1
|
Abstract
Indirect effects in ecotoxicology are defined as chemical- or pollutant-induced alterations in the density or behavior of sensitive species that have cascading effects on tolerant species in natural systems. As a result, species interaction networks (e.g., interactions associated with predation or competition) may be altered in such a way as to bring about large changes in populations and/or communities that may further cascade to disrupt ecosystem function and services. Field studies and experimental outcomes as well as models indicate that indirect effects are most likely to occur in communities in which the strength of interactions and the sensitivity to contaminants differ markedly among species, and that indirect effects will vary over space and time as species composition, trophic structure, and environmental factors vary. However, knowledge of indirect effects is essential to improve understanding of the potential for chemical harm in natural systems. For example, indirect effects may confound laboratory-based ecological risk assessment by enhancing, masking, or spuriously indicating the direct effect of chemical contaminants. Progress to better anticipate and interpret the significance of indirect effects will be made as monitoring programs and long-term ecological research are conducted that facilitate critical experimental field and mesocosm investigations, and as chemical transport and fate models, individual-based direct effects models, and ecosystem/food web models continue to be improved and become better integrated.
Collapse
|
2
|
Lu Y, Li S, Sha M, Wang B, Cheng G, Guo Y, Zhu J. Cascading effects caused by fenoxycarb in freshwater systems dominated by Daphnia carinata and Dolerocypris sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111022. [PMID: 32888608 DOI: 10.1016/j.ecoenv.2020.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
To evaluate the aquatic hazards of the insect juvenile hormone analogue fenoxycarb, a single application (0, 48.8, 156.3, 500, 1600, and 5120 μg/L) of it was done in indoor freshwater systems dominated by Daphnia carinata (daphnid) and Dolerocypris sinensis (ostracoda). The responses of zooplankton (counted by abundance and the activity and immuno-reactive content of free N-Acetyl-β-D-glucosaminidase (NAGase)), phytoplankton (counted by chlorophyll and phycocyanin), planktonic bacteria and fungi, and some water quality parameters were investigated in a period of 35 d. Results of the study showed that the ostracoda was more sensitive than daphnid, with time-weighted average (TWA)-based no observed effect concentrations (NOECs) to be 8.45 and 12.66 μg/L in systems without humic acid addition (HA-) and to be 6.37 and 9.54 μg/L in systems with humic acid addition (HA+). The duration of treatment-related effects in the ostracoda population was longer than the daphnid population (21 vs. 14 days). Besides, the data analysis indicated that the toxicity of fenoxycarb was significantly enhanced in the HA+ systems. Owing to the reduced grazing pressure, the concentrations of chlorophyll and phycocyanin increased in the two highest treatments. The increase in photosynthesis along with a reduced animal excretion led to an increase in pH and a decrease in nutrient contents. These changes seemed to have an effect on the microbial communities. For example, the abundances of some opportunistic pathogens of aquatic animals (e.g. Aeromonas and Cladosporium) and organic-pollutant-degrading microorganisms (e.g. Ancylobacter and Azospirillum) increased significantly in microbial communities, but the abundances of Pedobacter, Candidatus Planktoluna, and Rhodobacter (photosynthetic bacteria) markedly decreased. This study provides useful information to understand the ecotoxicological impacts of fenoxycarb at the population and community levels while integrating the effects of HA on toxicity.
Collapse
Affiliation(s)
- Yu Lu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shaonan Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Sha
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Biao Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Gong Cheng
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinwen Zhu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Douda K, Zhao S, Vodáková B, Horký P, Grabicová K, Božková K, Grabic R, Slavík O, Randák T. Host-parasite interaction as a toxicity test endpoint using asymmetrical exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:173-180. [PMID: 30991163 DOI: 10.1016/j.aquatox.2019.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 05/06/2023]
Abstract
Interspecific relationships frequently determine the effect a pollutant can have on an organism, and this is especially true in closely interacting species such as hosts and parasites. The high spatial and temporal variability of contaminant concentrations combined with the movement of aquatic biota can further influence the consequences that are associated with contamination. We used a full factorial design for the exposed and unexposed partners of the relationship between the parasitic larvae (glochidia) of the European freshwater mussel (Anodonta anatina) and its host fish (Squalius cephalus) to identify the sources of variation in the sublethal endpoints of species interaction (the intensity of parasite attachment, the spatial position of glochidia on the host body, and encapsulation success). We used the water-borne human pharmaceutical compounds methamphetamine (a central nervous system stimulant) and tramadol (an opioid) at environmentally relevant concentrations (˜ 6.7 and 3.8 nmol L-1 of methamphetamine and tramadol, respectively) as a proxy for contaminant exposure because these compounds are emerging aquatic stressors that are known for high spatial and temporal variability in their detected concentration levels. The relationship between the bivalve and the fish species was influenced by the preceding contact with both methamphetamine and tramadol, but this effect was highly asymmetric. Our experimental design enabled us to identify the specific changes in the relationship outcome that are elicited by the exposure of individual partners, such as the significant increase in glochidia infection success rate from 59.6 ± 3.9% to 78.7 ± 2.8% (means ± s.e.) that was associated with host exposure to methamphetamine. Additionally, the significant interaction effect of the exposure was demonstrated by the lowered proportion of glochidia attached to gills after the coexposure of both partners to tramadol. The impact of pharmaceuticals on wild aquatic host-parasite relationships provides an example of the risks that are associated with the unintentional discharge of biologically active compounds into freshwater habitats. Given the increasing evidence showing the ecological impact of waste pharmaceuticals, the use of multitrophic interaction endpoints after joint and unilateral exposures provides an important step towards the realistic risk assessment of these compounds.
Collapse
Affiliation(s)
- Karel Douda
- Department of Zoology and Fisheries, FAFNR, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
| | - Shuran Zhao
- Department of Zoology and Fisheries, FAFNR, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Barbora Vodáková
- Department of Zoology and Fisheries, FAFNR, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Pavel Horký
- Department of Zoology and Fisheries, FAFNR, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kristýna Božková
- Department of Zoology and Fisheries, FAFNR, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, FAFNR, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
4
|
Riedl V, Agatz A, Benstead R, Ashauer R. Factors Affecting the Growth of Pseudokirchneriella subcapitata in Single-Species Tests: Lessons for the Experimental Design and the Reproducibility of a Multitrophic Laboratory Microcosm. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1120-1131. [PMID: 30779376 DOI: 10.1002/etc.4393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/17/2018] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
The need for an integrated risk assessment at an ecologically relevant scale (e.g., at the population/community levels) has been acknowledged. Multispecies systems with increased ecological complexity, however, are difficult if not impossible to reproduce. The laboratory-scale microcosm TriCosm (Pseudokirchneriella subcapitata, Ceriodaphnia dubia, Hydra viridissima) of intermediate complexity was developed for the reproducible assessment of chemical effects at the population/community levels. The system dynamics were repeatable in the short term, but interexperimental variation of algal dynamics in the long term triggered knock-on effects on grazer and predator populations. We present 20 experiments to assess the effects of 12 factors (test medium, vessel type/condition, shaking speed, light intensity/regime, inoculation density, medium preparation components, metal concentration/composition, buffering salt type/concentration) on algal growth in the TriCosm enclosure. Growth rates varied between ≤ 0 and 1.40 (± 0.21) and generally were greatest with increased shaking speed, light exposure, medium buffer, or aeration time. Treatments conducted in dishes with aseptically prepared, lightly buffered, and/or hardly aerated medium resulted in low growth rates. We found that inter-experimental variation of algal dynamics in the TriCosm was caused by a modification of medium preparation (omission of medium aeration) with the aim of reducing microbial contamination. Our findings highlight the facts that consistency in experimental procedures and in-depth understanding of system components are indispensable to achieve repeatability. Environ Toxicol Chem 2019;00:1-13. © 2019 SETAC.
Collapse
Affiliation(s)
- Verena Riedl
- Environment Department, University of York, Heslington, York, United Kingdom
- Centre for Chemical Safety and Stewardship, Fera Science Ltd., Sand Hutton, York, United Kingdom
| | - Annika Agatz
- Environment Department, University of York, Heslington, York, United Kingdom
| | - Rachel Benstead
- Centre for Chemical Safety and Stewardship, Fera Science Ltd., Sand Hutton, York, United Kingdom
| | - Roman Ashauer
- Environment Department, University of York, Heslington, York, United Kingdom
| |
Collapse
|