1
|
de Vries P. ECOTOXr: An R package for reproducible and transparent retrieval of data from EPA's ECOTOX database. CHEMOSPHERE 2024; 364:143078. [PMID: 39181462 DOI: 10.1016/j.chemosphere.2024.143078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
The US EPA ECOTOX database provides key ecotoxicological data that are crucial in environmental risk assessment. It can be used for computational predictions of toxicity or indications of hazard in a wide range of situations. There is no standardised or formalised method for extracting and subsetting data from the database for these purposes. Consequently, results in such meta-analyses are difficult to reproduce. The present study introduces the software package ECOTOXr, which provides the means to formalise data retrieval from the ECOTOX database in the R scripting language. Three cases are presented to evaluate the performance of the package in relation to earlier data extractions and searches on the website. These cases demonstrate that the package can reproduce data sets relatively well. Furthermore, they illustrate how future studies can further improve traceability and reproducibility by applying the package and adhering to some simple guidelines. This contributes to the FAIR principles, credibility and acceptance of research that uses data from the ECOTOX database.
Collapse
Affiliation(s)
- Pepijn de Vries
- Dept. Wageningen Marine Research, Wageningen University and Research Center, P.O. Box 57, Den Helder, 1780AB, the Netherlands.
| |
Collapse
|
2
|
Noventa S, Pace E, Esposito D, Libralato G, Manfra L. Handling concentration data below the analytical limit in environmental mixture risk assessment: A case-study on pesticide river monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167670. [PMID: 37852501 DOI: 10.1016/j.scitotenv.2023.167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Aquatic organisms are exposed to ever-changing complex mixtures of chemicals throughout their lifetime. Component-Based Mixture Risk Assessment (CBMRA) is a well-established methodology for water contaminant-mixture management, the use of which is growing due to improved access to reference ecotoxicity data and extensive monitoring datasets. It enables the translation of measured exposure concentrations of chemicals into biological effect values, and thus to quantitatively estimate the risk of the whole water sample (i.e., as a mixture). However, many factors can bias the final risk decision by impacting the risk metric components; thus, a careful design of the CBMRA is needed, taking into primary consideration the specific features of the dataset and mixture risk assessment assignments. This study systematically addressed the effects of the most common approaches used for handling the concentrations of chemicals below the limit of detection/quantification (LOD/LOQ) in CBMRA. The main results included: i) an informed CBMRA procedure that enables the tracking of the risk decisions triggered by substances below LOD/LOQ, ii) a conceptual map and guidance criteria to support the selection of the most suitable approach for specific scenarios and related interpretation; iii) a guided implementation of the informed CBMRA on dataset of pesticide concentrations in Italian rivers in 2020 (702,097 records).
Collapse
Affiliation(s)
- Seta Noventa
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 30015 Chioggia, Italy.
| | - Emanuela Pace
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Dania Esposito
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Loredana Manfra
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
3
|
Yanagihara M, Hiki K, Iwasaki Y. Can Chemical Toxicity in Saltwater Be Predicted from Toxicity in Freshwater? A Comprehensive Evaluation Using Species Sensitivity Distributions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2021-2027. [PMID: 35502940 PMCID: PMC9542858 DOI: 10.1002/etc.5354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Species sensitivity distributions (SSDs) play an important role in ecological risk assessment. Estimating SSDs requires toxicity data for many species, but reports on saltwater species are often limited compared to freshwater species. This limitation can constrain informed management of saltwater quality for the protection of marine ecosystems. We investigated the relationships between the parameters (i.e., mean and standard deviation [SD]) of freshwater and saltwater log-normal SSDs to determine how accurately saltwater toxicity could be estimated from freshwater toxicity test data. We estimated freshwater and saltwater SSDs for 104 chemicals with reported acute toxicity data for five or more species and compared their means, SDs, and hazardous concentrations for 5% of the species (HC5) derived from the acute SSDs. Standard major axis regression analyses generally showed that log-log relationships between freshwater and saltwater SSD means, SDs, and HC5 values were nearly 1:1. In addition, the ratios of freshwater-to-saltwater SSD means and HC5 values for most of the 104 chemicals fell within the range 0.1-10. Although such a strong correlation was not observed for SSD SDs (r2 < 0.5), differences between freshwater and saltwater SSD SDs were relatively small. These results indicate that saltwater acute SSDs can be reasonably estimated using freshwater acute SSDs. Because the differences of the means and SDs between freshwater and saltwater SSDs were larger when the number of test species used for SSD estimation was lower (i.e., five to seven species in the present study), obtaining toxicity data for an adequate number of species will be key to better approximation of a saltwater acute SSD from a freshwater acute SSD for a given chemical. Environ Toxicol Chem 2022;41:2021-2027. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Miina Yanagihara
- Center for Marine Environmental StudiesEhime UniversityMatsuyamaEhimeJapan
| | - Kyoshiro Hiki
- Health and Environmental Risk Research DivisionNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Yuichi Iwasaki
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
| |
Collapse
|
4
|
Barron MG, Otter RR, Connors KA, Kienzler A, Embry MR. Ecological Thresholds of Toxicological Concern: A Review. FRONTIERS IN TOXICOLOGY 2022; 3:640183. [PMID: 35295098 PMCID: PMC8915905 DOI: 10.3389/ftox.2021.640183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
The ecological threshold of toxicological concern (ecoTTC) is analogous to traditional human health-based TTCs but with derivation and application to ecological species. An ecoTTC is computed from the probability distribution of predicted no effect concentrations (PNECs) derived from either chronic or extrapolated acute toxicity data for toxicologically or chemically similar groups of chemicals. There has been increasing interest in using ecoTTCs in screening level environmental risk assessments and a computational platform has been developed for derivation with aquatic species toxicity data (https://envirotoxdatabase.org/). Current research and development areas include assessing mode of action-based chemical groupings, conservatism in estimated PNECs and ecoTTCs compared to existing regulatory values, and the influence of taxa (e.g., algae, invertebrates, and fish) composition in the distribution of PNEC values. The ecoTTC continues to develop as a valuable alternative strategy within the toolbox of traditional and new approach methods for ecological chemical assessment. This brief review article describes the ecoTTC concept and potential applications in ecological risk assessment, provides an overview of the ecoTTC workflow and how the values can be derived, and highlights recent developments and ongoing research. Future applications of ecoTTC concept in different disciplines are discussed along with opportunities for its use.
Collapse
Affiliation(s)
- Mace G Barron
- U.S. EPA, Office of Research & Development, Gulf Breeze, FL, United States
| | - Ryan R Otter
- The Data Science Institute, Middle Tennessee State University, Murfreesboro, TN, United States
| | | | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Michelle R Embry
- Health and Environmental Sciences Institute, Washington, DC, United States
| |
Collapse
|
5
|
Gouin T, Ellis-Hutchings R, Thornton Hampton LM, Lemieux CL, Wright SL. Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks - development and application of a toxicity study assessment tool. MICROPLASTICS AND NANOPLASTICS 2022; 2:2. [PMID: 35098152 PMCID: PMC8760192 DOI: 10.1186/s43591-021-00023-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Concern regarding the human health implications that exposure to nano- and microplastic particles (NMPs) potentially represents is increasing. While there have been several years of research reporting on the ecotoxicological effects of NMPs, human health toxicology studies have only recently emerged. The available human health hazard data are thus limited, with potential concern regarding the relevance and reliability for understanding the potential human health implications. In this study we develop and apply a NMP toxicity screening assessment tool (NMP-TSAT) for evaluating human health effects studies against a suite of quality assurance and quality control (QA/QC) criteria for both in vivo and in vitro studies. A total of 74 studies representing either inhalation or oral exposure pathways were identified and evaluated. Assessment categories include particle characterization, experimental design, and applicability for risk assessment; with critical and non-critical criteria organized to allow screening and prioritization. It is observed that the majority of studies evaluated using the NMP-TSAT have been performed on monodisperse particles, predominately spheres (≈60%), consisting of polystyrene (≈46%). The majority of studies have tested particles < 5 μm, with a minimal particle size of 10 nm and a maximum particle size of about 200 μm. The total assessment score (TAS) possible for in vivo studies is 52, whereas for in vitro studies it is 46, which is based on receiving a maximum score of 2 against 26 and 23 criteria, respectively. The evaluated TAS ranged from between 12 and 44 and 16-34, for in vivo and in vitro studies, respectively. Given the challenges associated with prioritizing studies based on ranking them according to their TAS we propose a Tiered approach, whereby studies are initially screened based on how they score against various critical criteria, which have been defined for their relevance for assessing the hazards and risks for human health. In this instance, studies that score a minimum of '1' against each of the critical criteria, regardless of how they rank according to their TAS, are prioritized as part of a Tier 1 screening and prioritization phase, which would then be followed by an expert evaluation, representing a Tier 2 level of assessment. Using this approach we identify 10 oral ingestion and 2 inhalation studies that score at least 1 against all critical criteria. Lastly, several key observations for strengthening future effects studies are identified, these include a need for the generation and access to standard reference materials representative of human exposure to NMPs for use in toxicity test systems and/or the improved characterization and verification of test particle characteristics, and the adoption of study design guidance, such as recommended by OECD, when conducting either in vivo inhalation or oral ingestion toxicity tests. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43591-021-00023-x.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, Sharnbrook, Bedfordshire, UK
| | - Robert Ellis-Hutchings
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI 48673 USA
| | - Leah M. Thornton Hampton
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA USA
| | - Christine L. Lemieux
- Air Quality and Risk Assessment Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Stephanie L. Wright
- Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London, W12 0BZ UK
| |
Collapse
|
6
|
Burns EE, Davies IA. Coral Ecotoxicological Data Evaluation for the Environmental Safety Assessment of Ultraviolet Filters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3441-3464. [PMID: 34758162 PMCID: PMC9299478 DOI: 10.1002/etc.5229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
There is growing interest in the environmental safety of ultraviolet (UV) filters found in cosmetic and personal care products (CPCPs). The CPCP industry is assessing appropriate environmental risk assessment (ERA) methods to conduct robust environmental safety assessments for these ingredients. Relevant and reliable data are needed for ERA, particularly when the assessment is supporting regulatory decision-making. In the present study, we apply a data evaluation approach to incorporate nonstandard toxicity data into the ERA process through an expanded range of reliability scores over commonly used approaches (e.g., Klimisch scores). The method employs an upfront screening followed by a data quality assessment based largely on the Criteria for Reporting and Evaluating Ecotoxicity Data (CRED) approach. The method was applied in a coral case study in which UV filter toxicity data was evaluated to identify data points potentially suitable for higher tier and/or regulatory ERA. This is an optimal case study because there are no standard coral toxicity test methods, and UV filter bans are being enacted based on findings reported in the current peer-reviewed data set. Eight studies comprising nine assays were identified; four of the assays did not pass the initial screening assessment. None of the remaining five assays received a high enough reliability score (Rn ) to be considered of decision-making quality (i.e., R1 or R2). Four assays were suitable for a preliminary ERA (i.e., R3 or R4), and one assay was not reliable (i.e., R6). These results highlight a need for higher quality coral toxicity studies, potentially through the development of standard test protocols, to generate reliable toxicity endpoints. These data can then be used for ERA to inform environmental protection and sustainability decision-making. Environ Toxicol Chem 2021;40:3441-3464. © 2021 Personal Care Products Council. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
7
|
Brock TCM, Elliott KC, Gladbach A, Moermond C, Romeis J, Seiler T, Solomon K, Peter Dohmen G. Open Science in regulatory environmental risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1229-1242. [PMID: 33913617 PMCID: PMC8596791 DOI: 10.1002/ieam.4433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 05/14/2023]
Abstract
A possible way to alleviate the public skepticism toward regulatory science is to increase transparency by making all data and value judgments used in regulatory decision making accessible for public interpretation, ideally early on in the process, and following the concepts of Open Science. This paper discusses the opportunities and challenges in strengthening Open Science initiatives in regulatory environmental risk assessment (ERA). In this discussion paper, we argue that the benefits associated with Open Science in regulatory ERA far outweigh its perceived risks. All stakeholders involved in regulatory ERA (e.g., governmental regulatory authorities, private sector, academia, and nongovernmental organizations), as well as professional organizations like the Society of Environmental Toxicology and Chemistry, can play a key role in supporting the Open Science initiative, by promoting the use of recommended reporting criteria for reliability and relevance of data and tools used in ERA, and by developing a communication strategy for both professionals and nonprofessionals to transparently explain the socioeconomic value judgments and scientific principles underlying regulatory ERA. Integr Environ Assess Manag 2021;17:1229-1242. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Kevin C. Elliott
- Department of Fisheries and WildlifeLyman Briggs College Department of PhilosophyMichigan State UniversityEast LansingMichiganUSA
- Department of PhilosophyLyman Briggs CollegeMichigan State UniversityEast LansingMichiganUSA
| | | | - Caroline Moermond
- National Institute for Public Health and the Environment (RIVM)UtrechtThe Netherlands
| | - Jörg Romeis
- Research Division Agroecology and EnvironmentAgroscopeZurichSwitzerland
| | - Thomas‐Benjamin Seiler
- Hygiene‐Institut des RuhrgebietsGelsenkirchenGermany
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | | | | |
Collapse
|
8
|
Abstract
Regulatory threshold levels (RTL) represent robust benchmarks for assessing risks of pesticides, e.g., in surface waters. However, comprehensive scientific risk evaluations comparing RTL to measured environmental concentrations (MEC) of pesticides in surface waters were yet restricted to a low number of pesticides, as RTL are only available after extensive review of regulatory documents. Thus, the aim of the present study was to model RTL equivalents (RTLe) for aquatic organisms from publicly accessible ecotoxicological effect databases. We developed a model that applies validity criteria in accordance with official US EPA review guidelines and validated the model against a set of manually retrieved RTL (n = 49). Model application yielded 1283 RTLe (n = 676 for pesticides, plus 607 additional RTLe for other use types). In a case study, the usability of RTLe was demonstrated for a set of 27 insecticides by comparing RTLe and RTL exceedance rates for 3001 MEC from US surface waters. The provided dataset enables thorough risk assessments of surface water exposure data for a comprehensive number of substances. Especially regions without established pesticide regulations may benefit from this dataset by using it as a baseline information for pesticide risk assessment and for the identification of priority substances or potential high-risk regions.
Collapse
|
9
|
Hanson M, Baxter L, Anderson J, Solomon K, Brain R. Strength of methods assessment for aquatic primary producer toxicity data: A critical review of atrazine studies from the peer-reviewed literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1221-1239. [PMID: 31390712 DOI: 10.1016/j.scitotenv.2019.04.336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Improving the quality of pesticide toxicity studies is a shared goal in ecotoxicology and a priority for risk assessors. Using the herbicide atrazine and testing on primary producers as a case study, we developed and applied a transparent scoring system for assessing the quality of peer-reviewed studies. The exercise also highlights where data gaps exist for planning future work. We determined that, while a large number of studies (147) present experimental data fitting basic inclusion criteria, only a small proportion provide sufficient information on the test substance, test organism, and test results to be considered of sufficient quality (i.e., a minimum score of >8 out of 16, meaning no critical study weaknesses identified) that would allow recommendation for their use in decision-making. Optimal studies for use in first tier risk assessment were further identified for each taxonomic group as the highest-scoring study scoring >8, that also used the technical grade active ingredient, reported an EC50 for a population-level endpoint (e.g. cell density, dry weight), and an exposure period in line with standard tests (≤96-h for algae, ≤14-d for macrophytes). Ultimately, 22 freshwater studies (four periphyton, ten macrophytes, and eight phytoplankton) achieved scores >8. Only one study with marine phytoplankton scored >8, and no studies met the risk assessment inclusion criteria for marine/estuarine periphyton or macrophytes. This indicates a potential research need with respect to toxicity data for salt-water species. Finally, registrant studies were evaluated, and in many cases, were the most appropriate for risk assessment, with the greatest scores observed for their respective species relative to those reported in the peer-reviewed literature. This exercise highlights the importance of defining and identifying well-performed toxicity tests, illuminating knowledge gaps, and reporting high quality data in support of the risk assessment process outside of the standard regulatory framework.
Collapse
Affiliation(s)
- Mark Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | - Julie Anderson
- Richardson College for the Environment, The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Keith Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Richard Brain
- Syngenta Crop Protection, LLC, Greensboro, NC, 27409, USA
| |
Collapse
|
10
|
Kienzler A, Connors KA, Bonnell M, Barron MG, Beasley A, Inglis CG, Norberg‐King TJ, Martin T, Sanderson H, Vallotton N, Wilson P, Embry MR. Mode of Action Classifications in the EnviroTox Database: Development and Implementation of a Consensus MOA Classification. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2294-2304. [PMID: 31269286 PMCID: PMC6851772 DOI: 10.1002/etc.4531] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/29/2019] [Accepted: 06/25/2019] [Indexed: 05/24/2023]
Abstract
Multiple mode of action (MOA) frameworks have been developed in aquatic ecotoxicology, mainly based on fish toxicity. These frameworks provide information on a key determinant of chemical toxicity, but the MOA categories and level of specificity remain unique to each of the classification schemes. The present study aimed to develop a consensus MOA assignment within EnviroTox, a curated in vivo aquatic toxicity database, based on the following MOA classification schemes: Verhaar (modified) framework, Assessment Tool for Evaluating Risk, Toxicity Estimation Software Tool, and OASIS. The MOA classifications from each scheme were first collapsed into one of 3 categories: non-specifically acting (i.e., narcosis), specifically acting, or nonclassifiable. Consensus rules were developed based on the degree of concordance among the 4 individual MOA classifications to attribute a consensus MOA to each chemical. A confidence rank was also assigned to the consensus MOA classification based on the degree of consensus. Overall, 40% of the chemicals were classified as narcotics, 17% as specifically acting, and 43% as unclassified. Sixty percent of chemicals had a medium to high consensus MOA assignment. When compared to empirical acute toxicity data, the general trend of specifically acting chemicals being more toxic is clearly observed for both fish and invertebrates but not for algae. EnviroTox is the first approach to establishing a high-level consensus across 4 computationally and structurally distinct MOA classification schemes. This consensus MOA classification provides both a transparent understanding of the variation between MOA classification schemes and an added certainty of the MOA assignment. In terms of regulatory relevance, a reliable understanding of MOA can provide information that can be useful for the prioritization (ranking) and risk assessment of chemicals. Environ Toxicol Chem 2019;38:2294-2304. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Aude Kienzler
- European Commission, Joint Research Centre, IspraItaly
| | | | - Mark Bonnell
- Environment and Climate Change Canada, GatineauQuebecCanada
| | - Mace G. Barron
- Gulf Ecology DivisionUS Environmental Protection Agency, Gulf BreezeFlorida
| | | | | | | | - Todd Martin
- US Environmental Protection Agency, CinncinatiOhio
| | | | | | | | | |
Collapse
|
11
|
Connors KA, Beasley A, Barron MG, Belanger SE, Bonnell M, Brill JL, de Zwart D, Kienzler A, Krailler J, Otter R, Phillips JL, Embry MR. Creation of a Curated Aquatic Toxicology Database: EnviroTox. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1062-1073. [PMID: 30714190 PMCID: PMC6850623 DOI: 10.1002/etc.4382] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 05/20/2023]
Abstract
Flexible, rapid, and predictive approaches that do not require the use of large numbers of vertebrate test animals are needed because the chemical universe remains largely untested for potential hazards. Development of robust new approach methodologies and nontesting approaches requires the use of existing information via curated, integrated data sets. The ecological threshold of toxicological concern (ecoTTC) represents one such new approach methodology that can predict a conservative de minimis toxicity value for chemicals with little or no information available. For the creation of an ecoTTC tool, a large, diverse environmental data set was developed from multiple sources, with harmonization, characterization, and information quality assessment steps to ensure that the information could be effectively organized and mined. The resulting EnviroTox database contains 91 217 aquatic toxicity records representing 1563 species and 4016 unique Chemical Abstracts Service numbers and is a robust, curated database containing high-quality aquatic toxicity studies that are traceable to the original information source. Chemical-specific information is also linked to each record and includes physico-chemical information, chemical descriptors, and mode of action classifications. Toxicity data are associated with the physico-chemical data, mode of action classifications, and curated taxonomic information for the organisms tested. The EnviroTox platform also includes 3 analysis tools: a predicted-no-effect concentration calculator, an ecoTTC distribution tool, and a chemical toxicity distribution tool. Although the EnviroTox database and tools were originally developed to support ecoTTC analysis and development, they have broader applicability to the field of ecological risk assessment. Environ Toxicol Chem 2019;9999:1-12. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | | | - Mark Bonnell
- Environment and Climate Change CanadaGatineauOntarioCanada
| | | | | | | | | | - Ryan Otter
- Middle Tennessee State UniversityMurfreesboroTennesseeUSA
| | | | | |
Collapse
|
12
|
Kienzler A, Barron MG, Belanger SE, Beasley A, Embry MR. Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10203-10211. [PMID: 28759717 DOI: 10.1021/acs.est.7b02337] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mode of toxic action (MOA) is recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, MOA classification has never been standardized in ecotoxicology, and a comprehensive comparison of classification tools and approaches has never been reported. Here we critically evaluate three MOA classification methodologies using an aquatic toxicity data set of 3448 chemicals, compare the approaches, and assess utility and limitations in screening and early tier assessments. The comparisons focused on three commonly used tools: Verhaar prediction of toxicity MOA, the U.S. Environmental Protection Agency (EPA) ASsessment Tool for Evaluating Risk (ASTER) QSAR (quantitative structure activity relationship) application, and the EPA Mode of Action and Toxicity (MOAtox) database. Of the 3448 MOAs predicted using the Verhaar scheme, 1165 were classified by ASTER, and 802 were available in MOAtox. Of the subset of 432 chemicals with MOA assignments for each of the three schemes, 42% had complete concordance in MOA classification, and there was no agreement for 7% of the chemicals. The research shows the potential for large differences in MOA classification between the five broad groups of the Verhaar scheme and the more mechanism-based assignments of ASTER and MOAtox. Harmonization of classification schemes is needed to use MOA classification in chemical hazard and risk assessment more broadly.
Collapse
Affiliation(s)
- A Kienzler
- Joint Research Centre , Directorate F-Health, Consumers, and Reference Materials, F.3 Chemicals Safety & Alternative Methods, TP 126, Via E. Fermi, 2749, I-21027 Ispra, Italy
| | - M G Barron
- United States Environmental Protection Agency , 1 Sabine Island Drive, Gulf Breeze, Florida 32561, United States
| | - S E Belanger
- The Procter & Gamble Company , Mason Business Center, 8700 S Mason-Montgomery Road, Mason, Ohio 45040, United States
| | - A Beasley
- TERC Toxicology and Environmental Research and Consulting, The Dow Chemical Company , 1803 Building, Midland, Michigan 48674, United States
| | - M R Embry
- International Life Sciences Institute Health and Environmental Sciences Institute (HESI) . 1156 15th Street, NW, Suite 200, Washington, District of Columbia 20005, United States
| |
Collapse
|
13
|
Moermond C, Beasley A, Breton R, Junghans M, Laskowski R, Solomon K, Zahner H. Assessing the reliability of ecotoxicological studies: An overview of current needs and approaches. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:640-651. [PMID: 27869364 DOI: 10.1002/ieam.1870] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 11/17/2016] [Indexed: 05/02/2023]
Abstract
In general, reliable studies are well designed and well performed, and enough details on study design and performance are reported to assess the study. For hazard and risk assessment in various legal frameworks, many different types of ecotoxicity studies need to be evaluated for reliability. These studies vary in study design, methodology, quality, and level of detail reported (e.g., reviews, peer-reviewed research papers, or industry-sponsored studies documented under Good Laboratory Practice [GLP] guidelines). Regulators have the responsibility to make sound and verifiable decisions and should evaluate each study for reliability in accordance with scientific principles regardless of whether they were conducted in accordance with GLP and/or standardized methods. Thus, a systematic and transparent approach is needed to evaluate studies for reliability. In this paper, 8 different methods for reliability assessment were compared using a number of attributes: categorical versus numerical scoring methods, use of exclusion and critical criteria, weighting of criteria, whether methods are tested with case studies, domain of applicability, bias toward GLP studies, incorporation of standard guidelines in the evaluation method, number of criteria used, type of criteria considered, and availability of guidance material. Finally, some considerations are given on how to choose a suitable method for assessing reliability of ecotoxicity studies. Integr Environ Assess Manag 2017;13:640-651. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Caroline Moermond
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Amy Beasley
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, Michigan, USA
| | | | - Marion Junghans
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Dübendorf, Switzerland
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Keith Solomon
- Centre for Toxicology, School of Environmental Science, University of Guelph, Guelph, Ontario, Canada
| | - Holly Zahner
- US Food and Drug Administration, Center for Veterinary Medicine, Rockville, Maryland
| |
Collapse
|
14
|
Beasley A, Belanger SE, Brill JL, Otter RR. Evaluation and comparison of the relationship between NOEC and EC10 or EC20 values in chronic Daphnia toxicity testing. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2378-84. [PMID: 26033640 DOI: 10.1002/etc.3086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/24/2015] [Accepted: 05/19/2015] [Indexed: 05/14/2023]
Abstract
Hypothesis-based no-effect-concentration (NOEC) and regression-based x% effect concentration (ECx) values are common statistical approaches used to summarize ecotoxicological effects. Controversy over the NOEC model has prompted a movement toward discontinuation of the NOEC in favor of ECx, but the best x% effect surrogate for NOEC has not yet been determined. Historically, 10% and 20% effect concentrations (EC10 and EC20) have been treated as NOEC analogs. Given these measurements' importance to ecotoxicology, further understanding of the relationships between NOEC and EC10 or EC20 is crucial. In the present study, a metadataset of daphnid chronic toxicity tests was compiled to analyze the strength and significance of NOEC:EC10 and NOEC:EC20 relationships. The impact of endpoint (e.g., mortality, reproduction) and test condition parameters (e.g., pH, temperature) on NOEC:EC10 and NOEC:EC20 was evaluated. Mortality endpoints were most sensitive 51% of the time, with growth and reproductive endpoints constituting the remainder, underscoring the value of using multiple endpoints to evaluate toxic effects rather than relying on reproduction as the a priori most sensitive endpoint. When test condition parameters were less restricted (e.g., pH, hardness), the NOEC:EC20 association was more robust, suggesting that variability introduced by test implementation increased variability in ECx calculation. The analysis revealed that, overall, EC10 was a more suitable analog than EC20 for NOEC. Recommendations include refinement and reporting of the test parameters pH and hardness to minimize variability in ECx calculation.
Collapse
Affiliation(s)
- Amy Beasley
- Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Scott E Belanger
- Environmental Stewardship and Sustainability, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Jessica L Brill
- Environmental Stewardship and Sustainability, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Ryan R Otter
- Middle Tennessee State University, Murfreesboro, Tennessee, USA
| |
Collapse
|