1
|
Loureiro RC, Biasi C, Hepp LU. Effects of copper and cadmium on stream leaf decomposition: evidence from a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2511-2520. [PMID: 38066267 DOI: 10.1007/s11356-023-31282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
We seek to understand how copper and cadmium act on leaf litter decomposition by their effects on microbial conditioning and litter fragmentation by invertebrates. In this study, we evaluated, in an integrated manner, different biological elements responsible for functioning of streams. Thus, we performed a microcosm assay with different concentrations for the two metals and their combination, evaluating their effects on fungi sporulation rate, consumption rate by shredders, and, consequently, the leaf litter decomposition rates. Sporulation rates were affected by all copper concentrations tested 10 × = 16 µg L-1 and 25 × = 40 µg L-1) but significantly reduced only at the highest concentration of cadmium (25 × = 22.5 µg L-1). Increased copper and cadmium concentrations reduced the consumption of leaf litter by Phylloicus at 60%. The concentrations (10 × and 25 ×) of both metals resulted in a reduction in decomposition rates. When combined, copper and cadmium negatively affected microbial conditioning, consumption by shredders, and leaf litter decomposition. Increases in concentrations of copper and cadmium directly affected organic matter decomposition in aquatic environments. Thus, the presence of a high concentration of heavy metals in aquatic environments alters the functioning of ecosystems. As trace-elements occur in a combined manner in environments, our results show that the combined effects of different metals potentiate the negative effects on ecosystem processes.
Collapse
Affiliation(s)
- Rafael Chaves Loureiro
- Programa de Pós-Graduação Em Biologia de Ambientes Aquáticos Continentais, Fundação Universidade Do Rio Grande, Av. Itália, Km 8 - Campus Carreiros, Rio Grande, Rio Grande Do Sul, 96203-900, Brazil
| | - Cristiane Biasi
- Programa de Pós-Graduação Em Ecologia, Universidade Regional Integrada Do Alto Uruguai E das Missões, Av. Sete de Setembro, 1621, Erechim, Rio Grande Do Sul, 99709-910, Brazil
| | - Luiz Ubiratan Hepp
- Programa de Pós-Graduação Em Biologia de Ambientes Aquáticos Continentais, Fundação Universidade Do Rio Grande, Av. Itália, Km 8 - Campus Carreiros, Rio Grande, Rio Grande Do Sul, 96203-900, Brazil.
- Laboratório de Indicadores Ambientais, Universidade Federal de Mato Grosso Do Sul, Campus Três Lagoas, Av. Ranulpho Marques Leal 3484, Distrito Industrial, Três Lagoas, Mato Grosso Do Sul, 79613-000, Brazil.
| |
Collapse
|
2
|
Du J, Wang X, Zhang Y, Pu G, Jin B, Qv W, Cao X. Can titanium dioxide nanoparticles modulate the effects of zinc oxide nanoparticles on aquatic leaf litter decomposition? CHEMOSPHERE 2023:139313. [PMID: 37354960 DOI: 10.1016/j.chemosphere.2023.139313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
The potential impacts of metallic nanoparticles (NPs) at environmental levels on freshwater ecosystems cannot be ignored due to their frequent release. The most widely used metallic oxide, ZnO NPs and TiO2 NPs (100 ng L-1) were applied to explore their single and combined effects on leaf litter decomposition. Although ZnO NPs and TiO2 NPs alone or in combination increased 22.68%-41.17% of the leaf decomposition rate, they performed different toxic mechanisms in ecological processes. The microbial mass and enzyme activities significantly increased after acute exposure, but significantly decreased after chronic exposure to ZnO NPs. The activity of BG was the most sensitive factor that was decreased by 66.22%, 56.97%, and 39.39% after 21-day exposure to ZnO NPs, TiO2 NPs, and in combination, respectively. In addition, the analysis of Fourier transform infrared spectroscopy suggested a novel perspective on understanding the promoting mechanism. The promotion effect of ZnO NPs relied on the enhanced decomposition of refractory organics and easily degradable substances due to the contribution of Anguillospora, Pyrenochaetopsis, and Bipolaris. The single exposure to TiO2 NPs and combined exposure with ZnO NPs promoted microbial mass and hydrolase activities, with the stimulating effect attributed to the enhanced decomposition of soluble substances. Therefore, the results highlight the importance of chemical analysis of decomposed leaves to evaluate the potential threat of metallic NPs to the function of freshwater ecosystems.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China.
| | - Xilin Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Gaozhong Pu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Baodan Jin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China
| | - Wenrui Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xia Cao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, China.
| |
Collapse
|
3
|
Zhang Y, Yin Y, Ma H, Cao X, Ma B, Qv M, Zhang B, Akbar S, Du J. Insight into chronic exposure effects of nanosized titanium dioxide on Typha angustifolia leaf litter decomposition. CHEMOSPHERE 2019; 224:680-688. [PMID: 30849629 DOI: 10.1016/j.chemosphere.2019.02.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Advancement in nanotechnology has increased production of nanoparticles which initiates concerns for freshwater ecosystems. Nanosized TiO2 is one of the most used materials and its ecotoxicity has been extensively studied. Here, a freshwater microcosm experiment was performed to investigate the effects of nanosized (10, 60, and 100 nm) and bulk TiO2 at 1 g L-1 on the alteration in community structure of fungal decomposers and the consequences on litter decomposition of Typha angustifolia leaves. After 209 days of exposure, the decomposition rate was significantly higher in 100 nm TiO2 treatment compared to the control, which was caused by its promotion on fungal biomass and metabolic activity. Therefore, the study provides the multifaceted evidences for different effects of TiO2 with varied sizes on T. angustifolia leaf decomposition and highlights the importance of understanding the potential effects of varying sizes and long-term exposure in nanoparticle risk assessments.
Collapse
Affiliation(s)
- Yuyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuting Yin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xinshuai Cao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bingbing Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingxiang Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Baozhong Zhang
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, China
| | - Siddiq Akbar
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| |
Collapse
|
4
|
Tlili A, Cornut J, Behra R, Gil-Allué C, Gessner MO. Harmful effects of silver nanoparticles on a complex detrital model system. Nanotoxicology 2016; 10:728-35. [DOI: 10.3109/17435390.2015.1117673] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Zubrod JP, Feckler A, Englert D, Koksharova N, Rosenfeldt RR, Seitz F, Schulz R, Bundschuh M. Inorganic fungicides as routinely applied in organic and conventional agriculture can increase palatability but reduce microbial decomposition of leaf litter. J Appl Ecol 2015. [DOI: 10.1111/1365-2664.12393] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jochen P. Zubrod
- Institute for Environmental Sciences; University of Koblenz-Landau; Fortstraße 7 76829 Landau Germany
| | - Alexander Feckler
- Institute for Environmental Sciences; University of Koblenz-Landau; Fortstraße 7 76829 Landau Germany
- Department of Aquatic Sciences and Assessment; Swedish University of Agricultural Sciences; Lennart Hjelms väg 9 75007 Uppsala Sweden
| | - Dominic Englert
- Institute for Environmental Sciences; University of Koblenz-Landau; Fortstraße 7 76829 Landau Germany
| | - Natalia Koksharova
- Institute for Environmental Sciences; University of Koblenz-Landau; Fortstraße 7 76829 Landau Germany
| | - Ricki R. Rosenfeldt
- Institute for Environmental Sciences; University of Koblenz-Landau; Fortstraße 7 76829 Landau Germany
| | - Frank Seitz
- Institute for Environmental Sciences; University of Koblenz-Landau; Fortstraße 7 76829 Landau Germany
| | - Ralf Schulz
- Institute for Environmental Sciences; University of Koblenz-Landau; Fortstraße 7 76829 Landau Germany
| | - Mirco Bundschuh
- Institute for Environmental Sciences; University of Koblenz-Landau; Fortstraße 7 76829 Landau Germany
- Department of Aquatic Sciences and Assessment; Swedish University of Agricultural Sciences; Lennart Hjelms väg 9 75007 Uppsala Sweden
| |
Collapse
|
6
|
Lategan MJ, Hose GC. Development of a groundwater fungal strain as a tool for toxicity assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2826-2834. [PMID: 25220621 DOI: 10.1002/etc.2748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/14/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
Despite the significant ecological role played by fungi in groundwater, their value as indicators of groundwater pollution is not known, as fungi are notoriously challenging to assess for toxicity because of their varied morphological components, in particular their filamentous structures. Hence they are rarely used in environmental risk assessments and monitoring programs for aquatic systems. A rapid, low cost, 1-step static toxicity test targeting the hyphal components of fungi was developed that subsequently demonstrated the sensitivity of a ubiquitous and dominant groundwater fungal strain to metal contaminants. The strain demonstrates sensitivity to chromium > copper > zinc and relative resistance to arsenic. The introduction of a novel group of groundwater microorganisms--the fungi-for toxicity evaluation will strengthen current risk assessment programs for these ecosystems.
Collapse
Affiliation(s)
- Maria Josie Lategan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Macquarie, New South Wales, Australia
| | | |
Collapse
|