1
|
Chen W, Gong Y, McKie M, Almuhtaram H, Sun J, Barrett H, Yang D, Wu M, Andrews RC, Peng H. Defining the Chemical Additives Driving In Vitro Toxicities of Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14627-14639. [PMID: 36173153 DOI: 10.1021/acs.est.2c03608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increases in the global use of plastics have caused concerns regarding potential adverse effects on human health. Plastic products contain hundreds of potentially toxic chemical additives, yet the exact chemicals which drive toxicity currently remain unknown. In this study, we employed nontargeted analysis and in vitro bioassays to identify the toxicity drivers in plastics. A total of 56 chemical additives were tentatively identified in five commonly used plastic polymer pellets (i.e., PP, LDPE, HDPE, PET, and PVC) by employing suspect screening and nontargeted analysis. Phthalates and organophosphates were found to be dominant in PVC pellets. Triphenyl phosphate and 2-ethylhexyl diphenyl phosphate accounted for a high amount (53.6%) of the inhibition effect of PVC pellet extract on human carboxylesterase 1 (hCES1) activity. Inspired by the high abundances of chemical additives in PVC pellets, six different end-user PVC-based products including three widely used PVC water pipes were further examined. Among them, extracts of PVC pipe exerted the strongest PPARγ activity and cell viability suppression. Organotins were identified as the primary drivers to these in vitro toxicities induced by the PVC pipe extracts. This study clearly delineates specific chemical additives responsible for hCES1 inhibition, PPARγ activity, and cell viability suppression associated with plastic.
Collapse
Affiliation(s)
- Wanzhen Chen
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael McKie
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Menghong Wu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Stanic B, Petrovic J, Basica B, Kaisarevic S, Schirmer K, Andric N. Characterization of the ERK1/2 phosphorylation profile in human and fish liver cells upon exposure to chemicals of environmental concern. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103749. [PMID: 34547448 DOI: 10.1016/j.etap.2021.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
We developed phospho-ERK1/2 ELISA for human and rainbow trout liver cells, employing HepG2 and RTL-W1 cell lines as models. The assay was applied to detect changes in ERK1/2 activity for nine chemicals, added over a wide concentration range and time points. Cell viability was measured to separate ERK1/2 regulation from cytotoxicity. Perfluorooctane sulfonate and carbendazim did not change ERK1/2 activity; influence on ERK1/2 due to cytotoxicity was indicated for tributyltin and cypermethrin. Mancozeb, benzo[a]pyrene, and bisphenol A stimulated ERK1/2 up to ∼2- (HepG2) and 1.5 (RTL-W1)-fold, though the kinetics differed between chemicals and cell lines. Bisphenol A and benzo[a]pyrene were the most potent concentration-wise, altering ERK1/2 activity in pM (HepG2) to nM (RTL-W1) range. While atrazine and ibuprofen increased ERK1/2 activity by ∼2-fold in HepG2, they did not initiate an appreciable response in RTL-W1. This assay proved to be a sensitive, medium- to high-throughput tool for detecting unrecognized ERK1/2-disrupting chemicals.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Jelena Petrovic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Branka Basica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Sonja Kaisarevic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
3
|
Cocci P, Capriotti M, Mosconi G, Palermo FA. Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes. ENVIRONMENTAL RESEARCH 2017; 158:616-624. [PMID: 28719870 DOI: 10.1016/j.envres.2017.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The loggerhead turtle (Caretta caretta) can be considered a good indicator species for studying the ecological impact of endocrine disrupting chemicals (EDCs) on wildlife. However, the effect of these environmental pollutants on nuclear steroid hormone signaling has not yet been addressed in sea turtles mainly due to the legal constraints of their endangered status. Here we describe the use of primary erythrocyte cell cultures as in vitro models for evaluating the effects of different EDCs on the expression of estrogen receptor α (ERα). In addition, we evaluated erythrocyte toxicity caused by EDCs using Alamar Blue assay and heat shock proteins 60 (HSP60) expression. Primary cultures of erythrocytes were exposed to increasing concentrations of 4-nonylphenol (4NP), Diisodecyl phthalate (DiDP), Tri-m-cresyl phosphate (TMCP) and Tributyltin (TBT) for 48h. Alamar Blue demonstrated that exposure of erythrocytes to each contaminant for up to 48h led to a significant impairment of cellular metabolic activity at 100μM, with the exception of TBT. Moreover, our data indicate that loggerhead erythrocytes constitutively express ERα and HSP60 at the transcript level and respond to EDCs by up-regulating their expression. In this regard, ERα was up-regulated in a dose-dependent manner after 48h exposure to both 4NP and TMCP. Interestingly, the dosage-dependent effects of DiDP on ERα expression were opposite in comparison to that obtained following exposure to the other tested compounds. This work provides the first indication regarding the potential of primary erythrocytes as study models for evaluating the effects of EDCs on sea turtles.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| | - Martina Capriotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| |
Collapse
|
4
|
Li Q, Chen L, Liu L, Wu L. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4908-4918. [PMID: 26545894 DOI: 10.1007/s11356-015-5737-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ling Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Li Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Liu L, Chen L, Shao Y, Zhang L, Floehr T, Xiao H, Yan Y, Eichbaum K, Hollert H, Wu L. Evaluation of the ecotoxicity of sediments from Yangtze river estuary and contribution of priority PAHs to ah receptor--mediated activities. PLoS One 2014; 9:e104748. [PMID: 25111307 PMCID: PMC4128779 DOI: 10.1371/journal.pone.0104748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/27/2014] [Indexed: 12/19/2022] Open
Abstract
In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Yangtze Water environment, Ministry of Education, Tongji University, Shanghai, China
| | - Ling Chen
- Key Laboratory of Yangtze Water environment, Ministry of Education, Tongji University, Shanghai, China
| | - Ying Shao
- Key Laboratory of Yangtze Water environment, Ministry of Education, Tongji University, Shanghai, China
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lili Zhang
- Key Laboratory of Yangtze Water environment, Ministry of Education, Tongji University, Shanghai, China
| | - Tilman Floehr
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Yan Yan
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Key Laboratory of Yangtze Water environment, Ministry of Education, Tongji University, Shanghai, China
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- College of Resources and Environmental Science, Chongqing University, Chongqing, China
- School of Environment, Nanjing University, Nanjing, China
| | - Lingling Wu
- Key Laboratory of Yangtze Water environment, Ministry of Education, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
6
|
Zhang J, Zuo Z, Zhu W, Sun P, Wang C. Sex-different effects of tributyltin on brain aromatase, estrogen receptor and retinoid X receptor gene expression in rockfish (Sebastiscus marmoratus). MARINE ENVIRONMENTAL RESEARCH 2013; 90:113-118. [PMID: 23850073 DOI: 10.1016/j.marenvres.2013.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/12/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
Since the brain plays important roles in reproduction, the brain aromatase (Cyp19b), estrogen receptor (ER), retinoid X receptor (RXR) α and peroxisome proliferator-activated receptor γ were examined in rockfish after TBT exposure (1, 10, and 100 ng L(-1)). The results showed that the Cyp19b expression was elevated in the male rockfish, while no effect was produced in the females. Inconsistently, serum testosterone and 17β-estradiol showed no change in the males, while an increase of testosterone and a decrease of 17β-estradiol were observed in the females. TBT affected the ER expression in the males depending on the concentrations, however, no change was observed in the females. In addition, TBT elevated the RXRα expression in the males but produced an opposite effect in the females. In conclusion, TBT might have had sex-different effects on the brain Cyp19b, ER and RXR expression in rockfish, indicating a complex endocrine disrupting effect of TBT.
Collapse
Affiliation(s)
- Jiliang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, PR China
| | | | | | | | | |
Collapse
|
7
|
Pagliarani A, Nesci S, Ventrella V. Toxicity of organotin compounds: Shared and unshared biochemical targets and mechanisms in animal cells. Toxicol In Vitro 2013; 27:978-90. [DOI: 10.1016/j.tiv.2012.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 11/08/2012] [Accepted: 12/03/2012] [Indexed: 01/10/2023]
|
8
|
Cao X, Dong D, Liu J, Jia C, Liu W, Yang W. Studies on the interaction between triphenyltin and bovine serum albumin by fluorescence and CD spectroscopy. CHEMOSPHERE 2013:S0045-6535(13)00029-5. [PMID: 23360747 DOI: 10.1016/j.chemosphere.2012.12.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
The interaction between triphenyltin (TPT) and bovine serum albumin (BSA) in physiological buffer (pH=7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that TPT could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of TPT with BSA were (7.04±0.0057)×10(2) and (0.77±0.016) which were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were positive, which indicated that the interaction of TPT with BSA was driven mainly by hydrophobic forces. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (TPT) was calculated to be 3.05nm based on Forster's non-radiative energy transfer theory. The results of synchronous fluorescence, three-dimensional fluorescence and Circular Dichroism (CD) spectra showed that the triphenyltin induced conformational changes of BSA.
Collapse
Affiliation(s)
- Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang 110036, China
| | | | | | | | | | | |
Collapse
|
9
|
Dubalska K, Rutkowska M, Bajger-Nowak G, Konieczka P, Namieśnik J. Organotin Compounds: Environmental Fate and Analytics. Crit Rev Anal Chem 2013. [DOI: 10.1080/10408347.2012.743846] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kinga Dubalska
- a Department of Analytical Chemistry, Chemical Faculty , Gdansk University of Technology , Gdansk , Poland
| | - Małgorzata Rutkowska
- a Department of Analytical Chemistry, Chemical Faculty , Gdansk University of Technology , Gdansk , Poland
| | - Gabriela Bajger-Nowak
- a Department of Analytical Chemistry, Chemical Faculty , Gdansk University of Technology , Gdansk , Poland
| | - Piotr Konieczka
- a Department of Analytical Chemistry, Chemical Faculty , Gdansk University of Technology , Gdansk , Poland
| | - Jacek Namieśnik
- a Department of Analytical Chemistry, Chemical Faculty , Gdansk University of Technology , Gdansk , Poland
| |
Collapse
|
10
|
Zuo Z, Wang C, Wu M, Wang Y, Chen Y. Exposure to tributyltin and triphenyltin induces DNA damage and alters nucleotide excision repair gene transcription in Sebastiscus marmoratus liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:106-112. [PMID: 22750117 DOI: 10.1016/j.aquatox.2012.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 05/29/2023]
Abstract
Tributyltin (TBT) and triphenyltin (TPT) coexist in the aquatic environment. However, the effects of TBT, TPT and a mixture of the two on DNA damage in marine fish livers and the mechanism involved remain to be elucidated. In the present study, we assessed their ability to cause hepatic DNA damage in Sebastiscus marmoratus liver and we investigated the related mechanism. The results showed that TBT, TPT and the mixture significantly decreased liver DNA integrity in a dose-dependent manner. Using Pearson correlation coefficient analysis, we identified that the hepatic total tin concentration was significantly correlated with hepatic DNA integrity after exposure to TBT alone and combined exposure to TBT and TPT. In order to clarify the mechanism which influences DNA repair, the mRNA levels of nucleotide excision repair (NER) genes were determined using real-time PCR analysis. The results showed that NER gene expression levels were disturbed. The expression of XPB, ERCC1, and DNA Pol ɛ was significantly decreased after treatment with TBT, TPT and the mixture, while the expression of PCNA, HR23B, XPG, and DNA lig III was significantly increased in treated-groups compared to the control. Based on this, we proposed that TBT, TPT and a mixture of the two induced DNA damage in marine fish livers by altering the transcription levels of the NER genes.
Collapse
Affiliation(s)
- Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China.
| | | | | | | | | |
Collapse
|