1
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Cutter AD. Beyond Haldane's rule: Sex-biased hybrid dysfunction for all modes of sex determination. eLife 2024; 13:e96652. [PMID: 39158559 PMCID: PMC11333046 DOI: 10.7554/elife.96652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Haldane's rule occupies a special place in biology as one of the few 'rules' of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane's rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane's rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane's rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane's rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
3
|
Schneemann H, De Sanctis B, Welch JJ. Fisher's Geometric Model as a Tool to Study Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041442. [PMID: 38253415 PMCID: PMC11216183 DOI: 10.1101/cshperspect.a041442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Interactions between alleles and across environments play an important role in the fitness of hybrids and are at the heart of the speciation process. Fitness landscapes capture these interactions and can be used to model hybrid fitness, helping us to interpret empirical observations and clarify verbal models. Here, we review recent progress in understanding hybridization outcomes through Fisher's geometric model, an intuitive and analytically tractable fitness landscape that captures many fitness patterns observed across taxa. We use case studies to show how the model parameters can be estimated from different types of data and discuss how these estimates can be used to make inferences about the divergence history and genetic architecture. We also highlight some areas where the model's predictions differ from alternative incompatibility-based models, such as the snowball effect and outlier patterns in genome scans.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Bianca De Sanctis
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
4
|
Kulmuni J, Wiley B, Otto SP. On the fast track: hybrids adapt more rapidly than parental populations in a novel environment. Evol Lett 2024; 8:128-136. [PMID: 38370548 PMCID: PMC10871894 DOI: 10.1093/evlett/qrad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/26/2023] [Indexed: 02/20/2024] Open
Abstract
Rates of hybridization are predicted to increase due to climate change and human activity that cause redistribution of species and bring previously isolated populations into contact. At the same time climate change leads to rapid changes in the environment, requiring populations to adapt rapidly in order to survive. A few empirical cases suggest hybridization can facilitate adaptation despite its potential for incompatibilities and deleterious fitness consequences. Here we use simulations and Fisher's Geometric model to evaluate the conditions and time frame of adaptation via hybridization in both diploids and haplodiploids. We find that hybrids adapt faster to new environments compared to parental populations in nearly all simulated scenarios, generating a fitness advantage that can offset intrinsic incompatibilities and last for tens of generations, regardless of whether the population was diploid or haplodiploid. Our results highlight the creative role of hybridization and suggest that hybridization may help contemporary populations adapt to the changing climate. However, adaptation by hybrids may well happen at the cost of reduced biodiversity, if previously isolated lineages collapse into one.
Collapse
Affiliation(s)
- Jonna Kulmuni
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bryn Wiley
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| | - Sarah P Otto
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Diz AP, Skibinski DOF. Patterns of admixture and introgression in a mosaic Mytilus galloprovincialis and Mytilus edulis hybrid zone in SW England. Mol Ecol 2024; 33:e17233. [PMID: 38063472 DOI: 10.1111/mec.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/25/2024]
Abstract
The study of hybrid zones offers important insights into speciation. Earlier studies on hybrid populations of the marine mussel species Mytilus edulis and Mytilus galloprovincialis in SW England provided evidence of admixture but were constrained by the limited number of molecular markers available. We use 57 ancestry-informative SNPs, most of which have been mapped genetically, to provide evidence of distinctive differences between admixed populations in SW England and asymmetrical introgression from M. edulis to M. galloprovincialis. We combine the genetic study with analysis of phenotypic traits of potential ecological and adaptive significance. We demonstrate that hybrid individuals have brown mantle edges unlike the white or purple in the parental species, suggesting allelic or non-allelic genomic interactions. We report differences in gonad development stage between the species consistent with a prezygotic barrier between the species. By incorporating results from publications dating back to 1980, we confirm the long-term stability of the hybrid zone despite higher viability of M. galloprovincialis. This stability coincides with a dramatic change in temperature of UK coastal waters and suggests that these hybrid populations might be resisting the effects of global warming. However, a single SNP locus associated with the Notch transmembrane signalling protein shows a markedly different pattern of variation to the others and might be associated with adaptation of M. galloprovincialis to colder northern temperatures.
Collapse
Affiliation(s)
- Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | | |
Collapse
|
6
|
Giakoumis M, Pinilla-Buitrago GE, Musher LJ, Wares JP, Baird SJE, Hickerson MJ. Evidence of introgression, ecological divergence and adaptation in Asterias sea stars. Mol Ecol 2023; 32:5541-5557. [PMID: 37691604 DOI: 10.1111/mec.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species, Asterias rubens and A. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome-wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth; Asterias forbesi displays a relatively narrow environmental niche while conversely, A. rubens has a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.
Collapse
Affiliation(s)
- Melina Giakoumis
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
- The American Museum of Natural History, New York, New York City, USA
| | - Gonzalo E Pinilla-Buitrago
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
| | - Lukas J Musher
- The Academy of Natural Sciences of Drexel University, Pennsylvania, Philadelphia, USA
| | - John P Wares
- Odum School of Ecology and Department of Genetics, University of Georgia, Georgia, Athens, USA
| | - Stuart J E Baird
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Michael J Hickerson
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
- The American Museum of Natural History, New York, New York City, USA
| |
Collapse
|
7
|
Carscadden KA, Doak DF, Oldfather MF, Emery NC. Demographic responses of hybridizing cinquefoils to changing climate in the Colorado Rocky Mountains. Ecol Evol 2023; 13:e10097. [PMID: 37449020 PMCID: PMC10336340 DOI: 10.1002/ece3.10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within- and among-species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippiana and P. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates than P. hippiana. In contrast, hybrid performance relative to P. pulcherrima varied with population and climate, with the hybrid maintaining relatively stable growth rates while populations of P. pulcherrima shrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context-dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions for P. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long-lived taxa are lagging behind their demographic trajectories, such that the currently less common P. hippiana could become the most abundant of the Potentilla taxa as this region continues to warm and dry.
Collapse
Affiliation(s)
- Kelly A. Carscadden
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel F. Doak
- Department of Environmental StudiesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Meagan F. Oldfather
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
8
|
Dagilis AJ, Matute DR. The fitness of an introgressing haplotype changes over the course of divergence and depends on its size and genomic location. PLoS Biol 2023; 21:e3002185. [PMID: 37459351 PMCID: PMC10374083 DOI: 10.1371/journal.pbio.3002185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/27/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
The genomic era has made clear that introgression, or the movement of genetic material between species, is a common feature of evolution. Examples of both adaptive and deleterious introgression exist in a variety of systems. What is unclear is how the fitness of an introgressing haplotype changes as species diverge or as the size of the introgressing haplotype changes. In a simple model, we show that introgression may more easily occur into parts of the genome which have not diverged heavily from a common ancestor. The key insight is that alleles from a shared genetic background are likely to have positive epistatic interactions, increasing the fitness of a larger introgressing block. In regions of the genome where few existing substitutions are disrupted, this positive epistasis can be larger than incompatibilities with the recipient genome. Further, we show that early in the process of divergence, introgression of large haplotypes can be favored more than introgression of individual alleles. This model is consistent with observations of a positive relationship between recombination rate and introgression frequency across the genome; however, it generates several novel predictions. First, the model suggests that the relationship between recombination rate and introgression may not exist, or may be negative, in recently diverged species pairs. Furthermore, the model suggests that introgression that replaces existing derived variation will be more deleterious than introgression at sites carrying ancestral variants. These predictions are tested in an example of introgression in Drosophila melanogaster, with some support for both. Finally, the model provides a potential alternative explanation to asymmetry in the direction of introgression, with expectations of higher introgression from rapidly diverged populations into slowly evolving ones.
Collapse
Affiliation(s)
- Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
9
|
Mating system and speciation I: Accumulation of genetic incompatibilities in allopatry. PLoS Genet 2022; 18:e1010353. [PMID: 36520924 PMCID: PMC9799327 DOI: 10.1371/journal.pgen.1010353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Self-fertilisation is widespread among hermaphroditic species across the tree of life. Selfing has many consequences on the genetic diversity and the evolutionary dynamics of populations, which may in turn affect macroevolutionary processes such as speciation. On the one hand, because selfing increases genetic drift and reduces migration rate among populations, it may be expected to promote speciation. On the other hand, because selfing reduces the efficacy of selection, it may be expected to hamper ecological speciation. To better understand under which conditions and in which direction selfing affects the build-up of reproductive isolation, an explicit population genetics model is required. Here, we focus on the interplay between genetic drift, selection and genetic linkage by studying speciation without gene flow. We test how fast populations with different rates of selfing accumulate mutations leading to genetic incompatibilities. When speciation requires populations to pass through a fitness valley caused by underdominant and compensatory mutations, selfing reduces the depth and/or breadth of the valley, and thus overall facilitates the fixation of incompatibilities. When speciation does not require populations to pass through a fitness valley, as for Bateson-Dobzhanzky-Muller incompatibilities (BDMi), the lower effective population size and higher genetic linkage in selfing populations both facilitate the fixation of incompatibilities. Interestingly, and contrary to intuitive expectations, local adaptation does not always accelerate the fixation of incompatibilities in outcrossing relative to selfing populations. Our work helps to clarify how incompatibilities accumulate in selfing vs. outcrossing lineages, and has repercussions on the pace of speciation as well as on the genetic architecture of reproductive isolation.
Collapse
|
10
|
Schneemann H, Munzur AD, Thompson KA, Welch JJ. The diverse effects of phenotypic dominance on hybrid fitness. Evolution 2022; 76:2846-2863. [PMID: 36221216 PMCID: PMC10092378 DOI: 10.1111/evo.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
When divergent populations interbreed, their alleles are brought together in hybrids. In the initial F1 cross, most divergent loci are heterozygous. Therefore, F1 fitness can be influenced by dominance effects that could not have been selected to function well together. We present a systematic study of these F1 dominance effects by introducing variable phenotypic dominance into Fisher's geometric model. We show that dominance often reduces hybrid fitness, which can generate optimal outbreeding followed by a steady decline in F1 fitness, as is often observed. We also show that "lucky" beneficial effects sometimes arise by chance, which might be important when hybrids can access novel environments. We then show that dominance can lead to violations of Haldane's Rule (reduced fitness of the heterogametic F1) but strengthens Darwin's Corollary (F1 fitness differences between cross directions). Taken together, results show that the effects of dominance on hybrid fitness can be surprisingly difficult to isolate, because they often resemble the effects of uniparental inheritance or expression. Nevertheless, we identify a pattern of environment-dependent heterosis that only dominance can explain, and for which there is some suggestive evidence. Our results also show how existing data set upper bounds on the size of dominance effects. These bounds could explain why additive models often provide good predictions for later-generation recombinant hybrids, even when dominance qualitatively changes outcomes for the F1.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| | - Aslı D Munzur
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Ken A Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Current address: Department of Biology, Stanford University & Department of Plant Biology, Carnegie Institution for Science, Stanford, USA
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
11
|
Abstract
Speciation is the process by which barriers to gene flow evolve between populations. Although we now know that speciation is largely driven by natural selection, knowledge of the agents of selection and the genetic and genomic mechanisms that facilitate divergence is required for a satisfactory theory of speciation. In this essay, we highlight three advances/problems in our understanding of speciation that have arisen from studies of the genes and genomic regions that underlie the evolution of reproductive isolation. First, we describe how the identification of “speciation” genes makes it possible to identify the agents of selection causing the evolution of reproductive isolation, while also noting that the link between the genetics of phenotypic divergence and intrinsic postzygotic reproductive barriers remains tenuous. Second, we discuss the important role of recombination suppressors in facilitating speciation with gene flow, but point out that the means and timing by which reproductive barriers become associated with recombination cold spots remains uncertain. Third, we establish the importance of ancient genetic variation in speciation, although we argue that the focus of speciation studies on evolutionarily young groups may bias conclusions in favor of ancient variation relative to new mutations.
Collapse
|
12
|
Sang Z, Wang H, Yang Y, Zhang Z, Liu X, Li Z, Xu Y. Epistasis Activation Contributes Substantially to Heterosis in Temperate by Tropical Maize Hybrids. FRONTIERS IN PLANT SCIENCE 2022; 13:921608. [PMID: 35898210 PMCID: PMC9313604 DOI: 10.3389/fpls.2022.921608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Epistasis strongly affects the performance of superior maize hybrids. In this study, a multiple-hybrid population, consisting of three hybrid maize sets with varied interparental divergence, was generated by crossing 28 temperate and 23 tropical inbred lines with diverse genetic backgrounds. We obtained 1,154 tested hybrids. Among these tested hybrids, heterosis increased steadily as the heterotic genetic distance increased. Mid-parent heterosis was significantly higher in the temperate by tropical hybrids than in the temperate by temperate hybrids. Genome-wide prediction and association mapping was performed for grain weight per plant (GWPP) and days to silking (DTS) using 20K high-quality SNPs, showing that epistatic effects played a more prominent role than dominance effects in temperate by tropical maize hybrids. A total of 33 and 420 epistatic QTL were identified for GWPP and DTS, respectively, in the temperate by tropical hybrids. Protein-protein interaction network and gene-set enrichment analyses showed that epistatic genes were involved in protein interactions, which play an important role in photosynthesis, biological transcription pathways, and protein synthesis. We showed that the interaction of many minor-effect genes in the hybrids could activate the transcription activators of epistatic genes, resulting in a cascade of amplified yield heterosis. The multiple-hybrid population design enhanced our understanding of heterosis in maize, providing an insight into the acceleration of hybrid maize breeding by activating epistatic effects.
Collapse
Affiliation(s)
- Zhiqin Sang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Hui Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- National Engineering Research Center of Wheat and Maize, Shandong Technology Innovation Center of Wheat, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuxin Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanqin Zhang
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xiaogang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiwei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunbi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| |
Collapse
|
13
|
Abstract
Even if a species' phenotype does not change over evolutionary time, the underlying mechanism may change, as distinct molecular pathways can realize identical phenotypes. Here we use linear system theory to explore the consequences of this idea, describing how a gene network underlying a conserved phenotype evolves, as the genetic drift of small changes to these molecular pathways causes a population to explore the set of mechanisms with identical phenotypes. To do this, we model an organism's internal state as a linear system of differential equations for which the environment provides input and the phenotype is the output, in which context there exists an exact characterization of the set of all mechanisms that give the same input-output relationship. This characterization implies that selectively neutral directions in genotype space should be common and that the evolutionary exploration of these distinct but equivalent mechanisms can lead to the reproductive incompatibility of independently evolving populations. This evolutionary exploration, or system drift, is expected to proceed at a rate proportional to the amount of intrapopulation genetic variation divided by the effective population size ( Ne$N_e$ ). At biologically reasonable parameter values this could lead to substantial interpopulation incompatibility, and thus speciation, on a time scale of Ne$N_e$ generations. This model also naturally predicts Haldane's rule, thus providing a concrete explanation of why heterogametic hybrids tend to be disrupted more often than homogametes during the early stages of speciation.
Collapse
Affiliation(s)
- Joshua S. Schiffman
- New York Genome CenterNew YorkNew York 10013,Weill Cornell MedicineNew YorkNew York 10065,Department of Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCalifornia 90089
| | - Peter L. Ralph
- Department of Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCalifornia 90089,Department of Mathematics, Institute of Ecology and EvolutionUniversity of OregonEugeneOregon 97403,Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregon 97403
| |
Collapse
|
14
|
Langdon QK, Powell DL, Kim B, Banerjee SM, Payne C, Dodge TO, Moran B, Fascinetto-Zago P, Schumer M. Predictability and parallelism in the contemporary evolution of hybrid genomes. PLoS Genet 2022; 18:e1009914. [PMID: 35085234 PMCID: PMC8794199 DOI: 10.1371/journal.pgen.1009914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Shreya M. Banerjee
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Ben Moran
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Paola Fascinetto-Zago
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institutes, Chevy Chase, Maryland, United States of America
| |
Collapse
|
15
|
Coughlan J. One fish, two fish, red fish, dead fish: Detecting the genomic footprint of ecological incompatibilities. PLoS Biol 2022; 20:e3001504. [PMID: 35015759 PMCID: PMC8752012 DOI: 10.1371/journal.pbio.3001504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As we uncover the ubiquity of hybridization in nature, determining how natural selection acts on hybrids has newfound importance for speciation. A study in PLOS Biology uses threespine stickleback to detect a genomic signature of ecological incompatibilities.
Collapse
Affiliation(s)
- Jenn Coughlan
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Thompson KA, Peichel CL, Rennison DJ, McGee MD, Albert AYK, Vines TH, Greenwood AK, Wark AR, Brandvain Y, Schumer M, Schluter D. Analysis of ancestry heterozygosity suggests that hybrid incompatibilities in threespine stickleback are environment dependent. PLoS Biol 2022; 20:e3001469. [PMID: 35007278 PMCID: PMC8746713 DOI: 10.1371/journal.pbio.3001469] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are "intrinsic," meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse-albeit indirect-signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.
Collapse
Affiliation(s)
- Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| | - Catherine L. Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diana J. Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Matthew D. McGee
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Timothy H. Vines
- DataSeer Research Data Services, Vancouver, British Columbia, Canada
| | | | - Abigail R. Wark
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Maryland, United States of America
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
17
|
Connallon T, Hodgins KA. Allen Orr and the genetics of adaptation. Evolution 2021; 75:2624-2640. [PMID: 34606622 DOI: 10.1111/evo.14372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023]
Abstract
Over most of the 20th century, evolutionary biologists predominantly subscribed to a strong form of "micro-mutationism," in which adaptive phenotypic divergence arises from allele frequency changes at many loci, each with a small effect on the phenotype. To be sure, there were well-known examples of large-effect alleles contributing to adaptation, yet such cases were generally regarded as atypical and unrepresentative of evolutionary change in general. In 1998, Allen Orr published a landmark theoretical paper in Evolution, which showed that both small- and large-effect mutations are likely to contribute to "adaptive walks" of a population to an optimum. Coupled with a growing set of empirical examples of large-effect alleles contributing to divergence (e.g., from QTL studies), Orr's paper provided a mathematical formalism that converted many evolutionary biologists from micro-mutationism to a more pluralistic perspective on the genetic basis of evolutionary change. We revisit the theoretical insights emerging from Orr's paper within the historical context leading up to 1998, and track the influence of this paper on the field of evolutionary biology through an examination of its citations over the last two decades and an analysis of the extensive body of theoretical and empirical research that Orr's pioneering paper inspired.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife 2021; 10:e69016. [PMID: 34346866 PMCID: PMC8337078 DOI: 10.7554/elife.69016] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022] Open
Abstract
In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Cheyenne Payne
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Quinn Langdon
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Daniel L Powell
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Yaniv Brandvain
- Department of Ecology, Evolution & Behavior and Plant and Microbial Biology, University of MinnesotaMinneapolisUnited States
| | - Molly Schumer
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
- Hanna H. Gray Fellow, Howard Hughes Medical InstituteStanfordUnited States
| |
Collapse
|
19
|
Brice C, Zhang Z, Bendixsen D, Stelkens R. Hybridization Outcomes Have Strong Genomic and Environmental Contingencies. Am Nat 2021; 198:E53-E67. [PMID: 34403309 DOI: 10.1086/715356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractExtreme F2 phenotypes known as transgressive segregants can cause increased or decreased fitness in hybrids beyond the ranges seen in parental populations. Despite the usefulness of transgression for plant and animal breeding and its potential role in hybrid speciation, the genetic mechanisms and predictors of transgressive segregation remain largely untested. We generated seven hybrid crosses between five widely divergent Saccharomyces yeast species and measured the fitness of the parents and their viable F1 and F2 hybrids in seven stressful environments. We found that on average 16.6% of all replicate F2 hybrids had higher fitness than both parents. Against our predictions, transgression frequency was not a function of parental genetic and phenotypic distances across test environments. Within environments, some relationships were significant, but not in the predicted direction; for example, genetic distance was negatively related to transgression in ethanol and hydrogen peroxide. Significant effects of hybrid cross, test environment, and cross × environment interactions suggest that the amount of transgression produced in a hybrid cross is highly context specific and that outcomes of hybridization differ even among crosses made from the same two parents. If the goal is to reliably predict hybrid fitness and forecast the evolutionary potential of admixed populations, we need more efforts to identify patterns beyond the idiosyncrasies caused by specific genomic or environmental contexts.
Collapse
|
20
|
Moy I, Green M, Pham TP, Luu D, Xu S. The life-history fitness of F 1 hybrids of the microcrustacean Daphnia pulex and D. pulicaria (Crustacea, Anomopoda). INVERTEBRATE BIOLOGY : A QUARTERLY JOURNAL OF THE AMERICAN MICROSCOPICAL SOCIETY AND THE DIVISION OF INVERTEBRATE ZOOLOGY/ASZ 2021; 140:e12333. [PMID: 34366655 PMCID: PMC8341403 DOI: 10.1111/ivb.12333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Negative interaction between alleles that arise independently in diverging populations (i.e., Dobzhansky-Muller incompatibilities) can cause reduction of fitness in their hybrids. However, heterosis in hybrids can emerge if hybridization breaks down detrimental epistatic interaction within parental lineages. In this study, we examined the life-history fitness of the inter-specific F1s of two recently diverged microcrustacean species Daphnia pulex and D. pulicaria as well as intra-specific crosses of D. pulex. We identified heterosis in two out of five life-history traits in the inter-specific F1s. According to theories that heterosis can transiently emerge in early speciation, the observation of heterosis in these life-history traits suggests that there are no major genetic incompatibilities between these two species affecting these traits and that D. pulex and D. pulicaria are at an early stage of speciation.
Collapse
Affiliation(s)
| | | | | | | | - Sen Xu
- Correspondence: 501 S. Nedderman Dr, Arlington, TX, 76019.
| |
Collapse
|
21
|
Powell DL, Payne C, Banerjee SM, Keegan M, Bashkirova E, Cui R, Andolfatto P, Rosenthal GG, Schumer M. The Genetic Architecture of Variation in the Sexually Selected Sword Ornament and Its Evolution in Hybrid Populations. Curr Biol 2021; 31:923-935.e11. [PMID: 33513352 DOI: 10.1016/j.cub.2020.12.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/27/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Biologists since Darwin have been fascinated by the evolution of sexually selected ornaments, particularly those that reduce viability. Uncovering the genetic architecture of these traits is key to understanding how they evolve and are maintained. Here, we investigate the genetic architecture and evolutionary loss of a sexually selected ornament, the "sword" fin extension that characterizes many species of swordtail fish (Xiphophorus). Using sworded and swordless sister species of Xiphophorus, we generated a mapping population and show that the sword ornament is polygenic-with ancestry across the genome explaining substantial variation in the trait. After accounting for the impacts of genome-wide ancestry, we identify one major-effect quantitative trait locus (QTL) that explains ~5% of the overall variation in the trait. Using a series of approaches, we narrow this large QTL interval to several likely candidate genes, including genes involved in fin regeneration and growth. Furthermore, we find evidence of selection on ancestry at one of these candidates in four natural hybrid populations, consistent with selection against the sword in these populations.
Collapse
Affiliation(s)
- Daniel L Powell
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
| | - Cheyenne Payne
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Shreya M Banerjee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Mackenzie Keegan
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Elizaveta Bashkirova
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, New York, NY 10032, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Rongfeng Cui
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA; Max Planck Institute for the Biology of Aging, Postfach 41 06 23, 50931 Cologne, Germany; School of Ecology, Sun Yat-sen University, 135 Xingang West Road, Binjiang Road, Haizhu District, Guangdong Province, China
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA
| | - Molly Schumer
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Howard Hughes Medical Institute, 327 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Schneemann H, De Sanctis B, Roze D, Bierne N, Welch JJ. The geometry and genetics of hybridization. Evolution 2020; 74:2575-2590. [PMID: 33150956 PMCID: PMC7839769 DOI: 10.1111/evo.14116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/26/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
When divergent populations form hybrids, hybrid fitness can vary with genome composition, current environmental conditions, and the divergence history of the populations. We develop analytical predictions for hybrid fitness, which incorporate all three factors. The predictions are based on Fisher's geometric model, and apply to a wide range of population genetic parameter regimes and divergence conditions, including allopatry and parapatry, local adaptation, and drift. Results show that hybrid fitness can be decomposed into intrinsic effects of admixture and heterozygosity, and extrinsic effects of the (local) adaptedness of the parental lines. Effect sizes are determined by a handful of geometric distances, which have a simple biological interpretation. These distances also reflect the mode and amount of divergence, such that there is convergence toward a characteristic pattern of intrinsic isolation. We next connect our results to the quantitative genetics of line crosses in variable or patchy environments. This means that the geometrical distances can be estimated from cross data, and provides a simple interpretation of the "composite effects." Finally, we develop extensions to the model, involving selectively induced disequilibria, and variable phenotypic dominance. The geometry of fitness landscapes provides a unifying framework for understanding speciation, and wider patterns of hybrid fitness.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeUnited Kingdom
- Institut des Sciences de l'ÉvolutionUniversité MontpellierUMR 5554, Montpellier Cedex 05France
| | - Bianca De Sanctis
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeUnited Kingdom
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeUnited Kingdom
| | - Denis Roze
- CNRS, UMI 3614Evolutionary Biology and Ecology of AlgaeRoscoffFrance
- Station Biologique de RoscoffSorbonne UniversitéRoscoff29688France
| | - Nicolas Bierne
- ISEM Université Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - John J. Welch
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeUnited Kingdom
| |
Collapse
|
23
|
Simon A, Fraïsse C, El Ayari T, Liautard-Haag C, Strelkov P, Welch JJ, Bierne N. How do species barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels. J Evol Biol 2020; 34:208-223. [PMID: 33045123 DOI: 10.1111/jeb.13709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study 'replicated' instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.
Collapse
Affiliation(s)
- Alexis Simon
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Christelle Fraïsse
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria, Austria
| | - Tahani El Ayari
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Petr Strelkov
- St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Monitoring and Conservation of Natural Arctic Ecosystems, Murmansk Arctic State University, Murmansk, Russia
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
24
|
Viard F, Riginos C, Bierne N. Anthropogenic hybridization at sea: three evolutionary questions relevant to invasive species management. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190547. [PMID: 32654643 PMCID: PMC7423285 DOI: 10.1098/rstb.2019.0547] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Species introductions promote secondary contacts between taxa with long histories of allopatric divergence. Anthropogenic contact zones thus offer valuable contrasts to speciation studies in natural systems where past spatial isolations may have been brief or intermittent. Investigations of anthropogenic hybridization are rare for marine animals, which have high fecundity and high dispersal ability, characteristics that contrast to most terrestrial animals. Genomic studies indicate that gene flow can still occur after millions of years of divergence, as illustrated by invasive mussels and tunicates. In this context, we highlight three issues: (i) the effects of high propagule pressure and demographic asymmetries on introgression directionality, (ii) the role of hybridization in preventing introduced species spread, and (iii) the importance of postzygotic barriers in maintaining reproductive isolation. Anthropogenic contact zones offer evolutionary biologists unprecedented large scale hybridization experiments. In addition to breaking the highly effective reproductive isolating barrier of spatial segregation, they allow researchers to explore unusual demographic contexts with strong asymmetries. The outcomes are diverse, from introgression swamping to strong barriers to gene flow, and lead to local containment or widespread invasion. These outcomes should not be neglected in management policies of marine invasive species. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Frédérique Viard
- AD2M, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
25
|
Satokangas I, Martin SH, Helanterä H, Saramäki J, Kulmuni J. Multi-locus interactions and the build-up of reproductive isolation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190543. [PMID: 32654649 PMCID: PMC7423273 DOI: 10.1098/rstb.2019.0543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
All genes interact with other genes, and their additive effects and epistatic interactions affect an organism's phenotype and fitness. Recent theoretical and empirical work has advanced our understanding of the role of multi-locus interactions in speciation. However, relating different models to one another and to empirical observations is challenging. This review focuses on multi-locus interactions that lead to reproductive isolation (RI) through reduced hybrid fitness. We first review theoretical approaches and show how recent work incorporating a mechanistic understanding of multi-locus interactions recapitulates earlier models, but also makes novel predictions concerning the build-up of RI. These include high variance in the build-up rate of RI among taxa, the emergence of strong incompatibilities producing localized barriers to introgression, and an effect of population size on the build-up of RI. We then review recent experimental approaches to detect multi-locus interactions underlying RI using genomic data. We argue that future studies would benefit from overlapping methods like ancestry disequilibrium scans, genome scans of differentiation and analyses of hybrid gene expression. Finally, we highlight a need for further overlap between theoretical and empirical work, and approaches that predict what kind of patterns multi-locus interactions resulting in incompatibilities will leave in genome-wide polymorphism data. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- I. Satokangas
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1, PO Box 65, 00014 Helsinki, Finland
| | - S. H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - H. Helanterä
- Ecology and Genetics research unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - J. Saramäki
- Department of Computer Science, Aalto University, PO Box 11000, 00076 Aalto, Espoo, Finland
| | - J. Kulmuni
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1, PO Box 65, 00014 Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, J. A. Palménin tie 260, 10900 Hanko, Finland
| |
Collapse
|
26
|
Yamaguchi R, Otto SP. Insights from Fisher's geometric model on the likelihood of speciation under different histories of environmental change. Evolution 2020; 74:1603-1619. [DOI: 10.1111/evo.14032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Ryo Yamaguchi
- Department of Advanced Transdisciplinary SciencesHokkaido University Sapporo Hokkaido 060‐0810 Japan
- Department of Biological SciencesTokyo Metropolitan University Hachioji Tokyo 192‐0397 Japan
| | - Sarah P. Otto
- Department of Zoology & Biodiversity Research CentreUniversity of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
27
|
Thompson KA. Experimental Hybridization Studies Suggest That Pleiotropic Alleles Commonly Underlie Adaptive Divergence between Natural Populations. Am Nat 2020; 196:E16-E22. [PMID: 32552104 DOI: 10.1086/708722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The alleles used for adaptation can pleiotropically affect traits under stabilizing selection. The fixation of alleles with deleterious pleiotropic side effects causes compensatory alleles to be favored by selection. Such compensatory alleles might segregate in interpopulation hybrids, resulting in segregation variance for traits where parents have indistinguishable phenotypes. If adaptation typically involves pleiotropy and compensation, then the segregation variance for traits under stabilizing selection is expected to increase with the magnitude of adaptive phenotypic divergence between parents. This prediction has not been tested empirically, and I gathered data from experimental hybridization studies to evaluate it. I found that pairs of parents that are more phenotypically divergent beget hybrids with more segregation variance in traits for which the parents are statistically indistinguishable. This result suggests that adaptive divergence between pairs of natural populations proceeds via pleiotropy and compensation and that deleterious transgressive segregation variance accumulates systematically as populations diverge.
Collapse
|
28
|
Reatini B, Vision TJ. Genetic architecture influences when and how hybridization contributes to colonization. Evolution 2020; 74:1590-1602. [PMID: 32267552 DOI: 10.1111/evo.13972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 01/19/2023]
Abstract
The role of genetic architecture in adaptation to novel environments has received considerable attention when the source of adaptive variation is de novo mutation. Relatively less is known when the source of adaptive variation is inter- or intraspecific hybridization. We model hybridization between divergent source populations and subsequent colonization of an unoccupied novel environment using individual-based simulations to understand the influence of genetic architecture on the timing of colonization and the mode of adaptation. We find that two distinct categories of genetic architecture facilitate rapid colonization but that they do so in qualitatively different ways. For few and/or tightly linked loci, the mode of adaptation is via the recovery of adaptive parental genotypes. With many unlinked loci, the mode of adaptation is via the generation of novel hybrid genotypes. The first category results in the shortest colonization lag phases across the widest range of parameter space, but further adaptation is mutation limited. The second category takes longer and is more sensitive to genetic variance and dispersal rate, but can facilitate adaptation to environmental conditions that exceed the tolerance of parental populations. These findings have implications for understanding the origins of biological invasions and the success of hybrid populations.
Collapse
Affiliation(s)
- Bryan Reatini
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, 27599-3280
| | - Todd J Vision
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, 27599-3280
| |
Collapse
|
29
|
Gagnaire PA. Comparative genomics approach to evolutionary process connectivity. Evol Appl 2020; 13:1320-1334. [PMID: 32684961 PMCID: PMC7359831 DOI: 10.1111/eva.12978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
The influence of species life history traits and historical demography on contemporary connectivity is still poorly understood. However, these factors partly determine the evolutionary responses of species to anthropogenic landscape alterations. Genetic connectivity and its evolutionary outcomes depend on a variety of spatially dependent evolutionary processes, such as population structure, local adaptation, genetic admixture, and speciation. Over the last years, population genomic studies have been interrogating these processes with increasing resolution, revealing a large diversity of species responses to spatially structured landscapes. In parallel, multispecies meta-analyses usually based on low-genome coverage data have provided fundamental insights into the ecological determinants of genetic connectivity, such as the influence of key life history traits on population structure. However, comparative studies still lack a thorough integration of macro- and micro-evolutionary scales to fully realize their potential. Here, I present how a comparative genomics framework may provide a deeper understanding of evolutionary process connectivity. This framework relies on coupling the inference of long-term demographic and selective history with an assessment of the contemporary consequences of genetic connectivity. Standardizing this approach across several species occupying the same landscape should help understand how spatial environmental heterogeneity has shaped the diversity of historical and contemporary connectivity patterns in different taxa with contrasted life history traits. I will argue that a reasonable amount of genome sequence data can be sufficient to resolve and connect complex macro- and micro-evolutionary histories. Ultimately, implementing this framework in varied taxonomic groups is expected to improve scientific guidelines for conservation and management policies.
Collapse
|
30
|
Simon A, Arbiol C, Nielsen EE, Couteau J, Sussarellu R, Burgeot T, Bernard I, Coolen JWP, Lamy J, Robert S, Skazina M, Strelkov P, Queiroga H, Cancio I, Welch JJ, Viard F, Bierne N. Replicated anthropogenic hybridisations reveal parallel patterns of admixture in marine mussels. Evol Appl 2020; 13:575-599. [PMID: 32431737 PMCID: PMC7045717 DOI: 10.1111/eva.12879] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/29/2022] Open
Abstract
Human-mediated transport creates secondary contacts between genetically differentiated lineages, bringing new opportunities for gene exchange. When similar introductions occur in different places, they provide informally replicated experiments for studying hybridisation. We here examined 4,279 Mytilus mussels, sampled in Europe and genotyped with 77 ancestry-informative markers. We identified a type of introduced mussels, called "dock mussels," associated with port habitats and displaying a particular genetic signal of admixture between M. edulis and the Mediterranean lineage of M. galloprovincialis. These mussels exhibit similarities in their ancestry compositions, regardless of the local native genetic backgrounds and the distance separating colonised ports. We observed fine-scale genetic shifts at the port entrance, at scales below natural dispersal distance. Such sharp clines do not fit with migration-selection tension zone models, and instead suggest habitat choice and early-stage adaptation to the port environment, possibly coupled with connectivity barriers. Variations in the spread and admixture patterns of dock mussels seem to be influenced by the local native genetic backgrounds encountered. We next examined departures from the average admixture rate at different loci, and compared human-mediated admixture events, to naturally admixed populations and experimental crosses. When the same M. galloprovincialis background was involved, positive correlations in the departures of loci across locations were found; but when different backgrounds were involved, no or negative correlations were observed. While some observed positive correlations might be best explained by a shared history and saltatory colonisation, others are likely produced by parallel selective events. Altogether, genome-wide effect of admixture seems repeatable and more dependent on genetic background than environmental context. Our results pave the way towards further genomic analyses of admixture, and monitoring of the spread of dock mussels both at large and at fine spacial scales.
Collapse
Affiliation(s)
- Alexis Simon
- ISEMUniv MontpellierCNRSEPHEIRDMontpellierFrance
| | | | - Einar Eg Nielsen
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Rossana Sussarellu
- Ifremer Unité Biogéochimie et ÉcotoxicologieCentre AtlantiqueNantesFrance
| | - Thierry Burgeot
- Ifremer Unité Biogéochimie et ÉcotoxicologieCentre AtlantiqueNantesFrance
| | | | - Joop W. P. Coolen
- Wageningen Marine ResearchDen HelderThe Netherlands
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Jean‐Baptiste Lamy
- SG2M‐LGPMMLaboratoire de Génétique et Pathologie des Mollusques MarinsIfremerLa TrembladeFrance
| | - Stéphane Robert
- SG2M‐LGPMMLaboratoire de Génétique et Pathologie des Mollusques MarinsIfremerLa TrembladeFrance
| | - Maria Skazina
- St. Petersburg State UniversitySt. PetersburgRussia
- Laboratory of Monitoring and Conservation of Natural Arctic EcosystemsMurmansk Arctic State UniversityMurmanskRussia
| | - Petr Strelkov
- St. Petersburg State UniversitySt. PetersburgRussia
- Laboratory of Monitoring and Conservation of Natural Arctic EcosystemsMurmansk Arctic State UniversityMurmanskRussia
| | | | - Ibon Cancio
- CBET Research GroupDepartment of Zoology and Animal Cell BiologyFaculty Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE‐UPV/EHU)University of the Basque Country (UPV/EHU)BilbaoSpain
| | - John J. Welch
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Frédérique Viard
- Department AD2MUPMC Univ Paris 06CNRSUMR 7144Station BiologiqueSorbonne UniversitésRoscoffFrance
| | | |
Collapse
|
31
|
Charles M, Bernard I, Villalba A, Oden E, Burioli EA, Allain G, Trancart S, Bouchart V, Houssin M. High mortality of mussels in northern Brittany – Evaluation of the involvement of pathogens, pathological conditions and pollutants. J Invertebr Pathol 2020; 170:107308. [DOI: 10.1016/j.jip.2019.107308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 12/15/2022]
|
32
|
Abstract
Fitness interactions between mutations can influence a population's evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA (small nucleolar RNA). Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations.
Collapse
Affiliation(s)
- Christelle Fraïsse
- 1 Institut des Sciences de l'Evolution, CNRS-UM-IRD , Montpellier , France.,2 Department of Genetics, University of Cambridge , Downing Street, Cambridge CB2 3EH , UK.,3 Institute of Science and Technology Austria , Am Campus 1, Klosterneuburg 3400 , Austria
| | - John J Welch
- 2 Department of Genetics, University of Cambridge , Downing Street, Cambridge CB2 3EH , UK
| |
Collapse
|
33
|
Yonemitsu MA, Giersch RM, Polo-Prieto M, Hammel M, Simon A, Cremonte F, Avilés FT, Merino-Véliz N, Burioli EAV, Muttray AF, Sherry J, Reinisch C, Baldwin SA, Goff SP, Houssin M, Arriagada G, Vázquez N, Bierne N, Metzger MJ. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. eLife 2019; 8:e47788. [PMID: 31686650 PMCID: PMC6831032 DOI: 10.7554/elife.47788] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Transmissible cancers, in which cancer cells themselves act as an infectious agent, have been identified in Tasmanian devils, dogs, and four bivalves. We investigated a disseminated neoplasia affecting geographically distant populations of two species of mussels (Mytilus chilensis in South America and M. edulis in Europe). Sequencing alleles from four loci (two nuclear and two mitochondrial) provided evidence of transmissible cancer in both species. Phylogenetic analysis of cancer-associated alleles and analysis of diagnostic SNPs showed that cancers in both species likely arose in a third species of mussel (M. trossulus), but these cancer cells are independent from the previously identified transmissible cancer in M. trossulus from Canada. Unexpectedly, cancers from M. chilensis and M. edulis are nearly identical, showing that the same cancer lineage affects both. Thus, a single transmissible cancer lineage has crossed into two new host species and has been transferred across the Atlantic and Pacific Oceans and between the Northern and Southern hemispheres.
Collapse
Affiliation(s)
| | | | | | - Maurine Hammel
- ISEM, Université de Montpellier, CNRS- EPHE-IRDMontpellierFrance
- IHPE, Université de Montpellier, CNRS-Ifremer-UPVDMontpellierFrance
| | - Alexis Simon
- ISEM, Université de Montpellier, CNRS- EPHE-IRDMontpellierFrance
| | - Florencia Cremonte
- Laboratorio de Parasitología (LAPA)Instituto de Biología de Organismos Marinos (IBIOMAR) (CCT CONICET - CENPAT)Puerto MadrynArgentina
| | - Fernando T Avilés
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | - Nicolás Merino-Véliz
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | | | | | - James Sherry
- Water Science & Technology DirectorateEnvironment and Climate Change CanadaBurlingtonCanada
| | - Carol Reinisch
- Water Science & Technology DirectorateEnvironment and Climate Change CanadaBurlingtonCanada
| | - Susan A Baldwin
- Chemical and Biological EngineeringUniversity of British ColumbiaVancouverCanada
| | - Stephen P Goff
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Microbiology and ImmunologyColumbia University Medical CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia University Medical CenterNew YorkUnited States
| | - Maryline Houssin
- Research and DevelopmentLABÉO Frank DuncombeSaint-ContestFrance
- FRE BOREA, MNHN, UPMC, UCN, CNRS-7208, IRD-207, Université de Caen NormandieCaenFrance
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | - Nuria Vázquez
- Laboratorio de Parasitología (LAPA)Instituto de Biología de Organismos Marinos (IBIOMAR) (CCT CONICET - CENPAT)Puerto MadrynArgentina
| | - Nicolas Bierne
- ISEM, Université de Montpellier, CNRS- EPHE-IRDMontpellierFrance
| | | |
Collapse
|
34
|
Burioli EAV, Trancart S, Simon A, Bernard I, Charles M, Oden E, Bierne N, Houssin M. Implementation of various approaches to study the prevalence, incidence and progression of disseminated neoplasia in mussel stocks. J Invertebr Pathol 2019; 168:107271. [PMID: 31629707 DOI: 10.1016/j.jip.2019.107271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/11/2023]
Abstract
Marine mussel production is of substantial economic interest in numerous coastal areas worldwide, making crucial the study of pathologies that affect them. Disseminated neoplasia (DN) has recently been suggested to be linked to blue mussel, Mytilus edulis, mortality outbreaks observed in France since 2014, although the evidence remains indirect. In order to improve DN detection and monitoring, we compared the sensitivity of four diagnostic tools, namely haemocytology, histology, flow cytometry, and genetics. Haemocytological examination gave the best results in sensitivity and had the advantage of being non-invasive, allowing disease progression to be followed in affected mussels. Using this approach, we showed that DN progression is usually slow, and we provide evidence of remission events. We observed a high diversity of forms and mitotic features of neoplastic cells located in the vesicular connective tissue but rarely in the haemolymph. Circulating cells occur as four main types but are homogenous in morphology and DNA content within a single individual. Polyploidy proved very high, from 8 N to 18 N. Genetic analysis of haemolymph DNA showed that a Mytilus trossulus genetic signal was associated with almost all the DN cases here diagnosed by haemocytological examination, regardless of the DN type. This result corroborates DN is a transmissible cancer that first originated in a M. trossulus host and subsequently crossed into M. edulis. No pre-neoplastic conditions were detectable. The prevalence of the disease was quite low, which, together with the low morbidity observed in the lab, suggest DN is unlikely to be the direct cause of mortality outbreaks in France.
Collapse
Affiliation(s)
| | - S Trancart
- LABÉO, 1 Route de Rosel, 14280 St Contest, France
| | - A Simon
- ISEM, Univ Montpellier, CNRS-EPHE-IRD, Montpellier, France
| | - I Bernard
- Eurêka Modélisation, 13 rue de Kermarquer, Lézardrieux, France
| | - M Charles
- LABÉO, 1 Route de Rosel, 14280 St Contest, France; Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14000 Caen, France
| | - E Oden
- LABÉO, 1 Route de Rosel, 14280 St Contest, France
| | - N Bierne
- ISEM, Univ Montpellier, CNRS-EPHE-IRD, Montpellier, France
| | - M Houssin
- LABÉO, 1 Route de Rosel, 14280 St Contest, France; Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14000 Caen, France
| |
Collapse
|
35
|
Dagilis AJ, Kirkpatrick M, Bolnick DI. The evolution of hybrid fitness during speciation. PLoS Genet 2019; 15:e1008125. [PMID: 31059513 PMCID: PMC6502311 DOI: 10.1371/journal.pgen.1008125] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
The evolution of postzygotic reproductive isolation is an important component of speciation. But before isolation is complete there is sometimes a phase of heterosis in which hybrid fitness exceeds that of the two parental species. The genetics and evolution of heterosis and postzygotic isolation have typically been studied in isolation, precluding the development of a unified theory of speciation. Here, we develop a model that incorporates both positive and negative gene interactions, and accounts for the evolution of both heterosis and postzygotic isolation. We parameterize the model with recent data on the fitness effects of 10,000 mutations in yeast, singly and in pairwise epistatic combinations. The model makes novel predictions about the types of interactions that contribute to declining hybrid fitness. We reproduce patterns familiar from earlier models of speciation (e.g. Haldane's Rule and Darwin's Corollary) and identify new mechanisms that may underlie these patterns. Our approach provides a general framework for integrating experimental data from gene interaction networks into speciation theory and makes new predictions about the genetic mechanisms of speciation.
Collapse
Affiliation(s)
- Andrius J. Dagilis
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
| | - Mark Kirkpatrick
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel I. Bolnick
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
- Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, Connecticut, United States of America
| |
Collapse
|
36
|
Fragata I, Blanckaert A, Dias Louro MA, Liberles DA, Bank C. Evolution in the light of fitness landscape theory. Trends Ecol Evol 2019; 34:69-82. [DOI: 10.1016/j.tree.2018.10.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/28/2023]
|
37
|
Gagnaire PA, Lamy JB, Cornette F, Heurtebise S, Dégremont L, Flahauw E, Boudry P, Bierne N, Lapègue S. Analysis of Genome-Wide Differentiation between Native and Introduced Populations of the Cupped Oysters Crassostrea gigas and Crassostrea angulata. Genome Biol Evol 2018; 10:2518-2534. [PMID: 30184067 PMCID: PMC6161763 DOI: 10.1093/gbe/evy194] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
The Pacific cupped oyster is genetically subdivided into two sister taxa, Crassostrea gigas and Crassostrea angulata, which are in contact in the north-western Pacific. The nature and origin of their genetic and taxonomic differentiation remains controversial due the lack of known reproductive barriers and the high degree of morphologic similarity. In particular, whether the presence of ecological and/or intrinsic isolating mechanisms contributes to species divergence is unknown. The recent co-introduction of both taxa into Europe offers a unique opportunity to test how genetic differentiation is maintained under new environmental and demographic conditions. We generated a pseudochromosome assembly of the Pacific oyster genome using a combination of BAC-end sequencing and scaffold anchoring to a new high-density linkage map. We characterized genome-wide differentiation between C. angulata and C. gigas in both their native and introduced ranges, and showed that gene flow between species has been facilitated by their recent co-introductions in Europe. Nevertheless, patterns of genomic divergence between species remain highly similar in Asia and Europe, suggesting that the environmental transition caused by the co-introduction of the two species did not affect the genomic architecture of their partial reproductive isolation. Increased genetic differentiation was preferentially found in regions of low recombination. Using historical demographic inference, we show that the heterogeneity of differentiation across the genome is well explained by a scenario whereby recent gene flow has eroded past differentiation at different rates across the genome after a period of geographical isolation. Our results thus support the view that low-recombining regions help in maintaining intrinsic genetic differences between the two species.
Collapse
Affiliation(s)
| | - Jean-Baptiste Lamy
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Florence Cornette
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Serge Heurtebise
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Lionel Dégremont
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Emilie Flahauw
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Pierre Boudry
- Ifremer, UMR LEMAR, Laboratoire des Sciences de l’Environnement Marin (UBO, CNRS, IRD, Ifremer), Plouzané, France
| | - Nicolas Bierne
- Institut des Sciences de l’Evolution, ISEM-CNRS, UMR5554, Montpellier, France
| | - Sylvie Lapègue
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| |
Collapse
|