worm tissue was investigated using in vitro bioassays. A 153-fold greater estrogenic activity was measured using in vitro bioassays in sediment of the Luppe River compared the Laucha River. Nonylphenol (NP; 22 mg/kg) was previously identified as one of the main drivers of estrogenic activity in Luppe sediment. Estrogenic activity of Luppe exposed worm tissue (14 ng 17β-estradiol equivalents/mg) indicated that food might act as secondary source to EDCs. While there were no differences in concentrations of NP in plasma of tench from the Luppe and Laucha, vitellogenin, a biomarker for exposure to EDCs, was induced in male tench and roach from the Luppe River compared to both the Laucha and cultured fish by a factor of 264 and 90, respectively. However, no histological alterations in testis of these fish were observed. Our findings suggest that sediments substantially contribute to the overall EDC exposure of both benthic and pelagic fish but that the exposure did not impact gonad status of the fish.
Collapse
Affiliation(s)
- Anne-Katrin Müller
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany.
| | - Nele Markert
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| | - Katharina Leser
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| | - David Kämpfer
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| | - Sarah E Crawford
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Andreas Schäffer
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University Bern, Länggassstr. 122, 3012, Bern, Switzerland
| | - Henner Hollert
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Müller AK, Leser K, Kämpfer D, Riegraf C, Crawford SE, Smith K, Vermeirssen ELM, Buchinger S, Hollert H. Bioavailability of estrogenic compounds from sediment in the context of flood events evaluated by passive sampling. WATER RESEARCH 2019; 161:540-548. [PMID: 31233966 DOI: 10.1016/j.watres.2019.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Studies worldwide have demonstrated through in vitro bioassays and chemical analysis that endocrine-disrupting chemicals (EDCs) can accumulate in river sediments. However, remobilization of sediment-bound EDCs due to bioturbation or re-suspension during flood events remains poorly understood. The aim of this study was to evaluate the bioavailability of EDCs, more specifically estrogenic compounds (EC), from sediment under turbulent conditions using a passive sampling approach. Sediment was sampled along the Luppe River, Germany, previously described as a "hotspot" for ECs. The concentration of target ECs and estrogenic activity were investigated using chemical analysis (LC MS/MS) in addition to a novel screening tool (planar Yeast Estrogen Screen; p-YES) that utilizes high performance thin-layer chromatography plates in combination with an in vitro bioassay (YES). Estrone (50%, E1) and nonylphenol (35%, NP) accounted for the majority of estrogenic activity reported of up to 20 ± 2.4 μg E2 equivalents per kg dry weight in the Luppe sediments. Two types of passive samplers (polar organic chemical integrative sampler (POCIS) and Chemcatcher) were used to investigate the bioavailability of ECs from suspended sediment under laboratory conditions. NP, E1, E2 and ethynylestradiol (EE2) were remobilized from Luppe sediment when subjected to turbulent conditions, such as in a flood event, and were readily bioavailable at ecotoxicologically relevant concentrations (NP 18 μg/L, E1 14 ng/L, E2 0.2 ng/L, EE2 0.5 ng/L).
Collapse
Affiliation(s)
- Anne-Katrin Müller
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany.
| | - Katharina Leser
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| | - David Kämpfer
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| | - Carolin Riegraf
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany; Federal Institute of Hydrology, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Sarah E Crawford
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| | - Kilian Smith
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| | | | | | - Henner Hollert
- RWTH Aachen University, Institute of Environmental Research, Worringer Weg 1, 52065, Aachen, Germany
| |
Collapse
|
4
|
Zhou X, Yang Z, Luo Z, Li H, Chen G. Endocrine disrupting chemicals in wild freshwater fishes: Species, tissues, sizes and human health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:462-468. [PMID: 30366293 DOI: 10.1016/j.envpol.2018.10.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Increasing attention has been devoted to the adverse effects of endocrine disrupting chemicals (EDCs) on aquatic environments, such as water, sediment and sludge. To date, few studies have investigated the bio-accumulative characteristics of EDCs in different tissues of diverse wild freshwater fish species and their combined impacts on human health. Five EDCs were investigated in the muscle, liver, gill and, especially, gonad of three fish species collected from the Xiangjiang River, southern China. Carnivorous Siniperca Chuatsi or omnivorous Cyprinus Carpio accumulated higher contents of bisphenol A (BPA) and estrone than herbivorous Parabramis Pekinensis in muscle. Furthermore, 4-n-nonylphenol and estrone were found at higher levels and more frequently in the liver, implying that the liver played an important role in basic metabolism for accumulation, biotransformation and excretion of EDCs. Highest concentrations of BPA found in the gonad revealed that the BPA may pose a serious threat to the reproductive system of aquatic organisms. The mean liver/muscle concentration ratios of 4-n-nonylphenol, BPA, estrone and 17α-ethynyl estradiol confirmed the prolonged exposure of the fish to these EDCs. In addition, the relationships between the fish sizes and the EDC concentrations analyzed by Pearson correlation analysis implied that the bioaccumulation of diethylstilbestrol and BPA increased with the growth of Parabramis Pekinensis, and there was a balance between the uptake rate and elimination rate of EDCs in Siniperca Chuatsi and Cyprinus Carpio. Most importantly, the cumulative impacts of combined EDCs on human health by fish consumption were evaluated. The total estradiol equivalent quantity of estrogens was higher than that of phenols. Also, based on the results of the Monte-Carlo simulation, the 95th percentile values of the total estimated daily intakes from consuming the three freshwater fish species from the Xiangjiang River were higher than the acceptable daily intake.
Collapse
Affiliation(s)
- Xinyi Zhou
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Zhoufei Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Guoyao Chen
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
5
|
Crawford SE, Cofalla CBN, Aumeier B, Brinkmann M, Classen E, Esser V, Ganal C, Kaip E, Häussling R, Lehmkuhl F, Letmathe P, Müller AK, Rabinovitch I, Reicherter K, Schwarzbauer J, Schmitt M, Stauch G, Wessling M, Yüce S, Hecker M, Kidd KA, Altenburger R, Brack W, Schüttrumpf H, Hollert H. Project house water: a novel interdisciplinary framework to assess the environmental and socioeconomic consequences of flood-related impacts. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:23. [PMID: 28752018 PMCID: PMC5504220 DOI: 10.1186/s12302-017-0121-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Protecting our water resources in terms of quality and quantity is considered one of the big challenges of the twenty-first century, which requires global and multidisciplinary solutions. A specific threat to water resources, in particular, is the increased occurrence and frequency of flood events due to climate change which has significant environmental and socioeconomic impacts. In addition to climate change, flooding (or subsequent erosion and run-off) may be exacerbated by, or result from, land use activities, obstruction of waterways, or urbanization of floodplains, as well as mining and other anthropogenic activities that alter natural flow regimes. Climate change and other anthropogenic induced flood events threaten the quantity of water as well as the quality of ecosystems and associated aquatic life. The quality of water can be significantly reduced through the unintentional distribution of pollutants, damage of infrastructure, and distribution of sediments and suspended materials during flood events. To understand and predict how flood events and associated distribution of pollutants may impact ecosystem and human health, as well as infrastructure, large-scale interdisciplinary collaborative efforts are required, which involve ecotoxicologists, hydrologists, chemists, geoscientists, water engineers, and socioeconomists. The research network "project house water" consists of a number of experts from a wide range of disciplines and was established to improve our current understanding of flood events and associated societal and environmental impacts. The concept of project house and similar seed fund and boost fund projects was established by the RWTH Aachen University within the framework of the German excellence initiative with support of the German research foundation (DFG) to promote and fund interdisciplinary research projects and provide a platform for scientists to collaborate on innovative, challenging research. Project house water consists of six proof-of-concept studies in very diverse and interdisciplinary areas of research (ecotoxicology, water, and chemical process engineering, geography, sociology, economy). The goal is to promote and foster high-quality research in the areas of water research and flood-risk assessments that combine and build off-laboratory experiments with modeling, monitoring, and surveys, as well as the use of applied methods and techniques across a variety of disciplines.
Collapse
Affiliation(s)
- Sarah E. Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Catrina Brüll nee Cofalla
- Institute for Hydraulic Engineering and Water Management, RWTH Aachen University, Mies van der Rohe-Straße 17, 52074 Aachen, Germany
| | - Benedikt Aumeier
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
- School of the Environment & Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Elisa Classen
- Institute for Hydraulic Engineering and Water Management, RWTH Aachen University, Mies van der Rohe-Straße 17, 52074 Aachen, Germany
| | - Verena Esser
- Department of Geography, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| | - Caroline Ganal
- Institute for Hydraulic Engineering and Water Management, RWTH Aachen University, Mies van der Rohe-Straße 17, 52074 Aachen, Germany
| | - Elena Kaip
- Institute of Sociology, RWTH Aachen University, Eilfschornsteinstrasse 7, 52062 Aachen, Germany
| | - Roger Häussling
- Institute of Sociology, RWTH Aachen University, Eilfschornsteinstrasse 7, 52062 Aachen, Germany
| | - Frank Lehmkuhl
- Department of Geography, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| | - Peter Letmathe
- Chair of Management Accounting, RWTH Aachen University, Templergraben 64, 52062 Aachen, Germany
| | - Anne-Katrin Müller
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ilja Rabinovitch
- Chair of Management Accounting, RWTH Aachen University, Templergraben 64, 52062 Aachen, Germany
| | - Klaus Reicherter
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstrasse 4-20, 52056 Aachen, Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstrasse 4-20, 52056 Aachen, Germany
| | - Marco Schmitt
- Institute of Sociology, RWTH Aachen University, Eilfschornsteinstrasse 7, 52062 Aachen, Germany
| | - Georg Stauch
- Department of Geography, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| | - Matthias Wessling
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Süleyman Yüce
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
- School of the Environment & Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Karen A. Kidd
- Canadian Rivers Institute and Biology Department, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5 Canada
| | - Rolf Altenburger
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Department of Effect-directed Analysis, Helmholtz Centre for Environmental Research UFZ, Leipzig, Saxony Germany
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research UFZ, Leipzig, Saxony Germany
| | - Werner Brack
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Department of Effect-directed Analysis, Helmholtz Centre for Environmental Research UFZ, Leipzig, Saxony Germany
| | - Holger Schüttrumpf
- Institute for Hydraulic Engineering and Water Management, RWTH Aachen University, Mies van der Rohe-Straße 17, 52074 Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
6
|
Teta C, Naik YS. Vitellogenin induction and reduced fecundity in zebrafish exposed to effluents from the City of Bulawayo, Zimbabwe. CHEMOSPHERE 2017; 167:282-290. [PMID: 27728887 DOI: 10.1016/j.chemosphere.2016.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Industrial and municipal effluents regularly pollute water bodies and cause various toxic effects to aquatic life. Because of the diverse nature of industrial processes and domestic products, urban effluents are often tainted with various anthropogenic endocrine disrupting chemicals that may interfere with the reproductive physiology of aquatic fauna. In this study, we tested effluents from the City of Bulawayo for the presence of estrogenic endocrine disrupting chemicals and their effects on fish gonads and fecundity. Effluents were collected from two sewage treatment plants (STPs), which receive largest volume of industrial effluents from the City, and from a textile factory. Male and female zebrafish (Danio rerio) were exposed to effluents and analyzed for vitellogenin induction, gonad alterations, and fertility. Male zebrafish exposed to effluent from Thorngrove STP had significantly higher (p ≤ 0.05) vitellogenin compared to control. Textile effluent caused adverse gonad alterations such as oocyte atresia (females) and increased proportion of spermatogonia (males) which could lead to reduced fertility. Textile effluent (5% v/v) and Thorngrove effluent also caused a decline in fertilization success of breeding groups of zebrafish. The results of this study show the potential effects of effluent pollution and the occurrence of EDCs in developing countries. This underscores the need to effectively prevent pollution of environmental water bodies from industrial and municipal sewage treatment plant effluents. We recommend a follow-up study to monitor the effects of the effluents on feral fish in effluent polluted downstream dams of Bulawayo.
Collapse
Affiliation(s)
- Charles Teta
- Department of Environmental Science and Health, National University of Science and Technology, P.O. Box AC 939, Ascot, Bulawayo, Zimbabwe
| | - Yogeshkumar S Naik
- Department of Environmental Science and Health, National University of Science and Technology, P.O. Box AC 939, Ascot, Bulawayo, Zimbabwe.
| |
Collapse
|
7
|
Viganò L, Loizeau JL, Mandich A, Mascolo G. Medium- and Long-Term Effects of Estrogenic Contaminants on the Middle River Po Fish Community as Reconstructed from a Sediment Core. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:454-472. [PMID: 27655388 DOI: 10.1007/s00244-016-0315-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Recent studies showed that endocrine active compounds (EDs) capable to induce fish gonadal histopathologies, plasma vitellogenin and thyroid disruption, are transported by the River Lambro to the River Po, potentially affecting the fish community of the main Italian river. To assess whether fish relative abundance, composition and health were impaired by the River Lambro, a 3-year survey was undertaken in the main river. Results showed that the tributary supports in the River Po a denser fish community (+43 %), with a higher total biomass (+35 %). The survey also showed niche- and sensitivity-dependent effects, so that three benthopelagic species (bleak, topmouth gudgeon, and bitterling) were, for example, more abundant downstream from the tributary (up to 3.4×), but their sizes were significantly smaller. The present fish community was then compared with that described 30 years before in the same area of the Po River. This comparison highlighted that some fish species have disappeared and many have severely declined. To better evaluate this contrast, a sediment core of the Lambro tributary was analysed for the time trends of natural estrogens (E1, E2, E3), bisphenol A and alkylphenols. The results showed that during the last 50 years the River Lambro has been exposed to high estrogenic activities (16.1 ± 9.3 ng E2 equivalents/g), which inevitably affected also the River Po. In addition, at the time of the previous survey, six species of the main river had skewed sex ratios toward all-female populations, providing evidence that EDs and particularly (xeno)estrogens were already affecting the long-term viability of fish populations. Estrogens thus can be ascribed among the causal factors of fish qualitative and quantitative decline of the River Po, although long-term effects have been likely mitigated by nonconfinement of fish populations and nutrient enrichment.
Collapse
Affiliation(s)
- Luigi Viganò
- Water Research Institute, National Council of Research (IRSA-CNR), via del Mulino 19, 20861, Milan, Brugherio, Italy.
| | - J-L Loizeau
- Institut F.-A. Forel, University of Geneva, Uni Carl Vogt, Bd Carl-Vogt 66, 1211, Genève 4, Switzerland
| | - A Mandich
- Department of Earth, Environment and Life Sciences, University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - G Mascolo
- Water Research Institute, National Council of Research (IRSA-CNR), via F. de Blasio 5, Bari, Italy
| |
Collapse
|
8
|
Adeogun AO, Onibonoje K, Ibor OR, Omiwole RA, Chukwuka AV, Ugwumba AO, Ugwumba AAA, Arukwe A. Endocrine-disruptor molecular responses, occurrence of intersex and gonado-histopathological changes in tilapia species from a tropical freshwater dam (Awba Dam) in Ibadan, Nigeria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:10-21. [PMID: 26897087 DOI: 10.1016/j.aquatox.2016.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
In the present study, the occurrence of endocrine disruptive responses in Tilapia species from Awba Dam has been investigated, and compared to a reference site (Modete Dam). The Awba Dam is a recipient of effluents from University of Ibadan (Nigeria) and several other anthropogenic sources. A total of 132 Tilapia species (Sarotherodon malenotheron (n=57 and 32, males and females, respectively) and Tilapia guineensis (n=23 and 20, males and females, respectively)) were collected from June to September 2014. At the reference site, samples of adult male and female S. melanotheron (48 males and 47 females) and T. guineensis (84 males and 27 females) were collected. Gonads were morphologically and histologically examined and gonadosomatic index (GSI) was calculated. Hepatic mRNA transcriptions of vitellogenin (Vtg) and zona radiata protein (Zrp) genes were analyzed using validated RT-qPCR. Significant increase in Vtg and Zrp transcripts were observed in male tilapias from Awba Dam, compared to males from the reference site. In addition, male tilapias from Awba Dam produced significantly higher Vtg and Zrp mRNA, compared to females in June and July. However, at the natural peak spawning period in August and September, females produced, significantly higher Vtg and Zrp mRNA, compared to males. Fish gonads revealed varying incidence of intersex with a striking presence of two (2) pairs of testes and a pair of ovary in S. melanotheron from Awba Dam. The entire fish population examined at Awba Dam showed a high prevalence of intersex (34.8%), involving phenotypic males and females of both species. Analysis of sediment contaminant levels revealed that As, Cd, Pb, Hg and Ni (heavy metals), monobutyltin cation, 4-iso-nonyphenol and PCB congeners (138, 153 and 180) were significantly higher in Awba Dam, compared to the reference site. Principal component analysis (PCA) showed that fish variables were positively correlated with sediment contaminant burden at Awba Dam, indicating that the observed endocrine disruptive responses are associated with contaminant concentrations. Overall, the occurrence of intersex and elevated expressions of Vtg and Zrp in male fish, suggest that the measured contaminants were eliciting severe endocrine disruptive effects in Awba Dam biota, which is an important source of domestic water supply and fisheries for the University of Ibadan community.
Collapse
Affiliation(s)
- Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | | | - Oju R Ibor
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | | | | | - Alex O Ugwumba
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | | | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
9
|
Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices — A review. Microchem J 2016. [DOI: 10.1016/j.microc.2015.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Salgueiro-González N, Turnes-Carou I, Besada V, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D. Occurrence, distribution and bioaccumulation of endocrine disrupting compounds in water, sediment and biota samples from a European river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 529:121-130. [PMID: 26005755 DOI: 10.1016/j.scitotenv.2015.05.048] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
The occurrence, distribution and bioaccumulation of five endocrine disrupting compounds (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol and bisphenol A) in water, sediment and biota (Corbicula fluminea) collected along the Minho River estuary (NW Iberian Peninsula) were examined. Samples were collected in two campaigns (May and November, 2012) and analyzed by different extraction procedures followed by liquid chromatography tandem mass spectrometry determination. The presence of linear isomers (4-n-octylphenol and 4-n-nonylphenol) was scarcely observed whereas branched isomers (4-tert-octylphenol and nonylphenol) were measured in almost all samples. Wastewater treatment plant effluents and nautical, fishing and agricultural activities are considered the primary source of pollution of the river by alkylphenols. The presence of bisphenol A in the river could be mainly associated to punctual sources of contamination from industrial discharges. A decrease in the total concentration of phenolic compounds in water was observed from spring to autumn (from 0.888 μg L(-1) in May to 0.05 μg L(-1) in November), while similar values were shown in C. fluminea samples from the two campaigns (1388 and 1228 ng g(-1) dw in spring and autumn, respectively). In sediments, the total concentration of the target compounds varied between 13 and 4536 ng g(-1) dw (average of 1041 ng g(-1) dw). Sediment-water partition coefficient (Kd), bioaccumulation factor (BAF) and biota-sediment accumulation factor (BSAF) were estimated and highest values were obtained for nonylphenol. Calculated risk quotients showed low and moderate risk for the aquatic environment from the presence of the target compounds at all sampling points. The estimation of the daily intake of the studied compounds via water and biota ingestion indicated no risk for human health.
Collapse
Affiliation(s)
- N Salgueiro-González
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, E-15071 A Coruña, Spain
| | - I Turnes-Carou
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, E-15071 A Coruña, Spain
| | - V Besada
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro, 50, 36390 Vigo, Spain
| | - S Muniategui-Lorenzo
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, E-15071 A Coruña, Spain.
| | - P López-Mahía
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, E-15071 A Coruña, Spain
| | - D Prada-Rodríguez
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, E-15071 A Coruña, Spain
| |
Collapse
|
11
|
Blanchfield PJ, Kidd KA, Docker MF, Palace VP, Park BJ, Postma LD. Recovery of a wild fish population from whole-lake additions of a synthetic estrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3136-3144. [PMID: 25658019 DOI: 10.1021/es5060513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.
Collapse
Affiliation(s)
- Paul J Blanchfield
- Freshwater Institute, Fisheries and Oceans Canada , 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Chen WL, Gwo JC, Wang GS, Chen CY. Distribution of feminizing compounds in the aquatic environment and bioaccumulation in wild tilapia tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11349-11360. [PMID: 24878555 DOI: 10.1007/s11356-014-3062-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
This study sampled six times of river water, sediment, and tilapia (Oreochromis niloticus) in the Dan-Shui River, Taipei, Taiwan; 10 feminizing compounds were analyzed using ultra-performance liquid chromatography-tandem mass spectrometry. Bisphenol A (508 ± 634 ng/L, geometric mean (GM) 303 ng/L) and nonylphenol (491 ± 570 ng/L, GM 328 ng/L) were the most abundant among analytes in the river water. Nonylphenol (770 ± 602 ng/g wet weight, GM 617 ng/g wet weight) was also the highest in sediment. Fish may uptake nonylphenol and nonylphenol ethoxylates from river water and sediment because there were significant correlations between the concentrations in these matrixes and those in fish tissues (r s ranged from 0.21 to 0.49, p < 0.05). The bioaccumulation of nonylphenol, nonylphenol ethoxylates and bisphenol A in gonad, eggs, and liver was much higher than that in muscle (e.g. mean bioaccumulation factors of nonylphenol were 27,287, 20,971, 9,576 and 967, respectively) and might result in low liver fractions in fish body weights (0.66 % ± 0.39 %, GM 0.55 %) and the skewed sex ratio of fish (male to female = 0.52). This innovative study linked the environmental and internal doses statistically in the globally distributed wild fish by analyzing feminizing compounds in water, sediment, and four fish tissues including gonad and eggs.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Institute of Environmental Health, National Taiwan University, 17 Hsu-Chou Rd, Taipei, 10055, Taiwan,
| | | | | | | |
Collapse
|
13
|
Parrella A, Lavorgna M, Criscuolo E, Isidori M. Mutagenicity, genotoxicity, and estrogenic activity of river porewaters. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:407-420. [PMID: 23797980 DOI: 10.1007/s00244-013-9928-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
We investigated mutagenicity, genotoxicity, and estrogenic activity in the porewaters of two river basins in southern Italy that had different features. Three samples from each site were collected in different seasons from 7 sites for a total of 21 samples. Mutagenicity was measured with the Ames test with and without metabolic activation (S9) using Salmonella typhimurium TA98 and TA100 strains. Genotoxicity was measured with two tests: one involved a chromophore that detected DNA damage in Escherichia coli PQ37 (SOS chromotest), and the other measured micronuclei formation in the root cells of Vicia faba. Estrogenic activity was measured with a yeast-based estrogen receptor assay and an MCF-7 cell-based, estrogen-sensitive proliferation assay. We also applied chemical analyses to detect alkylphenols, pesticides, natural and synthetic hormones, and heavy metals. The porewaters of both river sediments showed mutagenic/genotoxic activity on V. faba test and Ames test, the latter both with and without S9 liver fraction. The SOS chromotest without metabolic activation was not sufficiently sensitive to detect genotoxicity of the porewaters, but the SOS DNA repair system in E. coli PQ37 was activated in the presence of S9 mix. Good correlations were found between mutagenicity/genotoxicity and the concentration of cadmium and between estrogenic activity and the presence of copper. This study assessed the chemical concentrations of some bioavailable pollutants in porewater and detected the overall effects of multiple pollutants that contributed to mutagenicity, genotoxicity, and estrogenic activity of these two basin porewaters, thus increasing our understanding of the environmental consequences of polluted aquatic ecosystems.
Collapse
Affiliation(s)
- Alfredo Parrella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi, 43, 81100 Caserta, Italy
| | | | | | | |
Collapse
|