1
|
Kuyukina MS, Bayandina EA, Kostrikina NA, Sorokin VV, Mulyukin AL, Ivshina IB. Adaptations of Rhodococcus rhodochrous Biofilms to Oxidative Stress Induced by Copper(II) Oxide Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1356-1367. [PMID: 39761365 DOI: 10.1021/acs.langmuir.4c03987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function. Hydrocarbon-oxidizing bacteria of the genus Rhodococcus, well-known biodegraders of toxic organic pollutants and bioremediation agents, are capable of producing biofilms, which, as we proposed, are more resistant to metal nanoparticles, while the particular adaptation mechanisms have not yet been clarified. In this study, we study the adaptation mechanisms of Rhodococcus rhodochrous IEGM 1363 biofilms to CuO NPs in a wide range of concentrations (0.001-0.1 g/L), including morphological and ultrastructural cell alterations. The results obtained on the long-term dynamics (≤72 h) and localization of EPM structural components, in particular, lipids, polysaccharides, and proteins, indicated their important role in the complex adaptive response of alkanotrophic Rhodococcus to oxidative stress caused by copper nanooxide. The observed changes in the ultrastructure and element composition included binding of CuO nanoparticles by the cell wall to prevent their penetration inside cells and intracellular accumulation of potassium, magnesium, phosphorus, and sulfur in electron-dense inclusions, which may be associated with a metabolic stress reaction. Understanding the mechanisms of interaction between nanometals and Rhodococcus biofilms will contribute to the development of biocatalysts based on immobilized bacterial cells and bioremediation methods.
Collapse
Affiliation(s)
- Maria S Kuyukina
- Perm State University, 15 Bukirev strasse, Perm 614068, Russia
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13 Golev strasse, Perm 614081, Russia
| | | | - Nadezhda A Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, build. 2, 33, Leninsky prospect, Moscow 119071, Russia
| | - Vladimir V Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, build. 2, 33, Leninsky prospect, Moscow 119071, Russia
| | - Andrey L Mulyukin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, build. 2, 33, Leninsky prospect, Moscow 119071, Russia
| | - Irena B Ivshina
- Perm State University, 15 Bukirev strasse, Perm 614068, Russia
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13 Golev strasse, Perm 614081, Russia
| |
Collapse
|
2
|
Garncarek-Musiał M, Maruszewska A, Kowalska-Góralska M, Mijowska E, Zielinkiewicz K, Dziewulska K. Comparative study of influence of Cu, CuO nanoparticles and Cu 2+ on rainbow trout (Oncorhynchus mykiss W.) spermatozoa. Sci Rep 2024; 14:22242. [PMID: 39333544 PMCID: PMC11437131 DOI: 10.1038/s41598-024-72956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The same elements can yield disparate nanoproducts that may elicit different harmful effects in cells and organisms. This study aimed to compare the effects of copper (Cu NPs) and copper oxide (CuO NPs) nanoparticles and Cu2+ (from CuSO4) on the physico-biochemical variables of rainbow trout spermatozoa. The cell death assay, along with the activation of caspases 8 and 9, the level of reactive oxygen species (ROS), and the percentage of cells exhibiting a high mitochondrial membrane potential (MMP) were quantified over 24-hour incubation. Interestingly, during exposure, all copper products induced cell apoptosis. However, Cu NPs had a stronger effect than CuO NPs, while the impact of the Cu in ionic form was found to be between the other two compounds. The extrinsic and intrinsic apoptotic pathways were activated, as evidenced by the activation of caspases 8 and 9. Initially, caspase activation increased without a corresponding decrease in MMPs but prolonged exposure resulted in a significant decrease in MMP levels. In all treated cells, the ROS levels increased over time. Further studies are needed to confirm the lower CuO NPs' toxicity compared to Cu NPs because their effect on cells also depends on many other parameters such as size or shape.
Collapse
Affiliation(s)
- Małgorzata Garncarek-Musiał
- Doctoral School, Institute of Biology, University of Szczecin, Mickiewicza 18, Szczecin, 70- 383, Poland
- Institute of Biology, Department of Hydrobiology, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland
| | - Agnieszka Maruszewska
- Institute of Biology, Department of Physiology and Biochemistry, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland
- Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, Szczecin, 71- 415, Poland
| | - Monika Kowalska-Góralska
- Faculty of Biology and Animal Science, Department of Limnology and Fishery, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, Wrocław, 51-630, Poland
| | - Ewa Mijowska
- Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Piastow Ave. 45, Szczecin, 70-310, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, Szczecin, Poland
| | - Klaudia Zielinkiewicz
- Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Piastow Ave. 45, Szczecin, 70-310, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, Szczecin, Poland
| | - Katarzyna Dziewulska
- Institute of Biology, Department of Hydrobiology, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland.
- Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, Szczecin, 71- 415, Poland.
| |
Collapse
|
3
|
Ross BN, Knightes CD. Simulation of the Environmental Fate and Transformation of Nano Copper Oxide in a Freshwater Environment. ACS ES&T WATER 2022; 2:1532-1543. [PMID: 36118665 PMCID: PMC9469096 DOI: 10.1021/acsestwater.2c00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Production of engineered nanomaterials (ENMs) has rapidly increased, yet uncertainty exists regarding the full extent of their environmental implications. This study investigates the fate, transformation, and speciation of nano copper oxide (nanoCuO) released into Lake Waccamaw, North Carolina, over 101 years. Using the Advanced Toxicant module of the Water Quality Analysis Simulation Program (WASP8), we assessed the accumulation and mass proportions of nanoCuO and Cu2+ (the product of nanoCuO's dissolution) in the water column and sediments. Our simulations suggest that when nanoCuO is released into Lake Waccamaw, the highest concentrations of both nanoCuO and Cu2+ are found in the surface sediments, followed by the subsurface sediments and the water column. Simulating different heteroaggregation attachment efficiencies of nanoCuO suggested that increases in attachment efficiency increased nanoCuO concentrations and mass proportions in the water column and sediments, while Cu2+ exhibited the opposite trends. After 101 years, most nanoCuO in the sediments was attached to particulate organic matter and clay particles at all attachment efficiencies, while low attachment efficiency slowed aggregate formation in the water column. Our results highlight the influence that heteroaggregation has on the behavior of nanoCuO inputs and suggest the potential for legacy contamination of nanoCuO and Cu2+ in sediments.
Collapse
Affiliation(s)
- Bianca N. Ross
- Atlantic
Coastal Environmental Sciences Division, Center for Environmental
Measurement & Modeling, Office of Research and Development, USEPA, 27 Tarzwell Drive, Narragansett, Rhode Island 02882, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, United States
| | - Christopher D. Knightes
- Atlantic
Coastal Environmental Sciences Division, Center for Environmental
Measurement & Modeling, Office of Research and Development, USEPA, 27 Tarzwell Drive, Narragansett, Rhode Island 02882, United States
| |
Collapse
|
4
|
Köktürk M, Altindag F, Nas MS, Calimli MH. Ecotoxicological Effects of Bimetallic PdNi/MWCNT and PdCu/MWCNT Nanoparticles onto DNA Damage and Oxidative Stress in Earthworms. Biol Trace Elem Res 2022; 200:2455-2467. [PMID: 34313947 DOI: 10.1007/s12011-021-02821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Bimetallic nanoparticles are synthesized using two different metal elements and used recently in many fields. However, limited studies related to the ecotoxic effects of nanoparticles available in the literature. The purpose of this study is to synthesize and characterize bimetallic PdCu/MWCNT and PdNi/MWCNT NPs and investigate their ecotoxic effects on earthworms. For this purpose, we injected approximately 20 µL of various concentrations of bimetallic PdCu/MWCNT and PdNi/MWCNT NPs (1, 10, 100, 1000, and 2000 mg/L) into the coelomic space of earthworms. We evaluated survival rate, malformations, reactive oxygen species (ROS) level, 8-OHdG content, and histopathological changes in earthworms at the 48th hour after exposure. PdCu/MWCNT and PdNi/MWCNT NPs were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) pattern, and Raman-scattering spectroscopy. Toxicological examinations showed that PdCu/MWCNT NPs reduced the survival rate of earthworms (2000 mg/L, 84%) and caused various malformations (various lesions, thinning, swelling, and rupture), but nonsignificant effects of survival rate and malformations were observed in earthworms using PdNi/MWCNT NPs. The histopathological examinations of earthworm tissues exposed with PdNi/MWCNT determined that tissues in all treatment groups had a normal histological appearance. However, at a concentration of 2000 mg/L of PdCu/MWCNT NPs, atrophy in the longitudinal muscle layer and less degenerative cells in the epidermis layer were observed in earthworm tissues. It was determined that PdNi/MWCNT and PdCu/MWCNT NPs caused significant increases in ROS levels and 8-OHdG activity in earthworm tissues after 48 h. Finally, our results demonstrated that the toxicity of PdNi/MWCNT NPs was detected to be lower than PdCu/MWCNT NPs. However, both nanoparticles may pose a toxicological risk at high concentrations (1000 and 2000 mg/L). These findings will provide valuable information to studies on the use of PdNi/MWCNT NPs in wastewater treatment systems, industrial and medical fields, which have been determined to have less ecotoxicological risk.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Igdır University, Igdır, Turkey
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, University of Igdır, Igdır, Turkey
| | - Mehmet Harbi Calimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, University of Igdır, Igdır, Turkey.
| |
Collapse
|
5
|
Okamura H, Kano K, Yap CK, Emmanouil C. Floating particles with high copper concentration in the sea-surface microlayer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29535-29542. [PMID: 33948839 DOI: 10.1007/s11356-021-14187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
This study sought to clarify whether suspended particles containing high Cu concentrations are present in the sea-surface microlayer (S-SML). For this reason, suspended particles (10-2000 μm) in the S-SML were collected periodically from a ship mooring pond during 2018-2020, and the acid-soluble Cu concentration in the suspended particles was measured as particulate Cu (P-Cu). The highest concentration of P-Cu in the S-SML of the pond was 75 μg L-1 with a 90th percentile value of 2.5 μg L-1. This is below P-Cu values reported for the S-SML in North American ports, but 140 times higher than this found in bulk seawater in the Atlantic Ocean. The highest P-Cu concentration in the S-SML of non-organism (abiotic) origin was 17 μg L-1, and the abiotic P-Cu to P-Cu ratio varied from 0.2 to 100%, likely depending on the quality and quantity of biogenic material in the S-SML samples. It is assumed that the S-SML particles examined here contain high Cu concentrations originating from ship antifouling paints.
Collapse
Affiliation(s)
- Hideo Okamura
- Research Center for Inland Seas, Kobe University, Fukaeminami 5-1-1 Higashinada, Kobe, 658-0022, Japan.
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami 5-1-1 Higashinada, Kobe, 658-0022, Japan.
| | - Kenta Kano
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami 5-1-1 Higashinada, Kobe, 658-0022, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
6
|
Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, Luxton TP, Ho KT, Burgess RM, Flury M, White JC, Su C. Nano-enabled pesticides for sustainable agriculture and global food security. NATURE NANOTECHNOLOGY 2022; 17:347-360. [PMID: 35332293 PMCID: PMC9774002 DOI: 10.1038/s41565-022-01082-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/27/2022] [Indexed: 05/02/2023]
Abstract
Achieving sustainable agricultural productivity and global food security are two of the biggest challenges of the new millennium. Addressing these challenges requires innovative technologies that can uplift global food production, while minimizing collateral environmental damage and preserving the resilience of agroecosystems against a rapidly changing climate. Nanomaterials with the ability to encapsulate and deliver pesticidal active ingredients (AIs) in a responsive (for example, controlled, targeted and synchronized) manner offer new opportunities to increase pesticidal efficacy and efficiency when compared with conventional pesticides. Here, we provide a comprehensive analysis of the key properties of nanopesticides in controlling agricultural pests for crop enhancement compared with their non-nanoscale analogues. Our analysis shows that when compared with non-nanoscale pesticides, the overall efficacy of nanopesticides against target organisms is 31.5% higher, including an 18.9% increased efficacy in field trials. Notably, the toxicity of nanopesticides toward non-target organisms is 43.1% lower, highlighting a decrease in collateral damage to the environment. The premature loss of AIs prior to reaching target organisms is reduced by 41.4%, paired with a 22.1% lower leaching potential of AIs in soils. Nanopesticides also render other benefits, including enhanced foliar adhesion, improved crop yield and quality, and a responsive nanoscale delivery platform of AIs to mitigate various pressing biotic and abiotic stresses (for example, heat, drought and salinity). Nonetheless, the uncertainties associated with the adverse effects of some nanopesticides are not well-understood, requiring further investigations. Overall, our findings show that nanopesticides are potentially more efficient, sustainable and resilient with lower adverse environmental impacts than their conventional analogues. These benefits, if harnessed appropriately, can promote higher crop yields and thus contribute towards sustainable agriculture and global food security.
Collapse
Affiliation(s)
- Dengjun Wang
- Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Ada, OK, USA.
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX, USA
| | - Andrew Byro
- Antimicrobials Division, Office of Pesticide Programs, US Environmental Protection Agency, Arlington, VA, USA
| | - Richard Zepp
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Athens, GA, USA
| | - Endalkachew Sahle-Demessie
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Todd P Luxton
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Kay T Ho
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Robert M Burgess
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Puyallup and Pullman, WA, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Chunming Su
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, US Environmental Protection Agency, Ada, OK, USA.
| |
Collapse
|
7
|
Zelinka SL, Kirker GT, Sterbinsky GE, Bourne KJ. Oxidation states of copper in preservative treated wood as studied by X-ray absorption near edge spectroscopy (XANES). PLoS One 2022; 17:e0263073. [PMID: 35085335 PMCID: PMC8794131 DOI: 10.1371/journal.pone.0263073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
Copper is a common component in wood preservatives and is used to protect the wood against fungal degradation. Previous research has shown that the Cu++ oxidation state provides the best wood protection, and Cu++ is widely believed to be the oxidation state of most copper within treated wood. A recent study using X-ray absorption near edge spectroscopy (XANES) reported high amounts of Cu+ in wood that had been in contact with corroded fasteners. This study uses XANES to examine the copper oxidation states in wood treated with several different wood preservatives as a function of time after treatment. In contrast with previous literature which focused on the fixation reaction in the first few hours after treatment, this paper examines the oxidation state of Cu in treated wood at longer times (up to 1-year) after treatment. The results showed in nearly all cases, Cu was in the Cu++ oxidation state to within the measurement uncertainty. Cu XANES patterns taken approximately 1-year after treatment showed no discernable differences between preservative systems, indicating that regardless of the starting treatment the final Cu speciation is the same within one year. The results confirm previously held beliefs about the Cu oxidation states in wood and give further insights into the corrosion mechanism of metals embedded in treated wood.
Collapse
Affiliation(s)
- Samuel L. Zelinka
- Building and Fire Sciences, US Forest Service, Forest Products Laboratory, Madison, WI, United States of America
- * E-mail:
| | - Grant T. Kirker
- Durability and Wood Protection, US Forest Service, Forest Products Laboratory, Madison, WI, United States of America
| | - George E. Sterbinsky
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States of America
| | - Keith J. Bourne
- Building and Fire Sciences, US Forest Service, Forest Products Laboratory, Madison, WI, United States of America
| |
Collapse
|
8
|
Reichman JR, Johnson MG, Rygiewicz PT, Smith BM, Bollman MA, Storm MJ, King GA, Andersen CP. Focused Microbiome Shifts in Reconstructed Wetlands Correlated with Elevated Copper Concentrations Originating from Micronized Copper Azole-Treated Wood. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3351-3368. [PMID: 34551151 PMCID: PMC8729818 DOI: 10.1002/etc.5219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Micronized copper (Cu) azole (MCA) wood preservative formulations include Cu in nano form, and relatively little is known about longer term effects of Cu leached from MCA into wetland ecosystems. We tested the hypothesis that changes in soil microbiomes within reconstructed freshwater wetlands will be associated with exposure to elevated Cu concentrations originating from immersed MCA-treated wood stakes. Eight replicate communities were assembled with Willamette Valley (OR, USA) flood plain soil and clonally propagated wetland plants within mesocosms. Inundated communities were equilibrated for 5 months before installation of MCA or control southern yellow pine stakes (n = 4 communities/experimental group). Soil samples were collected for 16S and internal transcribed spacer amplicon sequencing to quantify responses in prokaryotes and eukaryotes, respectively, at 15 time points, spanning two simulated seasonal dry downs, for up to 678 days. Physiochemical properties of water and soil were monitored at 20 and 12 time points respectively, over the same period. For both taxonomic groups of organisms, phylogenetic diversity increased and was positively correlated with elapsed days. Furthermore, there was significant divergence among eukaryotes during the second year based on experimental group. Although the composition of taxa underwent succession over time, there was significantly reduced relative abundance of sequence variants from Gomphonema diatoms and Scutellinia fungi in communities where MCA wood stakes were present compared with the controls. These focused microbiome shifts were positively correlated with surface water Cu and soil Cu concentrations, which were significantly elevated in treated communities. The reconstructed communities were effective systems for assessing potential impacts to wetland microbiomes after exposure to released copper. The results further inform postcommercialization risk assessments on MCA-treated wood. Environ Toxicol Chem 2021;40:3351-3368. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Jay R. Reichman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Mark G. Johnson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Paul T. Rygiewicz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Bonnie M. Smith
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Michael A. Bollman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | | | | | - Christian P. Andersen
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| |
Collapse
|
9
|
Johnson MG, Luxton TP, Rygiewicz PT, Reichman JR, Bollman MA, King GA, Storm MJ, Nash MS, Andersen CP. Transformation and release of micronized Cu used as a wood preservative in treated wood in wetland soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117189. [PMID: 34023660 PMCID: PMC9299944 DOI: 10.1016/j.envpol.2021.117189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Micronized Cu (μ-Cu) is used as a wood preservative, replacing toxic chromated copper arsenate (CCA). Micronized Cu is malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, with many particle diameters less than 100 nm, mixed with biocides and then used to treat wood. In addition to concerns about the fate of the Cu from μ-Cu, there is interest in the fate of the nano-Cu (n-Cu) constituents. We examined movement of Cu from μ-Cu-treated wood after placing treated-wood stakes into model wetland ecosystems. Release of Cu into surface and subsurface water was monitored. Surface water Cu reached maximum levels 3 days after stake installation and remained elevated if the systems remained inundated. Subsurface water Cu levels were 10% of surface water levels at day 3 and increased gradually thereafter. Sequential filtering indicated that a large portion of the Cu in solution was associating with soluble organics, but there was no evidence for n-Cu in solution. After 4 months, Cu in thin-sections of treated wood and adjacent soil were characterized with micro X-ray absorption fine structure spectroscopy (μ-XAFS). Localization and speciation of Cu in the wood and adjacent soil using μ-XAFS clearly indicated that Cu concentrations decreased over time in the treated wood and increased in the adjacent soil. However, n-Cu from the treated wood was not found in the adjacent soil or plant roots. The results of this study indicate that Cu in the μ-Cu-treated wood dissolves and migrates into adjacent soil and waters primarily in ionic form (i.e., Cu2+) and not as nano-sized Cu particles. A reduced form of Cu (Cu2S) was identified in deep soil proximal to the treated wood, indicating strong reducing conditions. The formation of the insoluble Cu2S effectively removes some portion of dissolved Cu from solution, reducing movement of Cu2+ to the water column and diminishing exposure.
Collapse
Affiliation(s)
- M G Johnson
- EPA, ORD, Center for Public Health and Environmental Assessment, Corvallis, OR, USA.
| | - T P Luxton
- EPA, ORD, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA
| | - P T Rygiewicz
- EPA, ORD, Center for Public Health and Environmental Assessment, Corvallis, OR, USA
| | - J R Reichman
- EPA, ORD, Center for Public Health and Environmental Assessment, Corvallis, OR, USA
| | - M A Bollman
- EPA, ORD, Center for Public Health and Environmental Assessment, Corvallis, OR, USA
| | | | | | - M S Nash
- EPA, ORD, Center for Public Health and Environmental Assessment, Corvallis, OR, USA
| | - C P Andersen
- EPA, ORD, Center for Public Health and Environmental Assessment, Corvallis, OR, USA
| |
Collapse
|
10
|
Tegenaw A, Sorial GA, Sahle-Demessie E. Effect of colloid-size copper-based pesticides and wood-preservatives against microbial activities of Gram-positive Bacillus species using five-day biochemical oxygen demand test. J Environ Sci (China) 2021; 105:71-80. [PMID: 34130841 PMCID: PMC8217730 DOI: 10.1016/j.jes.2020.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 05/03/2023]
Abstract
Copper-based pesticides and wood preservatives could end up in the environment during production, use, and end-of-life via different pathways that could cause unintended ecological and adverse health effects. This paper provides the effect of colloid-size Cu-based pesticides (CuPRO and Kocide), micronized Cu azole (MCA-1 and MCA-2) and alkaline Cu quaternary (ACQ) treated woods, Cu2+, Cu2+ spiked untreated wood (UTW), and CuCO3 solutions against Gram-positive Bacillus species using five-day biochemical oxygen demand (BOD5) standard test. The total Cu leached from MCA-1, MCA-2, and ACQ in Milli-Q water after 5 days were ~0.1, ~0.11, and ~0.64 g/kg of wood, respectively. However, the form of Cu leached from MCA woods was mostly ionic (> 90%). The total organic carbon (TOC) content of any tested wood (UTW/MCA-1/MCA-2/ACQ) was ~99% of its corresponding total carbon (TC) content, whereas the TOC of any tested wood sawdust exceeded that of its corresponding piece/block by > 300%. The dissolved oxygen (DO) consumption value in the presence of Cu2+, CuCO3, CuPRO, and Kocide solutions was significantly influenced by Cu particles/ions. However, the DO consumption value in the presence of UTW/MCA-1/MCA-2/ACQ woods was significantly influenced by organics leached from woods. On the other hand, the DO consumption of MCA sawdust was greater than (300%) that of MCA pieces/block. The findings of this study provide more insight into how organics leached from woods significantly reduce the toxic effects of Cu ions against Gram-positive Bacillus species.
Collapse
Affiliation(s)
- Ayenachew Tegenaw
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, 701 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA.
| | - George A Sorial
- Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, 701 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Endalkachew Sahle-Demessie
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solution and Emergency Response, Cincinnati, OH 45268, USA
| |
Collapse
|
11
|
Andreani T, Nogueira V, Gavina A, Fernandes S, Rodrigues JL, Pinto VV, Ferreira MJ, Silva AM, Pereira CM, Pereira R. Ecotoxicity to Freshwater Organisms and Cytotoxicity of Nanomaterials: Are We Generating Sufficient Data for Their Risk Assessment? NANOMATERIALS 2020; 11:nano11010066. [PMID: 33396620 PMCID: PMC7824120 DOI: 10.3390/nano11010066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023]
Abstract
The aim of the present study was to investigate the eco-cytotoxicity of several forms of nanomaterials (NM), such as nano-CuO, nano-TiO2, nano-SiO2 and nano-ZnO, on different aquatic species (Raphidocelis subcapitata, Daphnia magna and Lemna minor) following standard protocols and on human cell lines (Caco-2, SV-80, HepG2 and HaCaT). Predicted no-effect concentrations (PNEC) or hazard concentrations for 5% of the species (HC5) were also estimated based on the compilation of data available in the literature. Most of the NM agglomerated strongly in the selected culture media. For the ecotoxicity assays, nano-CuO and nano-ZnO even in particle agglomeration state were the most toxic NM to the freshwater organisms compared to nano-TiO2 and nano-SiO2. Nano-ZnO was the most toxic NM to R. subcapitata and D. magna, while nano-CuO was found to be very toxic to L. minor. Nano-CuO was very toxic to Caco-2 and HepG2 cells, particularly at the highest tested concentrations, while the other NM showed no toxicity to the different cell lines. The HC5 and PNEC values are still highly protective, due to data limitations. However, the present study provides consistent evidence of the potential risks of both nano-CuO and nano-ZnO against aquatic organisms and also their effects on public health.
Collapse
Affiliation(s)
- Tatiana Andreani
- Centro de Investigação em Química da Universidade do Porto, CIQUP & Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- CITAB—Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal;
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.G.); (S.F.)
- Correspondence: (T.A.); (R.P.); Tel.: +351-220-402-000 (T.A. & R.P.)
| | - Verónica Nogueira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal;
| | - Ana Gavina
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.G.); (S.F.)
| | - Saul Fernandes
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.G.); (S.F.)
| | - José Luís Rodrigues
- Centro Tecnológico do Calçado de Portugal, Rua de Fundões—Devesa Velha, 3700-121 São João Madeira, Portugal; (J.L.R.); (V.V.P.); (M.J.F.)
| | - Vera V. Pinto
- Centro Tecnológico do Calçado de Portugal, Rua de Fundões—Devesa Velha, 3700-121 São João Madeira, Portugal; (J.L.R.); (V.V.P.); (M.J.F.)
| | - Maria José Ferreira
- Centro Tecnológico do Calçado de Portugal, Rua de Fundões—Devesa Velha, 3700-121 São João Madeira, Portugal; (J.L.R.); (V.V.P.); (M.J.F.)
| | - Amélia M. Silva
- CITAB—Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5000-801 Vila Real, Portugal
| | - Carlos M. Pereira
- Centro de Investigação em Química da Universidade do Porto, CIQUP & Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Ruth Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.G.); (S.F.)
- Correspondence: (T.A.); (R.P.); Tel.: +351-220-402-000 (T.A. & R.P.)
| |
Collapse
|
12
|
Wu F, Harper BJ, Crandon LE, Harper SL. Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms. ENVIRONMENTAL SCIENCE. NANO 2020; 7:105-115. [PMID: 32391155 PMCID: PMC7211403 DOI: 10.1039/c9en01026b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Copper based nanoparticles (NPs) are used extensively in industrial and commercial products as sensors, catalysts, surfactants, antimicrobials, and for other purposes. The high production volume and increasing use of copper-based NPs make their ecological risk a concern. Commonly used copper-based NPs are composed of metallic copper or copper oxide (Cu and CuO NPs); however, their environmental toxicity can vary dramatically depending on their physico-chemical properties, such as dissolution, aggregation behavior, and the generation of reactive oxygen species. Here, we investigated the NP dissolution, organismal uptake and aquatic toxicity of Cu and CuO NPs at 0, 0.1, 1, 5 or 10 mg Cu/L using a previously developed multi-species microcosm. This 5-day microcosm assay was comprised of C. reinhardtti, E. coli, D. magna, and D. rerio. We hypothesized that Cu and CuO NPs can elicit differential toxicity to the organisms due to alterations in particle dissolution and variations in organismal uptake. The actual concentrations of dissolved Cu released from the NPs were compared to ionic copper controls (CuCl2) at the same concentrations to determine the relative contribution of particulate and dissolved Cu on organism uptake and toxicity. We found that both NPs had higher uptake in D. magna and zebrafish than equivalent ionic exposures, suggesting that both Cu-based NPs are taken up by organisms. Cu NP exposures significantly inhibited algal growth rate, D. magna survival, and zebrafish hatching while exposure to equivalent concentrations of CuCl2 (dissolved Cu fraction) and CuO NPs did not. This indicates that Cu NPs themselves likely elicited a particle-specific mechanism of toxicity to the test organisms, or a combination effect from ionic Cu and the Cu NPs. Overall, this work was the first study to utilize a small-scale rapid assay designed to evaluate the fate and ecotoxicological impacts of Cu and CuO NPs in a mixed aquatic community.
Collapse
Affiliation(s)
- Fan Wu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Bryan J. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Lauren E. Crandon
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Stacey L. Harper
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
- Oregon Nanoscience and Microtechnologies Institute, Eugene, Oregon, United States
- Corresponding author: Stacey L. Harper:
| |
Collapse
|
13
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Parks AN, Cashman MA, Perron MM, Portis L, Cantwell MG, Katz DR, Ho KT, Burgess RM. Magnitude of acute toxicity of marine sediments amended with conventional copper and nanocopper. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2677-2681. [PMID: 30024047 PMCID: PMC6192042 DOI: 10.1002/etc.4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/18/2017] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
It is well known that copper (Cu) is toxic to marine organisms. We measured and compared the acute toxicity of several forms of Cu (including nanoCu) amended into a marine sediment with mysids and amphipods. For all the forms of Cu tested, toxicity, measured as the median lethal concentration, ranged from 708 to > 2400 mg Cu/kg (dry sediment) for mysids and 258 to 1070 mg Cu/kg (dry sediment) for amphipods. Environ Toxicol Chem 2018;37:2677-2681. © 2018 SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Ashley N Parks
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - Michaela A Cashman
- University of Rhode Island, Department of Geosciences, Kingston, RI, USA
- Oak Ridge Institute for Science and Education c/o U.S. EPA, ORD/NRMRL/LMMD, Cincinnati, OH, USA
| | - Monique M Perron
- U.S. EPA, OCSPP, Office of Pesticides Programs, Washington, DC, USA
| | - Lisa Portis
- Lifespan Ambulatory Care Center, East Greenwich, RI, USA
| | - Mark G Cantwell
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - David R Katz
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Kay T Ho
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Robert M Burgess
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| |
Collapse
|
15
|
Parks AN, Cantwell MG, Katz DR, Cashman MA, Luxton TP, Clar JG, Perron MM, Portis L, Ho KT, Burgess RM. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters II: Forms and bioavailability. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1969-1979. [PMID: 29575127 PMCID: PMC6038930 DOI: 10.1002/etc.4140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/06/2018] [Accepted: 03/22/2018] [Indexed: 05/18/2023]
Abstract
One application of nanocopper is as a wood-preserving pesticide in pressure-treated lumber. Recent research has shown that pressure-treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and marine conditions. The form of copper released (i.e., ionic, nanocopper [1-100 nm in size]) is not fully understood but will affect the bioavailability and toxicity of the metal. In the present study, multiple lines of evidence, including size fractionation, ion-selective electrode electrochemistry, comparative toxicity, and copper speciation were used to determine the form of copper released from lumber blocks and sawdust. The results of all lines of evidence supported the hypothesis that ionic copper was released from MCA lumber and sawdust, with little evidence that nanocopper was released. For example, copper concentrations in size fractionations of lumber block aqueous leachates including unfiltered, 0.1 μm, and 3 kDa were not significantly different, suggesting that the form of copper released was in the size range operationally defined as dissolved. These results correlated with the ion-selective electrode data which detects only ionic copper. In addition, comparative toxicity testing resulted in a narrow range of median lethal concentrations (221-257 μg/L) for MCA lumber blocks and CuSO4 . We conclude that ionic copper was released from the nanocopper pressure-treated lumber under estuarine and marine conditions. Environ Toxicol Chem 2018;37:1969-1979. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Ashley N Parks
- National Research Council c/o U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Mark G Cantwell
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - David R Katz
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Michaela A Cashman
- University of Rhode Island, Department of Geosciences, Kingston, RI, USA
| | - Todd P Luxton
- U.S. EPA, ORD/NRMRL, Land and Materials Management Division, Cincinnati, OH, USA
| | - Justin G Clar
- Oak Ridge Institute for Science and Education c/o U.S. EPA, ORD/NRMRL/LMMD, Cincinnati, OH, USA
| | - Monique M Perron
- US EPA, OCSPP, Office of Pesticides Programs, Washington, DC, USA
| | - Lisa Portis
- Lifespan Ambulatory Care Center, East Greenwich, RI USA
| | - Kay T Ho
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| | - Robert M Burgess
- U.S. EPA, ORD/NHEERL, Atlantic Ecology Division, Narragansett, RI, USA
| |
Collapse
|