1
|
Bancel S, Cachot J, Bon C, Rochard É, Geffard O. A critical review of pollution active biomonitoring using sentinel fish: Challenges and opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124661. [PMID: 39111525 DOI: 10.1016/j.envpol.2024.124661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Water pollution is a significant threat to aquatic ecosystems. Various methods of monitoring, such as in situ approaches, are currently available to assess its impact. In this paper we examine the use of fish in active biomonitoring to study contamination and toxicity of surface waters. We analysed 148 previous studies conducted between 2005 and 2022, including both marine and freshwater environments, focusing on the characteristics of the organisms used as well as the principal goals of these studies. The main conclusions we drew are that a wide range of protocols and organisms have been used but there is no standardised method for assessing the quality of aquatic ecosystems on a more global scale. Additionally, the most commonly used developmental stages have been juveniles and adults. At these stages, the most frequently used species were the fathead minnow (Pimephales promelas) and two salmonids: rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Few studies used earlier stages of development (embryos or larvae), mostly due to the difficulty of obtaining fish embryos and caging them in the field. Finally, we identified research gaps in active biomonitoring for water quality assessment which could indicate useful directions for future research and development.
Collapse
Affiliation(s)
| | - Jérôme Cachot
- Université de Bordeaux, CNRS and INP Bordeaux, UMR 5805 EPOC, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, Nouvelle-Aquitaine, France
| | - Corentin Bon
- INRAE, UR Riverly, F-69100, Villeurbanne, France
| | | | | |
Collapse
|
2
|
Robitaille J, Desrosiers M, Veilleux É, Métivier M, Guay I, Lefebvre-Raine M, Langlois VS. Is Seven Days Enough? Comparing A 7-Day Exposure to the Classical 21-Day OECD TG 229 Fish Short-Term Reproduction Assay in Fathead Minnow. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:222-233. [PMID: 39289235 DOI: 10.1007/s00244-024-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
The OECD (Organisation for Economic Co-operation and Development) test guidelines (TG) 229-fish short-term reproduction assay (FSTRA) is one of the gold standard methods used to identify endocrine disrupting chemicals (EDCs). While informative, the FSTRA's 5-6 week duration makes it difficult to use routinely. Prior studies have shown that EDCs' impact on fecundity, vitellogenin (VTG) and steroid levels can be detected after less than 1 week of exposure suggesting the FSTRA could be shortened. This study compares both 7- and 21-day FSTRAs using fathead minnows (Pimephales promelas) for three known EDCs: 17α-ethinylestradiol (EE2; 40 ng/L), 17β-trenbolone (TRB; 50 µg/L), and propiconazole (PRP; 500 µg/L). All three compounds led to arrested fertility after 24 h of exposure, except for the 7-day EE2 treatment which still decreased reproduction. Moreover, independently of time of exposure, EE2 induced VTG production in males, and decreased estrogen levels in females and testosterone levels in males. In contrast, TRB-induced VTG production in males, while the levels were not different from controls in females even though testosterone levels increased, and masculinization was observed. Finally, PRP led to a decrease in VTG levels which was only significant during the 21-day exposure, and surprisingly, no effect on steroid levels were observed despite its known effects on steroidogenesis. For two of the three EDCs tested, both times of exposure led to similar outcomes supporting the shortening of the FSTRA to seven days. This proposed 7-day FSTRA could be used to screen EDCs in routine monitoring of environmental samples.
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Mélanie Desrosiers
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Éloïse Veilleux
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Marianne Métivier
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Isabelle Guay
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Molly Lefebvre-Raine
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada.
| |
Collapse
|
3
|
Battaglin W, Bradley P, Weissinger R, Blackwell B, Cavallin J, Villeneuve D, DeCicco L, Kinsey J. Changes in chemical occurrence, concentration, and bioactivity in the Colorado River before and after replacement of the Moab, Utah wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166231. [PMID: 37586530 DOI: 10.1016/j.scitotenv.2023.166231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Long-term (2010-19) water-quality monitoring on the Colorado River downstream from Moab Utah indicated the persistent presence of Bioactive Chemicals (BC), such as pesticides and pharmaceuticals. This stream reach near Canyonlands National Park provides critical habitat for federally endangered species. The Moab wastewater treatment plant (WWTP) outfall discharges to the Colorado River and is the nearest potential point-source to this reach. The original WWTP was replaced in 2018. In 2016-19, a study was completed to determine if the new plant reduced BC input to the Colorado River at, and downstream from, the outfall. Water samples were collected before and after the plant replacement at sites upstream and downstream from the outfall. Samples were analyzed for as many as 243 pesticides, 109 pharmaceuticals, 20 hormones, 51 wastewater indicator chemicals, 20 metals, and 8 nutrients. BC concentrations, hazard quotients (HQs), and exposure activity ratios (EARs) were used to identify and prioritize contaminants for their potential to have adverse biological effects on the health of native and endangered wildlife. There were 22 BC with HQs >1, mostly metals and hormones; and 23 BC with EARs >0.1, mostly hormones and pharmaceuticals. Most high HQs or EARs were associated with samples collected at the WWTP outfall site prior to its replacement. Discharge from the new plant had reduced concentrations of nutrients, hormones, pharmaceuticals, and other BC. For example, all 16 of the hormones detected at the WWTP outfall site had maximum concentrations in samples collected prior to the WWTP replacement. The WWTP replacement had less effect on instream concentrations of metals and pesticides, BC whose sources are less directly tied to domestic wastewater. Study results indicate that improved WWTP technology can create substantial reductions in concentrations of non-regulated BC such as pharmaceuticals, in addition to regulated contaminants such as nutrients.
Collapse
|
4
|
Legrand E, Bayless AL, Bearden DW, Casu F, Edwards M, Jacob A, Johnson WE, Schock TB. Untargeted Metabolomics Analyses and Contaminant Chemistry of Dreissenid Mussels at the Maumee River Area of Concern in the Great Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19169-19179. [PMID: 38053340 DOI: 10.1021/acs.est.3c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Bivalves serve as an ideal ecological indicator; hence, their use by the NOAA Mussel Watch Program to monitor environmental health. This study aimed to expand the baseline knowledge of using metabolic end points in environmental monitoring by investigating the dreissenid mussel metabolome in the field. Dreissenids were caged at four locations along the Maumee River for 30 days. The mussel metabolome was measured using nuclear magnetic resonance spectroscopy, and mussel tissue chemical contaminants were analyzed using gas or liquid chromatography coupled with mass spectrometry. All Maumee River sites had a distinct mussel metabolome compared to the reference site and revealed changes in the energy metabolism and amino acids. Data also highlighted the importance of considering seasonality or handling effects on the metabolome at the time of sampling. The furthest upstream site presented a specific mussel tissue chemical signature of pesticides (atrazine and metolachlor), while a downstream site, located at Toledo's wastewater treatment plant, was characterized by polycyclic aromatic hydrocarbons and other organic contaminants. Further research into the dreissenid mussel's natural metabolic cycle and metabolic response to specific anthropogenic stressors is necessary before successful implementation of metabolomics in a biomonitoring program.
Collapse
Affiliation(s)
- Elena Legrand
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Amanda L Bayless
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Daniel W Bearden
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Fabio Casu
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Michael Edwards
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, 1305 East-West Highway, Silver Spring, Maryland 20910, United States
| | - Annie Jacob
- Consolidated Safety Services, 10301 Democracy Lane, Suite 300, Fairfax, Virginia 22030, United States
| | - W Edward Johnson
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, 1305 East-West Highway, Silver Spring, Maryland 20910, United States
| | - Tracey B Schock
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| |
Collapse
|
5
|
Ankley GT, Corsi SR, Custer CM, Ekman DR, Hummel SL, Kimbrough KL, Schoenfuss HL, Villeneuve DL. Assessing Contaminants of Emerging Concern in the Great Lakes Ecosystem: A Decade of Method Development and Practical Application. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2506-2518. [PMID: 37642300 DOI: 10.1002/etc.5740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 08/31/2023]
Abstract
Assessing the ecological risk of contaminants in the field typically involves consideration of a complex mixture of compounds which may or may not be detected via instrumental analyses. Further, there are insufficient data to predict the potential biological effects of many detected compounds, leading to their being characterized as contaminants of emerging concern (CECs). Over the past several years, advances in chemistry, toxicology, and bioinformatics have resulted in a variety of concepts and tools that can enhance the pragmatic assessment of the ecological risk of CECs. The present Focus article describes a 10+- year multiagency effort supported through the U.S. Great Lakes Restoration Initiative to assess the occurrence and implications of CECs in the North American Great Lakes. State-of-the-science methods and models were used to evaluate more than 700 sites in about approximately 200 tributaries across lakes Ontario, Erie, Huron, Michigan, and Superior, sometimes on multiple occasions. Studies featured measurement of up to 500 different target analytes in different environmental matrices, coupled with evaluation of biological effects in resident species, animals from in situ and laboratory exposures, and in vitro systems. Experimental taxa included birds, fish, and a variety of invertebrates, and measured endpoints ranged from molecular to apical responses. Data were integrated and evaluated using a diversity of curated knowledgebases and models with the goal of producing actionable insights for risk assessors and managers charged with evaluating and mitigating the effects of CECs in the Great Lakes. This overview is based on research and data captured in approximately about 90 peer-reviewed journal articles and reports, including approximately about 30 appearing in a virtual issue comprised of highlighted papers published in Environmental Toxicology and Chemistry or Integrated Environmental Assessment and Management. Environ Toxicol Chem 2023;42:2506-2518. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Steven R Corsi
- Upper Midwest Water Science Center, US Geological Survey, Madison, Wisconsin
| | - Christine M Custer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Drew R Ekman
- Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Stephanie L Hummel
- Great Lakes Regional Office, US Fish and Wildlife Service, Bloomington, Minnesota
| | - Kimani L Kimbrough
- National Oceanic and Atmospheric Administration, Silver Spring, Maryland, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
6
|
Maloney EM, Villeneuve DL, Blackwell BR, Vitense K, Corsi SR, Pronschinske MA, Jensen KM, Ankley GT. A framework for prioritizing contaminants in retrospective ecological assessments: Application in the Milwaukee Estuary (Milwaukee, WI). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1276-1296. [PMID: 36524447 PMCID: PMC10601791 DOI: 10.1002/ieam.4725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Watersheds are subjected to diverse anthropogenic inputs, exposing aquatic biota to a wide range of chemicals. Detection of multiple, different chemicals can challenge natural resource managers who often have to determine where to allocate potentially limited resources. Here, we describe a weight-of-evidence framework for retrospectively prioritizing aquatic contaminants. To demonstrate framework utility, we used data from 96-h caged fish studies to prioritize chemicals detected in the Milwaukee Estuary (WI, USA; 2017-2018). Across study years, 77/178 targeted chemicals were detected. Chemicals were assigned prioritization scores based on spatial and temporal detection frequency, environmental distribution, environmental fate, ecotoxicological potential, and effect prediction. Chemicals were sorted into priority bins based on the intersection of prioritization score and data availability. Data-limited chemicals represented those that did not have sufficient data to adequately evaluate ecotoxicological potential or environmental fate. Seven compounds (fluoranthene, benzo[a]pyrene, pyrene, atrazine, metolachlor, phenanthrene, and DEET) were identified as high or medium priority and data sufficient and flagged as candidates for further effects-based monitoring studies. Twenty-one compounds were identified as high or medium priority and data limited and flagged as candidates for further ecotoxicological research. Fifteen chemicals were flagged as the lowest priority in the watershed. One of these chemicals (2-methylnaphthalene) displayed no data limitations and was flagged as a definitively low-priority chemical. The remaining chemicals displayed some data limitations and were considered lower-priority compounds (contingent on further ecotoxicological and environmental fate assessments). The remaining 34 compounds were flagged as low or medium priority. Altogether, this prioritization provided a screening-level (non-definitive) assessment that could be used to focus further resource management and risk assessment activities in the Milwaukee Estuary. Furthermore, by providing detailed methodology and a practical example with real experimental data, we demonstrated that the proposed framework represents a transparent and adaptable approach for prioritizing contaminants in freshwater environments. Integr Environ Assess Manag 2023;19:1276-1296. © 2022 SETAC.
Collapse
Affiliation(s)
- Erin M Maloney
- Department of Biology, Swenson College of Science and Engineering, University of Minnesota-Duluth, Duluth, Minnesota, USA
| | - Daniel L Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Brett R Blackwell
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Kelsey Vitense
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Steven R Corsi
- US Geological Survey, Upper Midwest Water Science Center, Middleton, Wisconsin, USA
| | | | - Kathleen M Jensen
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Gerald T Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| |
Collapse
|
7
|
Maloney E, Villeneuve D, Jensen K, Blackwell B, Kahl M, Poole S, Vitense K, Feifarek D, Patlewicz G, Dean K, Tilton C, Randolph E, Cavallin J, LaLone C, Blatz D, Schaupp C, Ankley G. Evaluation of Complex Mixture Toxicity in the Milwaukee Estuary (WI, USA) Using Whole-Mixture and Component-Based Evaluation Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1229-1256. [PMID: 36715369 PMCID: PMC10775314 DOI: 10.1002/etc.5571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 01/22/2023] [Indexed: 05/27/2023]
Abstract
Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.
Collapse
Affiliation(s)
| | - D.L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K.M. Jensen
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - B.R. Blackwell
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - M.D. Kahl
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - S.T. Poole
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K. Vitense
- Scientific Computing and Data Curation Division, US EPA,
Duluth, MN, USA
| | - D.J. Feifarek
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G. Patlewicz
- Centre for Computational Toxicology and Exposure, US EPA,
Research Triangle Park, NC, USA
| | - K. Dean
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Tilton
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - E.C. Randolph
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - J.E. Cavallin
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C.A. LaLone
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - D. Blatz
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Schaupp
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G.T. Ankley
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| |
Collapse
|
8
|
Oliver SK, Corsi SR, Baldwin AK, Nott MA, Ankley GT, Blackwell BR, Villeneuve DL, Hladik ML, Kolpin DW, Loken L, DeCicco LA, Meyer MT, Loftin KA. Pesticide Prioritization by Potential Biological Effects in Tributaries of the Laurentian Great Lakes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:367-384. [PMID: 36562491 PMCID: PMC10107260 DOI: 10.1002/etc.5522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 11/07/2022] [Indexed: 05/09/2023]
Abstract
Watersheds of the Great Lakes Basin (USA/Canada) are highly modified and impacted by human activities including pesticide use. Despite labeling restrictions intended to minimize risks to nontarget organisms, concerns remain that environmental exposures to pesticides may be occurring at levels negatively impacting nontarget organisms. We used a combination of organismal-level toxicity estimates (in vivo aquatic life benchmarks) and data from high-throughput screening (HTS) assays (in vitro benchmarks) to prioritize pesticides and sites of concern in streams at 16 tributaries to the Great Lakes Basin. In vivo or in vitro benchmark values were exceeded at 15 sites, 10 of which had exceedances throughout the year. Pesticides had the greatest potential biological impact at the site with the greatest proportion of agricultural land use in its basin (the Maumee River, Toledo, OH, USA), with 72 parent compounds or transformation products being detected, 47 of which exceeded at least one benchmark value. Our risk-based screening approach identified multiple pesticide parent compounds of concern in tributaries of the Great Lakes; these compounds included: eight herbicides (metolachlor, acetochlor, 2,4-dichlorophenoxyacetic acid, diuron, atrazine, alachlor, triclopyr, and simazine), three fungicides (chlorothalonil, propiconazole, and carbendazim), and four insecticides (diazinon, fipronil, imidacloprid, and clothianidin). We present methods for reducing the volume and complexity of potential biological effects data that result from combining contaminant surveillance with HTS (in vitro) and traditional (in vivo) toxicity estimates. Environ Toxicol Chem 2023;42:367-384. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | | | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Gerald T. Ankley
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Brett R. Blackwell
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Daniel L. Villeneuve
- US Environmental Protection AgencyGreat Lakes Ecology and Toxicology DivisionDuluthMinnesotaUSA
| | - Michelle L. Hladik
- US Geological SurveySacramento, California Water Science CenterCaliforniaUSA
| | | | - Luke Loken
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Laura A. DeCicco
- US Geological SurveyUpper Midwest Water Science CenterWisconsinMadisonUSA
| | - Michael T. Meyer
- US Geological SurveyKansas Water Science CenterLawrenceKansasUSA
| | - Keith A. Loftin
- US Geological SurveyKansas Water Science CenterLawrenceKansasUSA
| |
Collapse
|
9
|
Loken LC, Corsi SR, Alvarez DA, Ankley GT, Baldwin AK, Blackwell BR, De Cicco LA, Nott MA, Oliver SK, Villeneuve DL. Prioritizing Pesticides of Potential Concern and Identifying Potential Mixture Effects in Great Lakes Tributaries Using Passive Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:340-366. [PMID: 36165576 PMCID: PMC10107608 DOI: 10.1002/etc.5491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 05/24/2023]
Abstract
To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luke C. Loken
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - David A. Alvarez
- US Geological SurveyColumbia Environmental Research CenterColombiaMissouriUSA
| | - Gerald T. Ankley
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Brett R. Blackwell
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | - Laura A. De Cicco
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
10
|
Pronschinske MA, Corsi SR, DeCicco LA, Furlong ET, Ankley GT, Blackwell BR, Villeneuve DL, Lenaker PL, Nott MA. Prioritizing Pharmaceutical Contaminants in Great Lakes Tributaries Using Risk-Based Screening Techniques. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2221-2239. [PMID: 35852176 PMCID: PMC9542422 DOI: 10.1002/etc.5403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 05/31/2023]
Abstract
In a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database. Available evidence did not suggest substantial concern for 75% of the monitored pharmaceuticals, including 147 undetected pharmaceuticals and 49 pharmaceuticals with screening-level alternative benchmarks. However, because of a lack of biological effects information, screening values were not available for 51 detected pharmaceuticals. Samples containing the greatest pharmaceutical concentrations and having the highest detection frequencies were from Lake Erie, southern Lake Michigan, and Lake Huron tributaries. Samples collected during low-flow periods had higher pharmaceutical concentrations than those collected during increased-flow periods. The wastewater-treatment plant effluent content in streams correlated positively with pharmaceutical concentrations. However, deviation from this correlation demonstrated that secondary factors, such as multiple pharmaceutical sources, were likely present at some sites. Further research could investigate high-priority pharmaceuticals as well as those for which alternative benchmarks could not be developed. Environ Toxicol Chem 2022;41:2221-2239. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Steven R. Corsi
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Laura A. DeCicco
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Edward T. Furlong
- Laboratory & Analytical Services DivisionUS Geological SurveyDenverColoradoUSA
| | - Gerald T. Ankley
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Brett R. Blackwell
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Peter L. Lenaker
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Michelle A. Nott
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| |
Collapse
|
11
|
Baldwin AK, Corsi SR, Stefaniak OM, Loken LC, Villeneuve DL, Ankley GT, Blackwell BR, Lenaker PL, Nott MA, Mills MA. Risk-Based Prioritization of Organic Chemicals and Locations of Ecological Concern in Sediment From Great Lakes Tributaries. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1016-1041. [PMID: 35170813 PMCID: PMC9306483 DOI: 10.1002/etc.5286] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 05/24/2023]
Abstract
With improved analytical techniques, environmental monitoring studies are increasingly able to report the occurrence of tens or hundreds of chemicals per site, making it difficult to identify the most relevant chemicals from a biological standpoint. For the present study, organic chemical occurrence was examined, individually and as mixtures, in the context of potential biological effects. Sediment was collected at 71 Great Lakes (USA/Canada) tributary sites and analyzed for 87 chemicals. Multiple risk-based lines of evidence were used to prioritize chemicals and locations, including comparing sediment concentrations and estimated porewater concentrations with established whole-organism benchmarks (i.e., sediment and water quality criteria and screening values) and with high-throughput toxicity screening data from the US Environmental Protection Agency's ToxCast database, estimating additive effects of chemical mixtures on common ToxCast endpoints, and estimating toxic equivalencies for mixtures of alkylphenols and polycyclic aromatic hydrocarbons (PAHs). This multiple-lines-of-evidence approach enabled the screening of more chemicals, mitigated the uncertainties of individual approaches, and strengthened common conclusions. Collectively, at least one benchmark/screening value was exceeded for 54 of the 87 chemicals, with exceedances observed at all 71 of the monitoring sites. Chemicals with the greatest potential for biological effects, both individually and as mixture components, were bisphenol A, 4-nonylphenol, indole, carbazole, and several PAHs. Potential adverse outcomes based on ToxCast gene targets and putative adverse outcome pathways relevant to individual chemicals and chemical mixtures included tumors, skewed sex ratios, reproductive dysfunction, hepatic steatosis, and early mortality, among others. The results provide a screening-level prioritization of chemicals with the greatest potential for adverse biological effects and an indication of sites where they are most likely to occur. Environ Toxicol Chem 2022;41:1016-1041. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
12
|
Development of Electrochemical Sensors/Biosensors to Detect Natural and Synthetic Compounds Related to Agroalimentary, Environmental and Health Systems in Argentina. A Review of the Last Decade. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Electrochemical sensors and biosensors are analytical tools, which are in continuous development with the aim of generating new analytical devices which are more reliable, cheaper, faster, sensitive, selective, and robust than others. In matrices related to agroalimentary, environmental, or health systems, natural or synthetic compounds occur which fulfil specific roles; some of them (such as mycotoxins or herbicides) may possess harmful properties, and others (such as antioxidants) beneficial ones. This imposes a challenge to develop new tools and analytical methodologies for their detection and quantification. This review summarises different aspects related to the development of electrochemical sensors and biosensors carried out in Argentina in the last ten years for application in agroalimentary, environmental, and health fields. The discussion focuses on the construction and development of electroanalytical methodologies for the determination of mycotoxins, herbicides, and natural and synthetic antioxidants. Studies based on the use of different electrode materials modified with micro/nanostructures, functional groups, and biomolecules, complemented by the use of chemometric tools, are explored. Results of the latest reports from research groups in Argentina are presented. The main goals are highlighted.
Collapse
|
13
|
Alvarez DA, Corsi SR, De Cicco LA, Villeneuve DL, Baldwin AK. Identifying Chemicals and Mixtures of Potential Biological Concern Detected in Passive Samplers from Great Lakes Tributaries Using High-Throughput Data and Biological Pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2165-2182. [PMID: 34003517 PMCID: PMC8361951 DOI: 10.1002/etc.5118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 05/24/2023]
Abstract
Waterborne contaminants were monitored in 69 tributaries of the Laurentian Great Lakes in 2010 and 2014 using semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). A risk-based screening approach was used to prioritize chemicals and chemical mixtures, identify sites at greatest risk for biological impacts, and identify potential hazards to monitor at those sites. Analyses included 185 chemicals (143 detected) including polycyclic aromatic hydrocarbons (PAHs), legacy and current-use pesticides, fire retardants, pharmaceuticals, and fragrances. Hazard quotients were calculated by dividing detected concentrations by biological effect concentrations reported in the ECOTOX Knowledgebase (toxicity quotients) or ToxCast database (exposure-activity ratios [EARs]). Mixture effects were estimated by summation of EAR values for chemicals that influence ToxCast assays with common gene targets. Nineteen chemicals-atrazine, N,N-diethyltoluamide, di(2-ethylhexyl)phthalate, dl-menthol, galaxolide, p-tert-octylphenol, 3 organochlorine pesticides, 3 PAHs, 4 pharmaceuticals, and 3 phosphate flame retardants-had toxicity quotients >0.1 or EARs for individual chemicals >10-3 at 10% or more of the sites monitored. An additional 4 chemicals (tributyl phosphate, triethyl citrate, benz[a]anthracene, and benzo[b]fluoranthene) were present in mixtures with EARs >10-3 . To evaluate potential apical effects and biological endpoints to monitor in exposed wildlife, in vitro bioactivity data were compared to adverse outcome pathway gene ontology information. Endpoints and effects associated with endocrine disruption, alterations in xenobiotic metabolism, and potentially neuronal development would be relevant to monitor at the priority sites. The EAR threshold exceedance for many chemical classes was correlated with urban land cover and wastewater effluent influence, whereas herbicides and fire retardants were also correlated to agricultural land cover. Environ Toxicol Chem 2021;40:2165-2182. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- David A. Alvarez
- Columbia Environmental Research CenterUS Geological SurveyColumbiaMissouri
| | - Steven R. Corsi
- Upper Midwest Science CenterUS Geological SurveyMiddletonWisconsin
| | | | - Daniel L. Villeneuve
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesota
| | | |
Collapse
|